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What Is a Functional Language? (1)

• Imperative Languages :
- Implicit state.
- Computation essentially a sequence of

side-effecting actions.
• Declarative Languages (Lloyd 1994):

- No implicit state.
- A program can be regarded as a theory.
- Computation can be seen as deduction

from this theory.
- Examples: Logic and Functional Languages.
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What Is a Functional Language? (2)

Another perspective:
• Algorithm = Logic + Control
• Declarative programming emphasises the

logic (“what”) rather than the control (“how”).
• Examples:

- Resolution (logic programming)
- Lazy evaluation (found in some functional

and logic languages)
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What Is a Functional Language? (3)

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

• Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)
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What Is a Functional Language? (4)

Exactly what constitute a functional language is
somewhat contentious.

Pragmatically, a functional language is one that
encourages a mostly declarative, functional
style of programming.

Typical features/characteristics:
• Functions are first-class entities.
• Computation expressed through function

application.
• Recursive (and co-recursive) definitions.
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What Is a Functional Language? (5)
This “definition” covers both:

• Pure functional languages: no side effects
- (Weakly) declarative: equational reasoning

valid (with care); referentially transparent .
- Example: Haskell

• Mostly functional languages: some side
effects, e.g. for I/O.
- Equational reasoning with care.
- Examples: ML, OCaml, Scheme, Erlang

(Real purists would point out that non-termination
is also a side effect.)
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This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming
through the use of Haskell .

• Theme of today: Relinquishing control:
exploiting lazy evaluation

Will assume some familiarity with functional
programming in a language like Haskell or ML.
Will explain Haskell syntax and other points as
needed: Just ask!
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Evaluation Orders (1)

Consider:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Many possible reduction orders. Innermost,
leftmost redex first is called Applicative Order
Reduction (AOR):

main ⇒ sqr (dbl (2 + 3)) ⇒ sqr (dbl 5)

⇒ sqr (5 + 5) ⇒ sqr 10 ⇒ 10 * 10 ⇒ 100

This is just Call-By-Value .

MGS 2011: FUN Lecture 1 – p.8/40



Evaluation Orders (2)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main ⇒ sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * dbl (2 + 3)

⇒ ((2 + 3) + (2 + 3)) * dbl (2 + 3)

⇒ (5 + (2 + 3)) * dbl (2 + 3)

⇒ (5 + 5) * dbl (2 + 3) ⇒ 10 * dbl (2 + 3)

⇒ ... ⇒ 10 * 10 ⇒ 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Demand-driven evaluation or Call-By-Need
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Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?
• Best possible termination properties. Two

important theorems from the λ-calculus:
- Church-Rosser Theorem I:

No term has more than one normal
form.

- Church-Rosser Theorem II:
If a term has a normal form, then NOR
will find it.
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Why Normal Order Reduction? (2)

• More expressive power; e.g.:
- “Infinite” data structures
- Circular programming

• More declarative code as control aspects
(order of evaluation) left implicit.
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Strict vs. Non-strict Semantics (1)

• ⊥, or “bottom”, the undefined value ,
representing errors and non-termination .

• A function f is strict iff:

f ⊥ = ⊥

For example, + is strict in both its arguments:

(0/0) + 1 = ⊥ + 1 = ⊥

1 + (0/0) = 1 + ⊥ = ⊥
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Strict vs. Non-strict Semantics (2)

Consider:

foo x = 1

What is the value of foo (0/0)?

• AOR: foo (0/0) ⇒ ⊥
Conceptually, foo ⊥ = ⊥; i.e., foo is strict.

• NOR: foo (0/0) ⇒ 1
Conceptually, foo ⊥ = 1; i.e., foo is non-strict.

Thus, NOR results in non-strict semantics.
Note: NOR gave well-defined result, AOR did not.
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Lazy Evaluation (1)

Lazy evaluation is an technique for
implementing NOR more efficiently:

• An expression is evaluated only if needed .
• Sharing employed to ensure any one

expression evaluated at most once.
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Lazy Evaluation (2)

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ( (2 + 3) + (•)) * (•)

⇒ ( 5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100
MGS 2011: FUN Lecture 1 – p.15/40

Infinite Data Structures (1)

take 0 xs = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats
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Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

⇒ 0:1:2:3:4:take 0 (•) ⇒ [0,1,2,3,4]

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5
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Circular Data Structures (2)

take 0 xs = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones
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Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •
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Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!
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Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr
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Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.
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A Simple Spreadsheet Evaluator

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

r
r = array (bounds s)

[ ((i,j), eval r (s!(i,j)))

| (i,j) <- indices s ]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?
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Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

1

3

7

10

1413

6

2

54

9

1211

8
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Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:
width t i The width of a tree t at level i

(0 origin).
label t i j The jth label at level i of a

tree t (0 origin).
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Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i + 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).
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Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.
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Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.
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Breadth-first Numbering (6)
bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ( (n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)
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Dynamic Programming

Dynamic Programming :
• Create a table of all subproblems that ever

will have to be solved.
• Fill in table without regard to whether the

solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us
from having to worry about finding a suitable
evaluation order.
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The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other
• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.
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The Triangulation Problem (2)

v1

v2 v3

v4

v5

v6

v7
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The Triangulation Problem (3)
• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).
• Subproblems of size less than 4 are trivial.
• Solving Sis is done by solving Si,k+1 and

Si+k,s−k for all k, 1 ≤ k ≤ s − 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n − 3)
non-trivial subproblems!
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The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k
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The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) + D(vi+k, vi+s−1)

}

• For s < 4, Sis = 0.
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The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([ ((i,s),

minimum [ cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2] ])

| i <- [0..n-1], s <- [4..n] ] ++

[ ((i,s), 0.0)

| i <- [0..n-1], s <- [0..3] ])

n = snd (bounds b) + 1
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Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

• The attribution function is defined recursively
over the tree:
- takes inherited attributes as extra

arguments;
- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.
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Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.
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Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987
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Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.
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Purely Functional Data structures (1)

Why is there a need to consider purely functional
data structures?

