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Abstract. In a series of articles, we developed a method to translate
general recursive functions written in a functional programming style
into constructive type theory. Three problems remained: the method
could not properly deal with functions taking functional arguments, the
translation of terms containing A-abstractions was too strict, and par-
tial application of general recursive functions was not allowed. Here, we
show how the three problems can be solved by defining a type of partial
functions between given types. Every function, including arguments to
higher order functions, A-abstractions and partially applied functions, is
then translated as a pair consisting of a domain predicate and a func-
tion dependent on the predicate. Higher order functions are assigned
domain predicates that inherit termination conditions from their func-
tional arguments. The translation of a A-abstraction does not need to be
total anymore, but generates a local termination condition. The domain
predicate of a partially applied function is defined by fixing the given
arguments in the domain of the original function. As in our previous
articles, simultaneous induction-recursion is required to deal with nested
recursive functions. Since by using our method the inductive definition
of the domain predicate can refer globally to the domain predicate itself,
here we need to work on an impredicative type theory for the method to
apply to all functions. However, in most practical cases the method can
be adapted to work on a predicative type theory with type universes.

1 Introduction

In functional programming, functions can be defined by recursive equations
where the arguments of the recursive calls are not required to be smaller than the
input, hence allowing the definition of general recursive functions. Thus, the ter-
mination of a program is not guaranteed by its structure. On the other hand, in
type theory, only structurally recursive functions are allowed, that is, functions
where the recursive calls are performed only on arguments structurally smaller
than the input. Thus, some functional programs have no direct translation into
type theory.
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In a series of articles, we have developed a method to translate functional
programs into constructive type theory. Given a general recursive function, the
method consists in defining an inductive predicate that characterises the inputs
on which the function terminates. We can think of this predicate as the domain
of the function. The type-theoretic version of the function can then be defined
by structural recursion on the proof that the input values satisfy this predicate.
A similar method was independently developed by Dubois and Viguié Donzeau-
Gouge [DDG98], however they treat nested recursion in a different way and they
do not consider the issues we tackle in the present article.

Given a general recursive function f from o to 7, its formalisation in type the-
ory following our method consists of an inductive predicate fAcc and a function
f with types

fAcc: ¢ — Prop
f:(x:0;fAccx) =7

where ¢ and T are the type-theoretic translations of o and 7, respectively, and
f is defined by structural recursion on its second argument.
Intuitively, if the ith recursive equation of the original program is

f(p):...f(al)...f(an)...

calling itself recursively on the arguments aq, ..., a,, then the ith constructor
of fAcc has type

facc;: (... ;fAcc aq;... ;fAcc a,)(fAcc p)
and the ith structural recursive equation of f is
fp(facc; -~ hy -+ hp)=---(fFay hy)-(Fap hy)-- .

In practise, the types of the constructors of fAcc and the structure of the equa-
tions of f may be more complex, but the idea remains the same: fAcc is induc-
tively defined so that proving fAcc on an input p requires proofs of fAcc for the
arguments of all the recursive calls that £ performs when applied to p.

The method was introduced by Bove [Bov0l] to formalise simple general
recursive algorithms in constructive type theory (by simple we mean non-nested
and non-mutually recursive). It was extended by Bove and Capretta [BCO01] to
treat nested recursion by using Dybjer’s simultaneous induction-recursion, and
by Bove [Bov02a] to treat mutually recursive algorithms, nested or not. A formal
description of the method is given in [BC04] where we also prove a soundness
and a weak completeness theorem. The first three papers mentioned above and
a previous version of [BC04] have been put together into the first author’s Ph.D.
thesis [Bov02b]. A tutorial on the method can be found in [Bov03].

The method of [BC04] separates the computational and logical parts of the
type-theoretic versions of the functional programs. An immediate consequence
is that it allows the formalisation of partial functions: proving that a certain
function is total amounts to proving that the corresponding domain predicate is
satisfied by every input. Another consequence is that the resulting type-theoretic
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algorithms are clear, compact and easy to understand. They are as simple as their
counterparts in a functional programming language. However, our method has
some problems and limitations which we have already mentioned in [BC04].

