
Chapter 7

system F

Some recursive functions can have different implementations on different types,
but essentially do the same thing for every type. For example, the length func-
tion on lists of elements of a type A doesn’t depend on A itself, but only on
the structure of the list. As things are up to now, we would have to define it
separately for every type:

lengthA : ListA → Nat

lengthA nil = 0
lengthA (a :: l) = (lengthA l) + 1

Formally, using the elimination rule for lists:

lengthA = recList (λa.λl.succ) zero.

(Even more formally, you could define it as a catamorphism using the generic
elimination rule for µ types.)

The definition is exactly the same independently of A. So we would like to
define it as a single function that can be instantiated to different types:

length = ∀X ∈ Type. ListX → Nat.

Such functions are called polymorphic. We would like to have a programming
language in which we can define and give a proper type to polymorphic func-
tions. Such system exists and is called system F . It was invented by Jean-Yves
Girard in 1972 with a similar goal as Gödel had in inventing system T : sys-
tem T was used to prove the consistency of Peano Arithmetic, system F can
be used to prove the consistency of Mathematical Analysis (the theory of real
numbers). John C. Reynolds rediscovered it independently in 1974 as a pro-
gramming paradigm to define polymorphic functions.

Church Numerals Revisited

Let’s reconsider the definition of Church numerals and the reason why we found
them too limited in λ→ .

63

CHAPTER 7. SYSTEM F

The numeral 2 was defined as λf.λx.f (f x). In λ→ we can give it the
type Nato = (o → o) → o → o. But this means that we can define func-
tions by iteration with results in o. This was enough to define addition and
multiplication, but when trying to define exponentiation, we found that the
second argument needed to have a higher type, Nato→o. In conclusion, the type
NatT = (T → T) → T → T allows us only to define functions by iteration on
the type T . This is always going to be limiting and especially we won’t be able
to do iteration on the type NatT itself.

We would overcome this hurdle if we could give the numeral 2 all the types
NatT at once, for every type T :

∀X ∈ Type. 2 : NatX .

This ability to define terms that belong to a whole class of types, rather than to
one single type, is called polymorphism. But rather that having an ambiguous
type system, we would like to give 2 a type that expresses the fact that it can
be applied to terms of different types.

We are going to introduce a new way of defining polymorphic types by making
a higher-order product over a type variable. For example, we can define the type
of natural numbers as

Nat = ΠX.(X → X) → X → X.

This means that the type Nat is the higher-order product of all the types NatX .
If we have an element n : Nat, we can apply it to a specific type, for example
o, to obtain the element (n o) : (o → o) → o → o. Or we can apply it to other
types to obtain different instantiations:

n (o → o) : ((o → o) → (o → o)) → (o → o) → (o → o).

In general (nT) : (T → T) → T → T .
When defining terms of such product types, we use a kind of higher order

abstraction designated with a capital λ.

2 = ΛX.λf : X → X.λx : X.f (f x) : Nat.

As usual, we will leave out the types of abstracted (first order) variables when
they are obvious, for readability:

2 = ΛX.λf.λx.f (f x) : Nat.

Rules of system F

We extend the syntax of the simply typed λ-calculus with second order variables
(which denote types) and products, abstractions and applications at the type
level. The class of types is generated by the following grammar:

T ::= X,Y, Z, . . . type variables
| (T → T) function type / first order product
| (ΠX.t). second-order product

V Capretta 64 G54FOP, 2017

CHAPTER 7. SYSTEM F

Contexts will contain not only type declaration for first order variables, but
also second order variables. These do not have types, they are types. So in the
context they will just be declared by X Type. After declaring them, we may use
them to give types to the first-order variables. So, for example, this is a valid
context:

Γ = X Type, x : X, y : X → X, z : ΠY.Y → Y,Z Type, u : Z → ΠY.Y

We still have the abstraction and application rules from λ→ and we add
abstraction and application rules at the type level.