• The standard implementations of many data
structures assume imperative update. To
what extent truly necessary?

• Purely functional data structures are persistent ,
while imperative ones are ephemeral :
- Persistence is a useful property in its own

right.
- Can’t expect added benefits for free.
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Purely Functional Data structures (2)

Linked list:

x

y
1 2 3 · · ·

After insert, if ephemeral:

x

y
1

7

2 3 · · ·
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Purely Functional Data structures (3)

Linked list:

x

y
1 2 3 · · ·

After insert, if persistent:

x 1

y 1 7

2 3 · · ·
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Purely Functional Data structures (4)

This lecture draws from:

Chris Okasaki. Purely Functional Data
Structures. Cambridge University Press,
1998.

We will look at some examples of how numerical
representations can be used to derive purely
functional data structures.
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Numerical Representations (1)

Strong analogy between lists and the usual
representation of natural numbers:

data List a =

Nil

| Cons a (List a)

tail (Cons _ xs) = xs

append Nil ys = ys

append (Cons x xs) ys =

Cons x (append xs ys)

data Nat =

Zero

| Succ Nat

pred (Succ n) = n

plus Zero n = n

plus (Succ m) n =

Succ (plus m n)
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Numerical Representations (2)

This analogy can be taken further for designing
container structures because:

• inserting an element resembles incrementing
a number

• combining two containers resembles adding
two numbers

etc.

Thus, representations of natural numbers with certain
properties induce container types with similar
properties. Called Numerical Representations .

MGS 2011: FUN Lecture 2 – p.7/40

Random Access Lists

We will consider Random Access Lists in the
following. Signature:
data RList a

empty :: RList a
isEmpty :: RList a -> Bool
cons :: a -> RList a -> RList a
head :: RList a -> a
tail :: RList a -> RList a
lookup :: Int -> RList a -> a
update :: Int -> a -> RList a -> RList
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Positional Number Systems (1)
• A number is written as a sequence of digits

b0b1 . . . bm−1, where bi ∈ Di for a fixed family of
digit sets given by the positional system.

• b0 is the least significant digit, bm−1 the most
significant digit (note the ordering).

• Each digit bi has a weight wi. Thus:

value(b0b1 . . . bm−1) =
m−1
∑

0

biwi

where the fixed sequence of weights wi is
given by the positional system.
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Positional Number Systems (2)

• A number is written written in base B if
wi = Bi and Di = {0, . . . , B − 1}.

• The sequence wi is usually, but not
necessarily, increasing.

• A number system is redundant if there is
more than one way to represent some
numbers (disallowing trailing zeroes).

• A representation of a positional number
system can be dense , meaning including
zeroes, or sparse , eliding zeroes.
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Exercise 1: Positional Number Systems

Suppose wi = 2i and Di = {0, 1, 2}. Give three
different ways to represent 17.
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Exercise 1: Solution

• 10001, since value(10001) = 1 · 20 + 1 · 24

• 1002, since value(1002) = 1 · 20 + 2 · 23

• 1021, since value(1021) = 1 · 20 + 2 · 22 + 1 · 23

• 1211, since
value(1211) = 1 · 20 + 2 · 21 + 1 · 22 + 1 · 23
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From Positional System to Container

Given a positional system, a numerical
representation may be derived as follows:

• for a container of size n, consider a
representation b0b1 . . . bm−1 of n,

• represent the collection of n elements by a
sequence of trees of size wi such that there
are bi trees of that size.

For example, given the positional system of
exercise 1, a container of size 17 might be
represented by 1 tree of size 1, 2 trees of size 2,
1 tree of size 4, and 1 tree of size 8.
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What Kind of Trees?
The kind of tree should be chosen depending on
needed sizes and properties. Two possibilities:

• Complete Binary Leaf Trees
data Tree a = Leaf a

| Node (Tree a) (Tree a)

Sizes: 2n, n ≥ 0

• Complete Binary Trees
data Tree a = Leaf a

| Node (Tree a) a (Tree a)

Sizes: 2n+1 − 1, n ≥ 0

(Balance has to be ensured separately.)
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Example: Complete Binary Leaf Tree

Size 23 = 8:
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Example: Complete Binary Tree

Size 24 − 1 = 15:
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Binary Random Access Lists (1)

Binary Random Access Lists are induced by

• the usual binary representation, i.e. wi = 2i,
Di = {0, 1}

• complete binary leaf trees

Thus:

data Tree a = Leaf a

| Node Int (Tree a) (Tree a)

data Digit a = Zero | One (Tree a)

type RList a = [Digit a]

The Int field keeps track of tree size for speed.
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Binary Random Access Lists (2)

Example: Binary Random Access List of size 5:

[ One , Zero, One ]
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Binary Random Access Lists (3)

The increment function on dense binary numbers:

inc [] = [One]

inc (Zero : ds) = One : ds

inc (One : ds) = Zero : inc ds -- Carry
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Binary Random Access Lists (4)

Inserting an element first in a binary random
access list is analogous to inc:

cons :: a -> RList a -> RList a

cons x ts = consTree (Leaf x) ts

consTree :: Tree a -> RList a -> RList a

consTree t [] = [One t]

consTree t (Zero : ts) = (One t : ts)

consTree t (One t’ : ts) =

Zero : consTree (link t t’) ts
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Binary Random Access Lists (5)

The utility function link joins two equally sized
trees:

-- t1 and t2 are assumed to be the same size

link t1 t2 = Node (2 * size t1) t1 t2
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Binary Random Access Lists (6)

Example: Result of consing element onto list of
size 5:

[ Zero, One , One ]
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Exercise 2:unconsTree

The decrement function on dense binary
numbers:

dec [One] = []

dec (One : ds) = Zero : ds

dec (Zero : ds) = One : dec ds -- Borrow

Define unconsTree following the above pattern:

unconsTree :: RList a -> (Tree a, RList a)

And then head and tail:

head :: RList a -> a

tail :: RList a -> RList a
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Exercise 2: Solution (1)

unconsTree :: RList a -> (Tree a, RList a)

unconsTree [One t] = (t, [])

unconsTree (One t : ts) = (t, Zero : ts)

unconsTree (Zero : ts) = (t1, One t2 : ts’)

where

(Node _ t1 t2, ts’) = unconsTree ts

Note: partial operation.
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Exercise 2: Solution (2)

head :: RList a -> a

head ts = x

where

(Leaf x, _) = unconsTree ts

tail :: RList a -> RList a

tail ts = ts’

where

(_, ts’) = unconsTree ts
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Binary Random Access Lists (7)

Lookup is done in two stages: first find the right
tree, then lookup in that tree:

lookup :: Int -> RList a -> a

lookup i (Zero : ts) = lookup i ts

lookup i (One t : ts)

| i < s = lookupTree i t

| otherwise = lookup (i - s) ts

where

s = size t

Note: partial operation.
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Binary Random Access Lists (8)

lookupTree :: Int -> Tree a -> a

lookupTree _ (Leaf x) = x

lookupTree i (Node w t1 t2)

| i < w ‘div‘ 2 =

lookupTree i t1

| otherwise =

lookupTree (i - w ‘div‘ 2) t2

The operation update has exactly the same
structure.
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Binary Random Access Lists (9)

Time complexity:
• cons, head, tail, perform O(1) work per

digit, thus O(log n) worst case.

• lookup and update take O(log n) to find the
right tree, and then O(log n) to find the right
element in that tree, so O(log n) worst case
overall.

Time complexity for cons, head, tail
disappointing: can we do better?
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Skew Binary Numbers (1)

Skew Binary Numbers:

• wi = 2i+1 − 1 (rather than 2i)
• Di = {0, 1, 2}

Representation is redundant. But we obtain a
canonical form if we insist that only the least
significant non-zero digit may be 2.

Note: The weights correspond to the sizes of
complete binary trees.
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Skew Binary Numbers (2)

Theorem: Every natural number n has a unique
skew binary canonical form.
Proof sketch. By induction on n.

• Base case: the case for 0 is direct.
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Skew Binary Numbers (3)

• Inductive case. Assume n has a unique skew
binary representation b0b1 . . . bm−1

- If the least significant non-zero digit is
smaller than 2, then n + 1 has a unique
skew binary representation obtained by
adding 1 to the least significant digit b0.

- If the least significant non-zero digit bi is 2,
then note that 1 + 2(2i+1 − 1) = 2i+2 − 1.
Thus n + 1 has a unique skew binary
representation obtained by setting bi to 0
and adding 1 to bi+1.
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Exercise 3: Skew Binary Numbers
• Give the canonical skew binary

representation for 31, 30, 29, and 28.
• Assume a sparse skew binary representation

of the natural numbers
type Nat = [Int]

where the integers represent the weight of
each non-zero digit. Assume further that the
integers are stored in increasing order, except
that the first two may be equal indicating that
the smallest non-zero digit is 2.
Implement a function inc to increment a
natural number.
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Exercise 3: Solution

• 00001, 0002, 0021, 0211

• inc :: Nat -> Nat

inc (w1 : w2 : ws)

| w1 == w2 = w1 * 2 + 1 : ws

inc ws = 1 : ws
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Skew Binary Random Access Lists (1)

data Tree a = Leaf a | Node (Tree a) a (Tree a)

type RList a = [(Int, Tree a)]

empty :: RList a

empty = []

cons :: a -> RList a -> RList a

cons x ((w1, t1) : (w2, t2) : wts) | w1 == w2 =

(w1 * 2 + 1, Node t1 x t2) : wts

cons x wts = ((1, Leaf x) : wts)
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Skew Binary Random Access Lists (2)

Example: Consing onto list of size 5:

cons [ , , ]

= [ , ]
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Skew Binary Random Access Lists (3)

Example: Consing onto list of size 6:

cons [ , ]

= [ ]
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Skew Binary Random Access Lists (4)

Example: Consing onto list of size 7:

cons [ ]

= [ , ]
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Skew Binary Random Access Lists (5)

head :: RList a -> a

head ((_, Leaf x) : _) = x

head ((_, Node _ x _) : _) = x

tail :: RList a -> RList a

tail ((_, Leaf _): wts) = wts

tail ((w, Node t1 _ t2) : wts) =

(w’, t1) : (w’, t2) : wts

where

w’ = w ‘div‘ 2

Note: again, partial operations.
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Skew Binary Random Access Lists (6)
lookup :: Int -> RList a -> a

lookup i ((w, t) : wts)

| i < w = lookupTree i w t

| otherwise = lookup (i - w) wts

lookupTree :: Int -> Int -> Tree a -> a

lookupTree _ _ (Leaf x) = x

lookupTree i w (Node t1 x t2)

| i == 0 = x

| i < w’ = lookupTree (i - 1) w’ t1

| otherwise = lookupTree (i - w’ - 1) w’ t2

where

w’ = w ‘div‘ 2
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Skew Binary Random Access Lists (7)

Time complexity:
• cons, head, tail: O(1).

• lookup and update take O(log n) to find the
right tree, and then O(log n) to find the right
element in that tree, so O(log n) worst case
overall.

Okasaki:

“Although there are better implementations
of lists, and better implementations of
(persistent) arrays, none are better at both.”
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A Blessing and a Curse

• The BIG advantage of pure functional
programming is

“everything is explicit;”
i.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large
programs.