The first problem concerns higher order functions, that is, functions that
take other functions as arguments. For example, let us consider the function
map: (0 — 7) — [0] — [7], as defined in the Haskell [Jon03] prelude, which has
a first argument in a functional type. Since map is structurally recursive on its
list argument, in [BC04] we translate it into a structurally recursive function
map in type theory with type (¢ — 7) — [0] — [7]. This means that the first
argument of map can only be instantiated to a total function of type ¢ — 7. But
in functional programming map could be applied to potentially non-terminating
functions. Therefore, even if map is structurally recursive, it is still liable to non-
termination since its functional argument f might be undefined on some (or all)
of the elements to which it will be applied. In other words, map inherits the
termination conditions from its functional argument. In [BC04] we had no way
to express this fact. Therefore, our translation was too restrictive with respect
to the original functional program.

Another problem is that whenever there is a A-abstraction in the right-hand
side of an equation, the method of [BC04] translates it as a total function in
type theory. This interpretation is too strict, since the corresponding function
could diverge on arguments to which it is not actually applied during execution,
without jeopardising the termination behaviour of the program. More specifi-
cally, if under the scope of the A-abstraction there is a call to one of the general
recursive functions we are defining in our program, let us say f, the method
inductively requires every instantiation of the argument of the A-abstraction to
be in the domain of f. However, this constraint might be stronger than actually
needed since the A-abstraction may just be applied to a proper subset of all the
instantiations. This problem is already present in a classical setting in the work
of Finn, Fourman, and Longley [FFL97].

The third problem is that partial applications of general recursive func-
tions are not allowed in [BC04]. When applying a recursive function f taking
m arguments ai,...,a;,, we must also provide a proof h of the accessibility
of ai,... ,a,. If f is applied to an insufficient number of arguments aq, ... ,ax
with £ < m, then the accessibility condition cannot even be formulated and it
is not possible to prove that the result of the application converges. Therefore,
we barred partial applications of general recursive functions.

Here, we introduce a type of partial functions in type theory and we present
a new method to translate functional programs into their type-theoretic equiva-
lents. The method is based on the one presented in [BC04] but, now, it translates
every function in the functional side into an element of the new type of partial
functions. With this new approach, the problems we mention above disappear.

For our new method to be applicable to any function, we need to work in a
type theory with an impredicative universe Set with inductive-recursive defini-
tions & la Dybjer [Dyb00]. Both datatypes and propositions are represented as
elements of Set. Therefore, we use the Calculus of Construction [CH88] extended
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with a schema for simultaneous inductive-recursive definitions. A justification of
the soundness of inductive-recursive definitions in the Calculus of Constructions
is given by [Bla03] and [Cap04]. The method works also in the slightly different
type architecture used in the proof assistant Coq [Coq02]. There are in Coq two
impredicative universes, Set and Prop, both being elements of the predicative
universe Type. For the purpose of this work, it is possible to use Prop for the
domain predicate and Set for the functions. Usually, elimination of a proposition
over a set (essential in our method) is not allowed in Coq, a feature intended to
prevent mixing logical information with pure computational content. However,
Christine Paulin [Pau] devised a way around this difficulty, consisting in defin-
ing structural deconstruction functions on propositions that have the property
of uniqueness of proofs, as is the case of our domain predicates. Therefore, we
use the notation Set for datatypes and Prop for propositions, to be interpreted as
either the same impredicative universe or two distinct impredicative universes,
in which case Paulin’s method is to be used in place of structural recursion on
the proofs of accessibility. As we point out later, it would be possible to adapt
the method to work on a predicative type theory. However, we would loose gen-
erality since then the method could not be used to translate all functions (see
function itz in section 4).

An extension of type theory with a constructor A ~» B for partial func-
tions from A to B was already proposed by Constable and Mendler in [CM85].
Together with the type A ~» B they introduce a new form of canonical ele-
ments, which is not the case in our partial functions type. They are of the form
fiz(f,x.F), to be intended as the functions with definition f(z) = F. From the
definition of f one can construct its domain dom(f)(z), essentially as in our
method, as a recursive predicate generated structurally by the recursive calls to
f in F. The roles of both domain predicates are however quite different. While
our functions are defined by structural recursion on their domain predicates, the
predicates in [CM85] serve only as a way to characterise the valid inputs and
the functions in [CM85] are defined independently of their domain predicates.