Second-order Abstraction
Γ, X Type ⊢ t : T
Γ ⊢ (ΛX.t) : ΠX.T

Second-order Application For every type A:

Γ ⊢ f : ΠX.T

Γ ⊢ (f A) : T [X := A]

Correspondingly, we have a reduction rule at the type level:

(ΛX.t)A t[X := A].

The simplest polymorphic function is the polymorphic identity:

id = ΛX.λx : X.x : ΠX.X → X.

(We assign to the polymorphic product constructor Π a lower priority than the
function type constructor →, so ΠX.X → X stands for ΠX.(X → X).) Here is
step by step how we would apply it and compute it for a natural number:

id Nat 2 = (ΛX.λx : X.x : ΠX.X → X)Nat 2 (λx : Nat → Nat.x) 2 2

You see in this example that when we perform β-reduction at the type level, we
have to substitute also the occurrences of the type variable that occur in the
types of the abstracted variables.

But there is still something missing: in the example we use the type Nat and
the numeral 2. In system F we don’t have them as a basic type or element,
but we must define them in the Church way.

Natural Numbers and Lists

The type of natural numbers is defined in system F as

Nat = ΠX.(X → X) → X → X.

V Capretta 65 G54FOP, 2017

CHAPTER 7. SYSTEM F

The numbers themselves are just Church numerals with an extra type-level
abstraction:

0 = ΛX.λf : X → X.λx : X.x

1 = ΛX.λf : X → X.λx : X.f x

2 = ΛX.λf : X → X.λx : X.f (f x)
3 = ΛX.λf : X → X.λx : X.f (f (f x))

...

We will adopt the usual convention of not writing the types of the abstracted
variables: 3 = ΛX.λf.λx.f (f (f x)). But be careful: this time those types may
change when we do a reduction step, because the type variables in them may
be substituted for any type.

Arithmetic operations can be defined as before, just adding the appropriate
type-level applications:

succ = λn.ΛX.λf.λx.f (nX f x)
plus = λm.λn.ΛX.λf.λx.mX f (nX f x)
mult = λm.λn.ΛX.λf.mX (nX f)

The exciting novelty is that now we can also implement the exponentiation
function, because we can instantiate numerals at different types:

exp = λm.λn.ΛX.n (X → X) (mX).

Let’s check that exp has indeed the type Nat → Nat → Nat. If m and n have
the type Nat = ΠX.(X → X) → X → X. then we have:

n (X → X) : ((X → X) → X → X)[X := (X → X)]
= ((X → X) → (X → X)) → (X → X) → (X → X)
= ((X → X) → X → X) → (X → X) → X → X

mX : ((X → X) → X → X)[X := X]
= (X → X) → X → X

n (X → X) (mX) : (X → X) → X → X

ΛX.n (X → X) (mX) : ΠX.(X → X) → X → X

= Nat

This shows that exp has the correct type. You can verify that it also correctly
computes the exponential function. Except for the additions involving the type
variable X, everything works in the same way as the corresponding definition
in the untyped λ-calculus.

So we don’t need a separate type of numbers with its own rules. We can show
that all functions on natural numbers definable in system T are also definable
in system F . Since we defined numbers as Church numerals, it is immediate
that we can do iteration over them. To do full recursion, that is, to have the
same power as rec in system T , we can use the trick using pairs to reconstruct
the argument.

V Capretta 66 G54FOP, 2017

CHAPTER 7. SYSTEM F

Cartesian product is also definable in system F . Given two types A and B,
their product, pairing constructor and projections are defined (again inspired
by the encoding in the untyped λ-calculus) as:

A×B = ΠX.(A → B → X) → X

〈a, b〉 = ΛX.λg.g a b

fst = λp.pA (λx.λy.x)
snd = λp.pB (λx.λy.y)

Similarly, we can define the disjoint union of two types:

A+B = ΠX.(A → X) → (B → X) → X.

I leave it to you to define injection functions and the case operator for elimina-
tion.