• The BIG problem with pure functional
programming is

“everything is explicit.”
Can add a lot of clutter, make it hard to
maintain code
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Conundrum

“Shall I be pure or impure?” (Wadler, 1992)
• Absence of effects

- facilitates understanding and reasoning
- makes lazy evaluation viable
- allows choice of reduction order, e.g. parallel
- enhances modularity and reuse.

• Effects (state, exceptions, . . . ) can
- help making code concise
- facilitate maintenance
- improve the efficiency.
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Example: A Compiler Fragment (1)

Identification is the task of relating each applied
identifier occurrence to its declaration or
definition:

public class C {
int x, n;
void set(int n) { x = n; }

}

In the body of set, the one applied occurrence of
• x refers to the instance variable x

• n refers to the argument n.
MGS 2011: FUN Lecture 3 – p.4/52



Example: A Compiler Fragment (2)

Consider an AST Exp for a simple expression
language. Exp is a parameterized type: the type
parameter a allows variables to be annotated
with an attribute of type a.

data Exp a

= LitInt Int

| Var Id a

| UnOpApp UnOp (Exp a)

| BinOpApp BinOp (Exp a) (Exp a)

| If (Exp a) (Exp a) (Exp a)

| Let [(Id, Type, Exp a)] (Exp a)
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Example: A Compiler Fragment (3)

Example: The following code fragment

let int x = 7 in x + 35

would be represented like this (before
identification):

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" ())

(LitInt 35))
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Example: A Compiler Fragment (4)

Goals of the identification phase:
• Annotate each applied identifier occurrence

with attributes of the corresponding variable
declaration.
I.e., map unannotated AST Exp () to
annotated AST Exp Attr.

• Report conflicting variable definitions and
undefined variables.

identification ::

Exp () -> (Exp Attr, [ErrorMsg])
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Example: A Compiler Fragment (5)

Example: Before Identification

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" ())

(LitInt 35))

After identification:

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" (1, IntType))

(LitInt 35))
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Example: A Compiler Fragment (6)

enterVar inserts a variable at the given scope
level and of the given type into an environment.

• Check that no variable with same name has
been defined at the same scope level.

• If not, the new variable is entered, and the
resulting environment is returned.

• Otherwise an error message is returned.

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMsg
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Example: A Compiler Fragment (7)

Functions that do the real work:

identAux ::

Int -> Env -> Exp ()

-> (Exp Attr, [ErrorMsg])

identDefs ::

Int -> Env -> [(Id, Type, Exp ())]

-> ([(Id, Type, Exp Attr)],

Env,

[ErrorMsg])
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Example: A Compiler Fragment (8)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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Example: A Compiler Fragment (9)

Error checking and collection of error messages
arguably added a lot of clutter . The core of the
algorithm is this:

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

Errors are just a side effect .
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Answer to Conundrum: Monads (1)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.
• Adapted by

- Moggi for structuring denotational semantics
- Wadler for structuring functional programs
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Answer to Conundrum: Monads (2)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

• allow integration into a pure setting of real
effects such as
- I/O
- mutable state.
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This Lecture

Pragmatic introduction to monads:

• Effectful computations
• Identifying a common pattern
• Monads as a design pattern
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Example 1: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2
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Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)
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Making the Evaluator Safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)
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Making the Evaluator Safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)
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Making the Evaluator Safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)
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Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations ).
• If one evaluation fails, fail overall.
• Otherwise, make result available to following

evaluations.
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Sequencing Evaluations

evalSeq :: Maybe Integer

-> (Integer -> Maybe Integer)

-> Maybe Integer

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Exercise 1: RefactoringsafeEval
Rewrite safeEval, case Add, using evalSeq:
safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Exercise 1: Solution

safeEval :: Exp -> Maybe Integer

safeEval (Add e1 e2) =

evalSeq (safeEval e1)

(\n1 -> evalSeq (safeEval e2)

(\n2 -> Just (n1+n2)))

or
safeEval :: Exp -> Maybe Integer

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 + n2)))
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Aside: Scope Rules ofλ-abstractions

The scope rules of λ-abstractions are such that
parentheses can be omitted:
safeEval :: Exp -> Maybe Integer

...

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

...
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Refactored Safe Evaluator (1)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

safeEval (Sub e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 - n2)
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Refactored Safe Evaluator (2)

safeEval (Mul e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 * n2)

safeEval (Div e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)
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Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a
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Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a
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Inlining evalSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

Good excercise: verify the other cases.
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Maybe Viewed as a Computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect , implicitly affecting
subsequent computations.

• Let’s generalize and adopt names reflecting
our intentions.
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Maybe Viewed as a Computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Maybe Viewed as a Computation (3)

Failing computation:

mbFail :: Maybe a

mbFail = Nothing
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The Safe Evaluator Revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0 then mbFail

else mbReturn (n1 ‘div‘ n2)))
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Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> Int -> (Tree Int,Int)

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (Node t1 t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (Node t1’ t2’, n’’)
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Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

• It is very easy to pass on the wrong version of
the counter!

Can we do better?
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Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
• A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.
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Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)
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Stateful Computations (3)

Computation of a value without changing the
state (For ref.: S a = Int -> (a, Int)):

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’
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Stateful Computations (4)

Reading and incrementing the state
(For ref.: S a = Int -> (a, Int)):

sInc :: S Int

sInc = \n -> (n, n + 1)
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Numbering trees revisited
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (Node t1 t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (Node t1’ t2’)
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Observations

• The “plumbing” has been captured by the
abstractions.