This paper is mainly intended for readers with some knowledge in type theory.
This said, what follows is just intended to fix the notation.

A context I' is a sequence of assumptions I" = z1: ay;... ;T ap where
Z1,...,%y, are distinct variables and each «; is a type that can contain occur-
rences of the variables that precede it. We call a sequence of variable assumptions
A a context extension of the context I' if I'; A is a context.

If ais a type and (3 is a family of types over a, we write (z: «)3(z) for the type
of dependent functions from « to 5. If 3 does not depend on values of type a we
might simply write a — ( for the type of functions from « to . Functions have
abstractions as canonical values, which we write [z: a]e. Consecutive dependent
function types and abstractions are written (z1: aq;... &, apn)B(x1, ..., zy)
and [21: ai,..., Ty ayle, respectively. In either case, each «; can contain occur-
rences of the variables that precede it. If 8 doest not depend on the last assump-
tion x,, then we can write (x1: aq;... ;Tp_1: Qn_1; ) — B(T1,. .. , Tpn_1)-
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For the sake of simplicity, we will use the same notation as much as possible
both in the functional programming side and in the type-theoretic side. In addi-
tion, names in the functional programming side will be written with typewriter
font while names in the type-theoretic side will be written with Sans Serif font.

The article has the following organisation. Section 2 briefly presents the
method of [BC04]. Section 3 defines the type of partial functions and gives a
formal definition of the new translation. Section 4 illustrates the translation on
some examples. Finally, Section 5 discusses advantages and disadvantages of the
new method.

2 Brief Summary of the Original Translation

We start from a Haskell-like functional programming language FP. The types
allowed in FP are: variable types, inductive data types, and function types.

Elements of inductive types are generated by constructors which must always
be used fully applied.

There are two kinds of functions, that is, of elements in the functional type:
those defined by structural recursion and those defined by general recursion.
Since the two kinds need to be translated differently, we distinguish them in the
functional programming notation. Structurally recursive functions acquire the
usual Haskell-like functional types, o — 7. On the other hand, general recursive
functions must always be used fully applied. We reflect this requirement in the
syntax by assigning them a specification o1,... 0, = T rather than a proper
functional type.

The two kinds of functions give rise to two kinds of applications: those dealing
with proper functional types and those dealing with specifications.

The form of the definition of a general recursive function is:

fix f:01,... ;0 =171
f(plla"' 7p17n):el

t(pit, - oim) = €

where the p;;’s are exclusive linear patterns of the corresponding types and the
e;’s are valid terms of type 7 (see Definition 1 below). We also allow guarded
equations in the definition of a function, where the condition in the equation
must be a valid term of type Bool. In any case, the equations must satisfy the
exclusivity condition: for every particular argument, at most one equation can
apply. It is possible that, for some argument, no equation applies, in which case
the function is undefined on the given input.

Since the definition of the set of valid terms of a certain type (definition 4 in
[BC04]) is important for the understanding of this work, we transcribe it below.

Let us call F the set of all structurally recursive functions together with
their types. Then, the valid terms that we allow in the definition of a recursive
function depend on two components: (a) the set X of variables that can occur
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free in the terms, and (b) the set SF of functions that are being defined (we
might define several mutually recursive functions simultaneously), which can be
used in the recursive calls.

Definition 1. Let X be a set of variables together with their types. Let SF be
a set of function names together with their specifications. Let the set of names
of the variables in X, the set of names of the functions in SF, and the set of
names of the functions in F be disjoint. We say that t is a valid term of type 7
with respect to X and SF, if the judgement X;SF + t: 7 can be derived from
the rules in Figure 1. O

r:o€eX fro—=TEF
X;SFrz:o X;SFFfio—-T1

f:o01,...,0m=>7T€SF X;SFhta;:oforl<i<m
X;SFF f(ar, .. yam): T

C:Tiyee. , Tk =T ¢ constructor of T
X;SFlhai:mforl<i<k
X;SFFc(ar,... ar): T

(X\z) U{z: c}; SFEb: T X;SFrHfio—71 X;8Flha:o
X;SFrEzlbio— T X;SFE(fa): T

Fig. 1. Rules for deriving valid terms judgements

Next, we briefly explain the translation of programs into type theory pre-
sented in [BC04]. Below, we call & the translation of the type o.