Next we see how lists over a type A can be defined. The idea is similar to
that for natural numbers:

ListA = ΠX.(A → X → X) → X → X

nil = ΛX.λf.λx.x

a :: l = ΛX.λf.λx.f a (l X f x)

The recursor for lists is just application of the list to the methods for nil and
(::). If we have f : A → T → T and t0 : T for some type T , then:

recListT f x0 = λl.l T f t0.

(When we formulated the rules for lists, the elimination rule had a parameter
X for any type; I replaced it with T now to stress that it can be an arbitrary
type, not just the type variable X).

An example application is the length function that we mentioned at the
beginning of the chapter:

length : ΠY.ListY → Nat

length = ΛY.λl.lNat (λa.succ) zero.

Inductive Types

The encoding that we used for Nat and ListA can be extended to all inductive
types. Given any strictly positive functor F , we can represent µF by:

µF = ΠX.(F X → X) → X.

Let’s see how the rules for µ types can be implemented. For the introduction
rule, suppose t : F µF . We can define:

in t = ΛX.λf.f (F (λy.y X f) t).

V Capretta 67 G54FOP, 2017

CHAPTER 7. SYSTEM F

To make it clearer that this definition is correct, let’s add the types of the
abstracted variables:

in t = ΛX.λf : F X → X.f (F (λy : µF.y X f) t).

Since y : µF = ΠX.(F X → X) → X, when we apply it to X and f , we obtain
a term of type X. Therefore λy : µF.y X f : µF → X. Applying F ’s functorial
lifting (mapping) we obtain F (λy : µF.y X f) : F µF → F X, that is applied to
t : F µF to get a term of type F X. We finally apply f to it to obtain a result
of type X, as needed.

More clearly: after we see the definition of catamorphisms in the next para-
graph, we can reformulate the constructor as:

in t = λX.λf.f (F (cata f) t).

For the elimination rule, let g : F T → T be an algebra (again, we use
T to denote any type to avoid confusion with the variable X), we define its
catamorphism by:

cata g = λu.u T g.

You can verify that the reduction rule for µF is satisfied by these definitions.
The introduction and elimination rules are very easy because we essentially

defined µF to be the product of all the algebras of F . We could write it in the
following way:

µF =
∏

f :F X→X

X

which makes it clear that µF is the product of the carriers of all the algebras. So
an object of type µF chooses an element in each algebra of F . The elimination
rule simply returns the element chosen for the argument algebra.

TO DO [You may wonder if we can also encode coinductive types. This is a

more delicate question without a satisfying answer. Coinductive types are the dual

of inductive ones. The dual of the product of all algebras would be the sum of all

coalgebras. So we would have to write

νF =
∑

f :X→F X

X

The idea is that any coalgebra can be injected in it. This requires that we have a

type-level sum constructor Σ. This is not available in system F and it is not a

common extension.]

Properties and Applications

system F satisfies the same useful properties as the other type systems that we
defined. In particular it satisfies confluence and strong normalization. It
is therefore a very powerful and useful system in that it allows us to encode all

V Capretta 68 G54FOP, 2017

CHAPTER 7. SYSTEM F

inductive data structures, define recursive functions on them, including poly-
morphic ones, and we have the guarantee that all computations terminate and
return a unique value that does not depend on the evaluation strategy.

Modern functional programming languages, notably ML and Haskell, are
based on system F . In the original implementation of Haskell, data types were
encoded in the way shown above. Later they were replaced by native formaliza-
tions of the most important types and a general way of defining recursive types.
To make the language Turing-complete (that is, to allow the definition of all
computable functions), Haskell also contains a generic fixed point operator.

The expressive power of system F is much stronger than system T : there
are functions on natural numbers that cannot be defined in system T but can
be defined in system F . Looking at such functions goes beyond the scope of
this book, but if you’re curious, check Goodstein’s Theorem on Wikipedia.

V Capretta 69 G54FOP, 2017