• In particular:
- counter no longer manipulated directly
- no longer any risk of “passing on” the

wrong version of the counter!
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Comparison of the examples
• Both examples characterized by sequencing

of effectful computations.
• Both examples could be neatly structured by

introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value
- A function constructing a computation by

sequencing computations
• In fact, both examples are instances of the

general notion of a MONAD.
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Monads in Functional Programming

A monad is represented by:
• A type constructor

M :: * -> *
M T represents computations of a value of type T.

• A polymorphic function
return :: a -> M a

for lifting a value to a computation.
• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
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Exercise 2:join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.

(>>=) :: M a -> (a -> M b) -> M b
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Exercise 2: Solution

join :: M (M a) -> M a

join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= \a -> return (f a)

or:
fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= return . f

(>>=) :: M a -> (a -> M b) -> M b

m >>= f = join (fmap f m)
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Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for >>=,
and >>= is associative.
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Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
>>=.

2. Verify that the monad laws hold for your
definitions.
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Exercise 3: Solution
return :: a -> I a

return = id

(>>=) :: I a -> (a -> I b) -> I b

m >>= f = f m

-- or: (>>=) = flip ($)

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x
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Monads in Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):

• Kleisli triple/triple in extension form: Most
closely related to the >>= version:

A Klesili triple over a category C is a
triple (T, η, _∗), where T : |C| → |C|,
ηA : A → TA for A ∈ |C|, f ∗ : TA → TB
for f : A → TB.

(Additionally, some laws must be satisfied.)
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Monads in Category Theory (2)

• Monad/triple in monoid form: More akin to
the join/fmap version:

A monad over a category C is a triple
(T, η, µ), where T : C → C is a functor,
η : idC→̇T and µ : T 2→̇T are natural
transformations.

(Additionally, some commuting diagrams
must be satisfied.)

MGS 2011: FUN Lecture 3 – p.51/52

Reading
• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• All About Monads.
http://www.haskell.org/all_about_monads
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This Lecture

• Monads in Haskell
• Some standard monads
• Combining effects: monad transformers
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Monads in Haskell

In Haskell, the notion of a monad is captured by
a Type Class :

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.
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The Maybe Monad in Haskell

instance Monad Maybe where

-- return :: a -> Maybe a

return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b)

-- -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x
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Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be
instances of classes. Hence we have to define a
new type:

newtype S a = S (Int -> (a, Int))

unS :: S a -> (Int -> (a, Int))

unS (S f) = f

Provide a Monad instance for S.
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Exercise 1: Solution

instance Monad S where

return a = S (\s -> (a, s))

m >>= f = S $ \s ->

let (a, s’) = unS m s

in unS (f a) s’
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Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String -> Maybe a

fail s = Nothing

catch :: Maybe a -> Maybe a -> Maybe a

m1 ‘catch‘ m2 =

case m1 of

Just _ -> m1

Nothing -> m2
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Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()

set a = S (\_ -> ((), a))

get :: S Int

get = S (\s -> (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a -> a

runS m = fst (unS m 0)
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The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a <- exp
1

b <- exp
2

return exp3

is syntactic sugar for

exp
1
>>= \a ->

exp
2
>>= \b ->

return exp
3
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The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp
1

exp
2

return exp3

is syntactic sugar for

exp
1
>>= \_ ->

exp
2
>>= \_ ->

return exp
3

MGS 2011: FUN Lecture 4 – p.10/41

The do-notation (3)

A let-construct is also provided:

do

let a = exp
1

b = exp
2

return exp3

is equivalent to

do

a <- return exp
1

b <- return exp
2

return exp3
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Numbering Trees indo-notation

numberTree :: Tree a -> Tree Int

numberTree t = runS (ntAux t)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) = do

n <- get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1’ <- ntAux t1

t2’ <- ntAux t2

return (Node t1’ t2’)
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The Compiler Fragment Revisited (1)

Given a suitable “Diagnostics” monad D that
collects error messages, enterVar can be
turned from this:

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env

-> D Env

and then identDefs from this . . .
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The Compiler Fragment Revisited (2)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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The Compiler Fragment Revisited (3)

into this:

identDefsD l env [] = return ([], env)

identDefsD l env ((i,t,e) : ds) = do

e’ <- identAuxD l env e

env’ <- enterVarD i l t env

(ds’, env’’) <- identDefsD l env’ ds

return ((i,t,e’) : ds’, env’’)

(Suffix D just to remind us the types have
changed.)
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The Compiler Fragment Revisited (4)

Compare with the “core” identified earlier!

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

The monadic version is very close to ideal,
without sacrificing functionality, clarity, or
pureness!
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The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x <- [1, 2]

y <- [’a’, ’b’]

return (x,y)

Result:

[(1,’a’),(1,’b’),

(2,’a’),(2,’b’)]
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The Reader Monad

Computation in an environment:

instance Monad ((->) e) where

return a = const a

m >>= f = \e -> f (m e) e

getEnv :: ((->) e) e

getEnv = id
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The Haskell IO Monad

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: String
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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s -> Maybe (a, s))
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Monad Transformers (2)

However:
• Not always obvious how: e.g., should the

combination of state and error have been
newtype SE s a = SE (s -> (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:
• A monad transformer transforms a monad

by adding support for an additional effect.
• A library of monad transformers can be

developed, each adding a specific effect
(state, error, . . . ), allowing the programmer to
mix and match.