Variable types and variables, and inductive data types and their constructors
are translated straightforwardly. A function type ¢ — 7 is translated as the
total function type ¢ — 7 in type theory. Structurally recursive functions are
directly translated as structurally recursive functions in type theory with the
same functional type (except for some possible changes in the notation).

As we have already mentioned in Section 1, a function f: 01,... ,0,, = 7 is
translated as a pair

fAcc: 01 — ... — 0y — Prop
f:(z1:005.. 5T Om;fACC Ty T) — T

In order to complete the translation of £ we need to give the types of the con-
structors of fAcc and the equations defining f.

For each equation in f (i.e., in the functional side) we define a constructor
for fAcc and an equation for f (i.e., in the type-theoretic side) as follows. Let

f(p1,...,pm) =€ ifec

be a guarded equation of £, let I" be the context of variables occurring in the
patterns p1,...,pm and let I" be its type-theoretic translation. Given the term
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e, we define a type-theoretic context @, which extends I , and a type-theoretic
translation € of e whose free variables are included in I'; @.. Similarly, we define
@, and ¢.

The type of the constructor of fAcc corresponding to the above equation is

facc: (I';®,;q: ¢ = true; &, ) (fAcc pi - - - o)

and the corresponding equation of f is

fpr-pm (faccTyqgz)=¢€
where T, § and Z are the variables defined in I , . and P, respectively, and
D; is the type-theoretic version of p;. For non-conditional equations, we simply
omit all the parts related with the condition c.

The translation of the application of a function to an argument must consider
two cases. If the function has a regular function type ¢ — 7, that is, it is defined
without using general recursion, then the application is translated straightfor-
wardly. When we translate the application of a general recursive function to all
its arguments, we have to make sure that the arguments are in the domain of
the function. Hence, we must add a constraint expressing this fact in the transla-
tion context of the application. Concretely, when translating a term of the form
f(ay,... ,an), we must add an assumption (h: fAcc aj - - - @, ) to the translation
context of the application, where a; is the type-theoretic translation of a;. The
application itself is translated as (f @i -+ am, h). The argument h is needed to
make sure that f is only applied to arguments in its domain.

The crucial part of the method in [BC04] is the definition of the context
@, and the type-theoretic term a associated with a term a. Both &, and @ are
defined simultaneously by recursion over the structure of a.

For a formal description of the language FP and the translation of its pro-
grams into type theory, the reader can refer to [BC04].

We finish this section with the definition of the partial function my mod and
its translation into type theory following the method we have just described.
This function is such that my_mod(m,n) = n mod m whenever m # 0, where mod
is the standard modulo function defined as in the Haskell prelude.

We define the functional version of my_mod as:

fix mymod: NN =N
my-mod(m,n) =n ifm#0An<m
my_mod(m,n) = my-mod(m,n—m) if m#O0An=m

where —, <, >, # and A are defined as expected.
This function is translated into type theory as follows:

my_modAcc: N — N — Prop
my_mod_acc_: (m: N;n: N;g: (m # 0 An < m) = true)(my_modAcc m n)
my-mod_accs,: (m: N;n: N;g: (m #0An = m) = true;
h: my_modAcc m (n — m))(my_modAcc m n)
my_mod: (m: N;n: N;my_-modAcc m n) — N
my-mod m n (my_mod_acc. m n q) =n
my_mod m n (my_mod_accy m n ¢ h) = my_-mod m (n—m) h
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Observe that we will never be able to apply the function my_mod to the
arguments 0 and ¢: N since we cannot construct a proof of (my_modAcc 0 7).

3 New Translation of Functional Programs

We now introduce the type of partial functions in our impredicative type theory.
If a: Set and (§: Set, then we define the type of partial functions as

a— [B=XD:a— Prop.(x: a;D ) — (3: Set.

Thus, a partial function f: « — [ is actually a pair consisting of the domain
of the function and the function itself, which depends on a proof that the input
value is in the domain of the function. The definition can be extended to consider
partial functions of several arguments. If a1, ..., ., : Set and §: Set, we define

Aty 0y —pB=XYD:ag — -+ — au, — Prop.
(x1: Q15 3w ;D 2y -+ ) — O

If f:oa,...,0m — B3, we write domy for (m f) and, if a;: o; for 1 <4 < m and
(h:domy ay --- @), we use the notation fin)(a1, ... ,an) for (o fay --- am h).

In the case of functions of many arguments, we may partially apply the
function to only £ < m arguments. Then we write:

flar,...,a) =(D', f"Y: a1,y — 08
where D" xpq1 -+ Ty =domy ay -+ ap Thp1 o T (%)

[l aesr o xm b= fylar, .o ak, Thg, -0 Tm)

This definition amounts to an outline of a proof of the left-to-right direction of
the following equivalence:

a1y — B2 a; — = o — (A, Gy — B).

The right-to-left direction is straightforward.

In what follows, we give a modification of the method of [BC04] that uses
the type of partial functions in place of the standard type of total functions.

First, we apply the translation method also to structurally recursive func-
tions since we want all the functions to have a partial function type. Hence,
structurally and general recursive functions are now all assigned specifications,
so now the set SF contains also the functions previously in F. As a consequence,
the second rule in Definition 1 of valid terms simply disappears.

In addition, the definition of valid terms required every occurrence of a general
recursive function to be fully applied. Now we lift this restriction and we replace
the third rule in Definition 1 by the following rule:

f:o1,...,o0m=>7€SF X;SFlta;:o;forl<i<kandk<m
X;SFE flar, .. ,ak): Okg1y-v sOm =T

where if kK =m, og41,...,0m = 7 is understood simply as 7.
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A similar modification has to be made to the fourth rule of the same defini-
tion, which deals with constructors, since they must also be used fully applied
in [BC04].

Next, we modify the definition of the translation into type theory.

Variable types and inductive datatypes are translated as before. The function
type o — 7 is now translated into the partial function type ¢ — 7. In our
previous work, specifications were not translated into a type. Now, given the

specification o1,...,0, = 7T we define its translation as the type of partial
functions o1,... ,0, — 7.

Constructors are assigned specifications in [BC04] rather than types. With
the translation we give of specifications, a constructor is now expected to have
a domain predicate. However, the application of a constructor to arguments of

the corresponding types should always be defined. Let c: 01, ... ,0,, = T be one
of the constructors of the inductive type T. In type theory, the corresponding
constructor would have type c: 07 — -+ — &,, — T. The translation of c is
then defined as C = (cAcc,c'): 71,... ,0m — T with

cAcc = [x1:07;... ;Tm: Op|T: 07 — -+ — o — Prop

cimlas, ... ,am) =cla,... ,am)

where T is a set containing only the element tt.

Below we present the definition of the context @, and the type-theoretic ex-
pression a associated with a term a. The cases of function calls and constructors
are now split into two cases, according to whether the function or the constructor
is fully or partially applied; this distinction was not relevant in [BC04].

Definition 2. Given a term a and a context I' containing type assumptions for
the free variables in a, we define the context extension @, and the type-theoretic
term @ by recursion on the structure of a. Note that, since ®, extends I', we
should only introduce fresh variables in @, .

z: If the term a is the variable z, then &, = () and a = z.

f(ai,...,am): Here, £:01,... 0, = T, and aq, ... ,an, are arguments of
the appropriate types. Hence, the function is fully applied. First, we deter-
mine Py, ..., Po,, and @y ... 4y by structural recursion. We then define