• A form of aspect-oriented programming .
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor T
of the following kind:
T :: (* -> *) -> (* -> *)

• Additionally, a monad transformer adds
computational effects. A mapping lift from
computations in the underlying monad to
computations in the transformed monad is
needed:
lift :: M a -> T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m, Monad (t m))

=> MonadTransformer t m where

lift :: m a -> t m a
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Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m => E m where

eFail :: m a

eHandle :: m a -> m a -> m a

class Monad m => S m s | m -> s where

sSet :: s -> m ()

sGet :: m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a -> a

runI = unI
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The Error Monad Transformer (1)
newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma <- unET m

case ma of

Nothing -> return Nothing

Just a -> unET (f a)
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The Error Monad Transformer (2)
We need the ability to run transformed monads:

runET :: Monad m => ET m a -> m a

runET etm = do

ma <- unET etm

case ma of

Just a -> return a

Nothing -> error "Should not happen"

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= \a -> return (Just a))
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The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

instance Monad m => E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘ m2 = ET $ do

ma <- unET m1

case ma of

Nothing -> unET m2

Just _ -> return ma
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The Error Monad Transformer (4)

A state monad transformed by ET is a state
monad:

instance S m s => S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet
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Exercise 2: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2.
(Assume 1 :: Int.)

2. Given your type, use the appropriate
combination of “run functions” to run ex2.
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Exercise 2: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)
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The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m => Monad (ST s m) where

return a = ST (\s -> return (a, s))

m >>= f = ST $ \s -> do

(a, s’) <- unST m s

unST (f a) s’
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST :: Monad m => ST s m a -> s -> m a

runST stf s0 = do

(a, _) <- unST stf s0

return a

ST is a monad transformer:

instance Monad m =>

MonadTransformer (ST s) m where

lift m = ST (\s -> m >>= \a ->

return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

instance Monad m => S (ST s m) s where

sSet s = ST (\_ -> return ((), s))

sGet = ST (\s -> return (s, s))

An error monad transformed by ST is an error
monad:

instance E m => E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘ m2 = ST $ \s ->

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 3: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42 >> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42 >> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
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Exercise 3: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼= s -> (ET I) (a, s)
∼= s -> I (Maybe (a, s))
∼= s -> Maybe (a, s)

ET (ST s I) a ∼= (ST s I) (Maybe a)
∼= s -> I (Maybe a, s)
∼= s -> (Maybe a, s)
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Exercise 4: AlternativeST?

To think about.

Could ST have been defined in some other way,
e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))
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Problems with Monad Transformers

• With one transformer for each possible effect,
we get a lot of combinations: the number
grows quadratically; each has to be
instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative.
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This Lecture

• A concurrency monad (adapted from
Claessen (1999))

• Basic concurrent programming in Haskell
• Software Transactional Memory (the STM

monad)
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A Concurrency Monad (1)

A Thread represents a process: a stream of
primitive atomic operations:

data Thread = Print Char Thread
| Fork Thread Thread
| End

Note that a Thread represents the entire rest of
a computation.

MGS 2011: FUN Lecture 5 – p.3/36

A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

How can Threads be constructed sequentially?
The only way is to parameterize thread prefixes
on the rest of the Thread. This leads directly to
continuations .
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A Concurrency Monad (3)

newtype CM a = CM ((a -> Thread) -> Thread)

fromCM :: CM a -> ((a -> Thread) -> Thread)

fromCM (CM x) = x

thread :: CM a -> Thread

thread m = fromCM m (const End)

instance Monad CM where

return x = CM (\k -> k x)

m >>= f = CM $ \k ->

fromCM m (\x -> fromCM (f x) k)
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A Concurrency Monad (4)

Atomic operations:

cPrint :: Char -> CM ()

cPrint c = CM (\k -> Print c (k ()))

cFork :: CM a -> CM ()

cFork m = CM (\k -> Fork (thread m) (k ()))

cEnd :: CM a

cEnd = CM (\_ -> End)
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Running a Concurrent Computation (1)
Running a computation:

type Output = [Char]

type ThreadQueue = [Thread]

type State = (Output, ThreadQueue)

runCM :: CM a -> Output

runCM m = runHlp ("", []) (thread m)

where

runHlp s t =

case dispatch s t of

Left (s’, t) -> runHlp s’ t

Right o -> o
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Running a Concurrent Computation (2)

Dispatch on the operation of the currently
running Thread. Then call the scheduler.

dispatch :: State -> Thread

-> Either (State, Thread) Output

dispatch (o, rq) (Print c t) =

schedule (o ++ [c], rq ++ [t])

dispatch (o, rq) (Fork t1 t2) =

schedule (o, rq ++ [t1, t2])

dispatch (o, rq) End =

schedule (o, rq)
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Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State -> Either (State, Thread)

Output

schedule (o, []) = Right o

schedule (o, t:ts) = Left ((o, ts), t)
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Example: Concurrent Processes

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ cPrint ’2’ cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd2e3f4g5h6i7j890
Note: As it stands, the output is only made
available after all threads have terminated.)
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Incremental Output
Incremental output:
runCM :: CM a -> Output

runCM m = dispatch [] (thread m)

dispatch :: ThreadQueue -> Thread -> Output

dispatch rq (Print c t) = c : schedule (rq ++ [t])

dispatch rq (Fork t1 t2) = schedule (rq ++ [t1, t2])

dispatch rq End = schedule rq

schedule :: ThreadQueue -> Output

schedule [] = []

schedule (t:ts) = dispatch ts t
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Example: Concurrent processes 2

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ undefined cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd*** Exception:
Prelude.undefined
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Any Use?