S
[l

Do =Py 3 Pa,,;(h:fAcc ay -+ ) and a=fp(a,. .. a;m)

a=f(ay,...,a): Let £ be as above and k < m. In this case the function is not
fully applied. Under similar assumptions as in the previous case, we define
D, = Dyyi... Py, and @ = f(ay,... ,ax). See (x) for the meaning of the
partial application of f to only k of its m arguments.

a=c(ay,...,anm): Let c be a constructor fully applied to arguments of the ap-
propriate types. Under similar assumptions as in the case of fully applied
functions, we define @4 = Py,;... ;P and a = c(ay,...,am). Notice that
this is equal to ') (a1, . .. ,Gm), so the translation is consistent with that of
recursive functions.
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a=cla,...,ag): Let c be a constructor applied to only k of its m arguments.
This case is similar to the case of partially applied functions.

a = [z]b: Let o be the type of z. We start by calculating @, and b recursively.
Notice that now, the context with the assumptions for the free variables in b

—

is (I';z: @). We define @), = () and [2]b = (gAcc, g) with

gAcc = [z: ] X Dy
g = [z: 0; h: gAcc z]Cases h of {(yT;.b> —b

where Y@y, is a big X-type defining the conjunction of all the preconditions
contained in @, and Ygp, is the sequence of variables in ®y,. If Dy is empty
then 2@y is simply understood as T and the whole case-expression can just
be replaced by b. On the other hand, if @, contains only one assumption
then Y&y is simply $y,. Moreover, the case-expression can just be replaced by
blyy := h], where yy, is the variable assumed in Py,.

a = (g b): Here g stands for any function with a functional type (not a specifi-
cation). As usual, we define &, and @ in terms of Py, g, Py, and b. Since g 1is
(potentially) a partial function, it has a partial function type in type theory,
so we have to make sure that it is only applied to elements in its domain.

Hence, we have @, = ®4; y; (h: domg b) and @ = g, (D). a

Theorem 1 of [BC04] can be strengthened: now, it states that the functional
program f and its type-theoretic translation f denote the same partial recursive
function. The proof is similar to those of Theorems 1 and 2 in [BC04] and it relies
on a correspondence between computation of terms in functional programming
and reduction of their translations in type theory. Given the application of a
general recursive function, this correspondence depends, in turn, on the corre-
spondence between the trace of the computation of the application in functional
programming and a normal form of the proof that the type-theoretic versions of
the arguments satisfy the corresponding domain predicate.

Lemma 1. Let e: 7 be a valid term in FP with respect to I' and SF, and let r
be the type-theoretic translation of I'. Let @, be the translation context generated
by the method, Z the sequence of variables in ®., and d an instantiation of .
depending only on variables in I'. Then the computation of e in FP terminates
with a term r whose type-theoretic translation 7 is convertible with €]z := dJ.

Proof. We do induction on the pair (I,e) where [ is the maximum length of a
normalisation path of €[z := d] (notice that the path is finite because type theory
enjoys strong normalisation) and the order < is the lexicographic order on pairs,
that is: (I',e') < (I, e) iff either I’ < 1 or I’ < ! and €’ is structurally smaller than
e. This part of the proof does not present any substantial change with respect
to our previous work. O

Lemma 2. Let e and P, be as in the previous lemma. If the computation of e
terminates in FP then there is an instantiation d of ..
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Proof. We do induction on the pair (I, e) where [ is the length of the trace of the
computation of e and the order is the lexicographic order on pairs as in lemma 1.

The fact that we assign domain predicates also to local functions generated
by A-abstraction entails that, when computing a local function on a specific
argument, we can generate a proof of the local termination predicate whenever
the application terminates in the functional side. This is an improvement on
[BCO04], where we needed to generate a proof of totality for the local function. O

Theorem 1. Let f: 01,... ,0m, = T be a function in FP. Let fAcc and f be the
domain predicate for £ and the type-theoretic version of £, respectively. Then,
for every sequence of values vi: o1, ..., Uy O we have that
(fAcc 01 -+ Up,) is provable <= £ is defined on vy, ...,V
and if (h: fAcc U1 -+ 0,,) is a closed proof, then
f[h](ﬁ\h .. ,’1777\1) = f(’l}l,. ce oy Um).
Proof. Immediate by applying the previous lemmas to e = £(v1,... ,vp). ]

4 TIllustration of the Method

We illustrate the advantages of the new method on some examples contain-
ing the features that were problematic in our previous work. The function map
shows how to deal with functional arguments, the function sumdel illustrates
how A-abstractions are treated, and the function is_div2 shows how to deal
with partial applications.

In addition, we demonstrate that the impredicativity of the sort Prop is nec-
essary for the generality of the method, by giving an example itz that gives rise
to a polymorphic domain predicate. The example itz is also the only one with
nested recursion, so it is the only one that needs induction-recursion.

Functional Arguments: map. Functional version:

fix map: vy — §,List 7= List ¢
map(f,nil) = nil
map(f, cons(z,xs)) = cons(f x,map(f,xs))

Type-theoretic version: Map = (mapAcc, map): (y — 6), List v — List 6 with:

mapAcc: (v — ) — List v — Prop
mapacc,;: (f: v — 6)(mapAcc f nil)
mapacC st (f:y — 6;@: y;as: List y;h: domy 3 hy: dompap f @s)
(mapAcc f cons(z, zs))

map: (f: v — &;ys: List v;mapAcc f ys) — List §
map f nil (mapacc,; f) = nil
map f cons(z, xs) (mapacceyns f s h hi) = cons(fiy) (), Mapy,,;(f; xs))
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Recall that (dommap f xs) and Mapy,,j(f, xs) reduce to (mapAcc f xs) and
(map f xs hy), respectively. In addition, when map is applied to a concrete
partial function (fAcc,f), (domy x) and fi,)(7) reduce to (fAcc x) and (f = h),
respectively. When checking the validity of the inductive-recursive definitions,
we have to expand such terms.

Abstractions: sumdel. Here, the functions 4, sum and delete are all struc-
turally recursive. The function + is defined as expected, and sum and delete are
as in the Haskell prelude. Below, we assume that the mentioned functions have
already been translated into type theory. Moreover, for simplicity reasons, we
use the structurally recursive versions of these functions rather than the formal
translations we would obtain with our new method.

Functional version:

fix sumdel: List N= N
sumdel(nil) =0
sumdel(cons(n,!)) = n + sum(map([z]|sumdel(cons(n,delete(x,!))),1))

The actual value computed by the function is sumdel(nq,...,ng) = nisd(k)
where sd(0) = 0 and sd(k + 1) = ksd(k) + 1.
Type-theoretic version: Sumdel = (sumdelAcc, sumdel): List N — N with:

sumdelAcc: List N — Prop
sumdelaccy; : (sumdelAcc nil)
sumdelacceons: (1: N;1: List N; h: mapAcc G [)(sumdelAcc cons(n, 1))

sumdel: (I: List N;sumdelAcc l) — N
sumdel nil sumdelacc,; =0
sumdel cons(n, !) (sumdelacccons 7 I h) =n +sum Mapy, (G, 1)

with G = (gAcc,g): N — N where

gAcc = [z: N](sumdelAcc cons(n, (delete z: 1))): N — Prop
g = [z: N; h: gAcc z]Sumdelp,;(cons(n, (delete = 1))): (x: N;gAcc ) — N

Notice that G is local to Sumdel and hence, n and [ are known while defining G.

The important feature of this translation, not possible in the old one, is that
we can assign a precise domain predicate gAcc to the local function generated by
the A-abstraction. Notice that in the body of the main function, the local function
is applied only to arguments that satisfy gAcc, so termination is ensured.

Partial Application: is_div2. Functional version:
fix is_div2: List N= List N
is_div2(zs) = map(mymod(2), zs)

where the function my mod is the one defined at the end of Section 2. Given a
list of numbers, this function returns a list of 0’s and 1’s depending on whether
the numbers in the list are divisible by 2 or not, respectively.
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Observe that the type-theoretic version of my_mod is the same as before since
this function does not present any of the problematic aspects on which the
method has been changed. Let My_Mod = (my_modAcc, my_-mod): N;N — N
with my_modAcc and my_mod as defined on page 122.