• A number of libraries and embedded
langauges use similar ideas, e.g.
- Fudgets
- Yampa
- FRP in general

• Studying semantics of concurrent programs.
• Aid for testing, debugging, and reasoning

about concurrent programs.
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Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad (or “sin bin” :-).
They are in the module Control.Concurrent.
Excerpts:

forkIO :: IO () -> IO ThreadId

killThread :: ThreadId -> IO ()

threadDelay :: Int -> IO ()

newMVar :: a -> IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a -> a -> IO ()

takeMVar :: MVar a -> IO a
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MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.
- Writing to a full MVar blocks.
- Reading from an empty MVar blocks.
- Reading from a full MVar makes it empty.
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Example: Basic Synchronization (1)

module Main where

import Control.Concurrent

countFromTo :: Int -> Int -> IO ()

countFromTo m n

| m > n = return ()

| otherwise = do

putStrLn (show m)

countFromTo (m+1) n
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Example: Basic Synchronization (2)

main = do

start <- newEmptyMVar

done <- newEmptyMVar

forkIO $ do

takeMVar start

countFromTo 1 10

putMVar done ()

putStrLn "Go!"

putMVar start ()

takeMVar done

(countFromTo 11 20)

putStrLn "Done!"
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Example: Unbounded Buffer (1)

module Main where

import Control.Monad (when)

import Control.Concurrent

newtype Buffer a =

Buffer (MVar (Either [a] (Int, MVar a)))

newBuffer :: IO (Buffer a)

newBuffer = do

b <- newMVar (Left [])

return (Buffer b)
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Example: Unbounded Buffer (2)

readBuffer :: Buffer a -> IO a
readBuffer (Buffer b) = do

bc <- takeMVar b
case bc of

Left (x : xs) -> do
putMVar b (Left xs)
return x

Left [] -> do
w <- newEmptyMVar
putMVar b (Right (1,w))
takeMVar w

Right (n,w) -> do
putMVar b (Right (n + 1, w))
takeMVar w
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Example: Unbounded Buffer (3)

writeBuffer :: Buffer a -> a -> IO ()

writeBuffer (Buffer b) x = do

bc <- takeMVar b

case bc of

Left xs ->

putMVar b (Left (xs ++ [x]))

Right (n,w) -> do

putMVar w x

if n > 1 then

putMVar b (Right (n - 1, w))

else

putMVar b (Left [])
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Example: Unbounded Buffer (4)

The buffer can now be used as a channel of
communication between a set of “writers” and a
set of “readers”. E.g.
main = do

b <- newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...
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Example: Unbounded Buffer (5)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- readBuffer b

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop
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Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That is, sequential composition .

Would the following work?

x1 <- readBuffer b

x2 <- readBuffer b
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Compositionality? (2)

What about this?

mutex <- newMVar ()

...

takeMVar mutex

x1 <- readBuffer b

x2 <- readBuffer b

putMVar mutex ()
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Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives .

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

• We have to change or enrich the buffer
implementation. E.g. add a tryReadBuffer
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!
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Software Transactional Memory (1)

• Operations on shared mutable variables
grouped into transactions .

• A transaction either succeeds or fails in its
entirety . I.e., atomic w.r.t. other transactions.

• Failed transactions are automatically retried
until they succeed.

• Transaction logs , which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.
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Software Transactional Memory (2)

• No locks! (At the application level.)
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STM and Pure Declarative Languages
• STM perfect match for purely declarative

languages :
- reading and writing of shared mutable

variables explicit and relatively rare;
- most computations are pure and need not

be logged.
• Disciplined use of effects through monads a

huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc arbitrary I/O actions could cause if
part of transaction: How to undo? What if retried?)
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The STM monad

The software transactional memory abstraction
provided by a monad STM. Distinct from IO!
Defined in Control.Concurrent.STM.

Excerpts:

newTVar :: a -> STM (TVar a)

writeTVar :: TVar a -> a -> STM ()

readTVar :: TVar a -> STM a

retry :: STM a

atomically :: STM a -> IO a
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Example: Buffer Revisited (1)

Let us rewrite the unbounded buffer using the
STM monad:
module Main where

import Control.Monad (when)
import Control.Concurrent
import Control.Concurrent.STM

newtype Buffer a = Buffer (TVar [a])

newBuffer :: STM (Buffer a)
newBuffer = do

b <- newTVar []
return (Buffer b)
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Example: Buffer Revisited (2)

readBuffer :: Buffer a -> STM a
readBuffer (Buffer b) = do

xs <- readTVar b
case xs of

[] -> retry
(x : xs’) -> do

writeTVar b xs’
return x

writeBuffer :: Buffer a -> a -> STM ()
writeBuffer (Buffer b) x = do

xs <- readTVar b
writeTVar b (xs ++ [x])
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Example: Buffer Revisited (3)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically :
main = do

b <- atomically newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...
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Example: Buffer Revisited (4)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- atomically (readBuffer b)

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop
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Composition (1)

STM operations can be robustly composed .
That’s the reason for making readBuffer and
writeBuffer STM operations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomically $ do

x1 <- readBuffer b

x2 <- readBuffer b

...
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Composition (2)

Example, composing alternatives: reading from
one of two buffers b1 and b2:

x <- atomically $

readBuffer b1

‘orElse‘ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

MGS 2011: FUN Lecture 5 – p.35/36

Reading
• Koen Claessen. A Poor Man’s Concurrency Monad.

Journal of Functional Programming, 9(3), 1999.

• Wouter Swierstra and Thorsten Altenkirch. Beauty in
the Beast: A Functional Semantics for the Awkward
Squad. In Proceedings of Haskell’07, 2007.

• Tim Harris, Simon Marlow, Simon Peyton Jones,
Maurice Herlihy. Composable Memory Transactions. In
Proceedings of PPoPP’05, 2005

• Simon Peyton Jones. Beautiful Concurrency. Chapter
from Beautiful Code, ed. Greg Wilson, O’Reilly 2007.