Type-theoretic version: Is_Div2 = (is_div2Acc, is_div2): List N — List N with:

is_div2Acc: List N — Prop
is_div2acc: (xs: List N; h: mapAcc My_Mod(2) zs)(is_div2Acc zs)

is_div2: (zs: List N;is_div2Acc xs) — List N
is_div2 zs (is_div2acc xs h) = Map,;(My_-Mod(2), zs)

Notice that the translation of the partial application my mod(2) does not
introduce any domain constrains in the type of the constructor is_div2acc. Given
an element x in the list s, the application of the function My_Mod(2) to the
argument x will only be possible if we can find a proof of (my_modAcc 2 z). This
is taken care of in the definition of mapAcc.

Necessity of Impredicativity: itz. The following example shows that it is
necessary to have an impredicative type theory if we want our method to apply
to every functional program. Functional version:

fix itz: N —-=N,N=N
itz(f,0)=f0
itz(f,succ(n)) = f itz(itz(f),n)

Type-theoretic version: Itz = (itzAcc,itz): (N — N),N — N with:

itzAcc: (N — N) — N — Prop
itzacco: (f: N — N;h: domy 0)(itzAcc f 0)
itzacCsyec: (f: N — N;n: N;hy:itzAce Itz(f) n;
ha: domy ltzp,, ) (Itz(f),n))(itzAcc f succ(n))

itz: (f: N— N;n: N;itzAcc f n) — N
itz f 0 (itzacco f h) = fi)(0)
itz f succ(n) (itzaccsyee f 1 h1 ha) = fing) (Itzp (Itz(f), n))

We see that impredicativity is essential when we follow our method to formalise
this example. When defining itzAcc, the constructor itzaccgc quantifies over all
partial functions f: N — N (and, therefore, over the domain predicates of all
those functions) and in the body of the constructor itzaccg,cc the function Itz(f)
is itself an argument of itzAcc.

The alternative to use a predicative hierarchy of type universes Uy, U1, Uo, . ..
does not work in this example. Function spaces would need to be stratified too,
according to the universe in which the domain predicate lives, so we would have

A—; B=XP:A— VU, (z: A;Pz)— B

Since we are quantifying over A — U;, predicatively it must be A —; B: U;
with 7 > 4. That is, we have at least A —; B: U;41.
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In the case of Itz, if we try to assign universe levels, that is, if we try to give
it the type Itz: (N —; N),N —; N for some ¢ and j, we reach a contradiction re-
gardless of what ¢ and j are. To start with, we have itzAcc: (N —; N) —= N — U,.
The first constructor itzaccy contains a quantification on N —; N, so its type
must be at least in U;;1. Thus, also the universe of itzAcc must be at least
U;41, that is, j > ¢ + 1. Now, in the constructor itzaccs,c we have the subterm
Itz(Itz(f),n), but this term does not type-check because Itz: (N —; N),N —; N
and Itz(f): N —; N with j > ¢+ 1. Hence, Itz cannot be applied to Itz(f) because
the type is not correct: it expects an argument of type N —; N and it gets one
of type N —; N with j >4 4 1.

5 Conclusions

This article presents a method to translate functional programs into type theory
based on the one previously presented in [BC04]. The new approach relies on a
type of partial functions whose elements are pairs consisting of a domain predicate
and a function depending on a proof of the predicate. The problems that were
left open in [BC04] are now solved: functional arguments are dealt with by lifting
their domain conditions to the main call; A-abstractions denote partial functions
with domain condition generated locally; partial application is interpreted by just
fixing the given parameters both in the domain predicate and the function.

These results are obtained at the cost of two disadvantages. First of all,
we need an impredicative type theory for the method to be applicable to all
functional programs (see example itz). This is indispensable to obtain a general
result, but in most practical cases the method could be adapted to work on a
predicative type theory with type universes.

As we have already mentioned, this paper is the last in a series of articles
[Bov01, BCO1, Bov02a, Bov02b, Bov03, BC04] aimed at representing general re-
cursive functions in type theory. See the section on related work in [BC04] for
a thorough discussion of the literature regarding representations of recursive
functions in logical frameworks.
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