MGS 2011: FUN Lecture 5 – p.36/36


	What Is a Functional Language? (1)
	What Is a Functional Language? (2)
	What Is a Functional Language? (3)
	What Is a Functional Language? (4)
	What Is a Functional Language? (5)
	This and the Following Lectures
	Evaluation Orders (1)
	Evaluation Orders (2)
	Why Normal Order Reduction? (1)
	Why Normal Order Reduction? (2)
	Strict vs. Non-strict Semantics (1)
	Strict vs. Non-strict Semantics (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	Circular Data Structures (2)
	Circular Data Structures (2)
	Circular Programming (1)
	Circular Programming (2)
	Circular Programming (3)
	A Simple Spreadsheet Evaluator
	Breadth-first Numbering (1)
	Breadth-first Numbering (2)
	Breadth-first Numbering (3)
	Breadth-first Numbering (4)
	Breadth-first Numbering (5)
	Breadth-first Numbering (6)
	Dynamic Programming
	The Triangulation Problem (1)
	The Triangulation Problem (2)
	The Triangulation Problem (3)
	The Triangulation Problem (4)
	The Triangulation Problem (5)
	The Triangulation Problem (6)
	Attribute Grammars (1)
	Attribute Grammars (2)
	Reading
	Reading
	Purely Functional Data structures (1)
	Purely Functional Data structures (2)
	Purely Functional Data structures (3)
	Purely Functional Data structures (4)
	Numerical Representations (1)
	Numerical Representations (2)
	Random Access Lists
	Positional Number Systems (1)
	Positional Number Systems (2)
	Exercise 1: Positional Number Systems
	Exercise 1: Solution
	From Positional System to Container
	What Kind of Trees?
	Example: Complete Binary Leaf Tree
	Example: Complete Binary Tree
	Binary Random Access Lists (1)
	Binary Random Access Lists (2)
	Binary Random Access Lists (3)
	Binary Random Access Lists (4)
	Binary Random Access Lists (5)
	Binary Random Access Lists (6)
	Exercise 2: 	exttt {unconsTree}
	Exercise 2: Solution (1)
	Exercise 2: Solution (2)
	Binary Random Access Lists (7)
	Binary Random Access Lists (8)
	Binary Random Access Lists (9)
	Skew Binary Numbers (1)
	Skew Binary Numbers (2)
	Skew Binary Numbers (3)
	Exercise 3: Skew Binary Numbers
	Exercise 3: Solution
	Skew Binary Random Access Lists (1)
	Skew Binary Random Access Lists (2)
	Skew Binary Random Access Lists (3)
	Skew Binary Random Access Lists (4)
	Skew Binary Random Access Lists (5)
	Skew Binary Random Access Lists (6)
	Skew Binary Random Access Lists (7)
	A Blessing and a Curse
	Conundrum
	Example: A Compiler Fragment (1)
	Example: A Compiler Fragment (2)
	Example: A Compiler Fragment (3)
	Example: A Compiler Fragment (4)
	Example: A Compiler Fragment (5)
	Example: A Compiler Fragment (6)
	Example: A Compiler Fragment (7)
	Example: A Compiler Fragment (8)
	Example: A Compiler Fragment (9)
	Answer to Conundrum: Monads (1)
	Answer to Conundrum: Monads (2)
	This Lecture
	Example 1: A Simple Evaluator
	Making the Evaluator Safe (1)
	Making the Evaluator Safe (2)
	Making the Evaluator Safe (3)
	Making the Evaluator Safe (4)
	Any Common Pattern?
	Sequencing Evaluations
	Exercise 1: Refactoring 	exttt {safeEval}
	Exercise 1: Solution
	Aside: Scope Rules of $lambda $-abstractions
	Refactored Safe Evaluator (1)
	Refactored Safe Evaluator (2)
	Inlining 	exttt {evalSeq} ; (1)
	Inlining 	exttt {evalSeq} ; (2)
	Inlining 	exttt {evalSeq} ; (3)
		exttt {Maybe} Viewed as a Computation (1)
		exttt {Maybe} Viewed as a Computation (2)
		exttt {Maybe} Viewed as a Computation (3)
	The Safe Evaluator Revisited
	Example 2: Numbering Trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: 	exttt {join} and 	exttt {fmap}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Monads in Category Theory (1)
	Monads in Category Theory (2)
	Reading
	This Lecture
	Monads in Haskell
	The 	exttt {Maybe} Monad in Haskell
	Exercise 1: A State Monad in Haskell
	Exercise 1: Solution
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The 	exttt {do}-notation (1)
	The 	exttt {do}-notation (2)
	The 	exttt {do}-notation (3)
	Numbering Trees in 	exttt {do}-notation
	The Compiler Fragment Revisited (1)
	The Compiler Fragment Revisited (2)
	The Compiler Fragment Revisited (3)
	The Compiler Fragment Revisited (4)
	The List Monad
	The Reader Monad
	The Haskell IO Monad
	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	Exercise 2: Running Transf. Monads
	Exercise 2: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	Exercise 3: Effect Ordering
	Exercise 3: Solution
	Exercise 4: Alternative 	exttt {ST}?
	Problems with Monad Transformers
	Reading (1)
	Reading (2)
	This Lecture
	A Concurrency Monad (1)
	A Concurrency Monad (2)
	A Concurrency Monad (3)
	A Concurrency Monad (4)
	Running a Concurrent Computation (1)
	Running a Concurrent Computation (2)
	Running a Concurrent Computation (3)
	Example: Concurrent Processes
	Incremental Output
	Example: Concurrent processes 2
	Any Use?
	Concurrent Programming in Haskell
		exttt {MVar}s
	Example: Basic Synchronization (1)
	Example: Basic Synchronization (2)
	Example: Unbounded Buffer (1)
	Example: Unbounded Buffer (2)
	Example: Unbounded Buffer (3)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (5)
	Compositionality? (1)
	Compositionality? (2)
	Compositionality? (3)
	Software Transactional Memory (1)
	Software Transactional Memory (2)
	STM and Pure Declarative Languages
	The 	exttt {STM} monad
	Example: Buffer Revisited (1)
	Example: Buffer Revisited (2)
	Example: Buffer Revisited (3)
	Example: Buffer Revisited (4)
	Composition (1)
	Composition (2)
	Reading

