
Dependent Type Theory of Stateful
Higher-Order Functions

Aleksandar Nanevski

Harvard University

joint with Greg Morrisett and Lars Birkedal

TYPES 2006, Nottingham

April 20, 2006

Dependent Type Theory of Stateful Higher-Order Functions – p. 1



Dependent type theory

• Type theory is a program logic:
− types can express and enforce precise program properties

• Doubles up as a programming language.

• Prototypical higher-order language (e.g, polymorphism,
inductive/recursive types, subset types, etc.)

• Problem: must be purely functional
− recursion allowed, if you prove termination

− effects like state, IO, etc., usually second class
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Hoare Logic

• Logic for imperative programs.

• Specifies partial correctness via Hoare triple {P} E {Q}:
− if P holds, then E diverges or terminates in a state Q

− P : precondition

− Q: postcondition

• Usually targets first-order languages
− but recent advances in the higher-order case

• Reasoning about state and aliasing very streamlined
− Separation Logic by O’Hearn, Pym, Reynolds, Yang...
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Type theory for imperative programs

• Why not integrate Hoare Logic into a Type Theory?

• Benefits:
− types can enforce correct use of effectful programs

− add effects to type theory

− preserves equational reasoning about pure programs

• Idea: follow specifications-as-types principle
− Type of Hoare triples {P}x:A{Q}

− precondition P , postcondition Q, return result of type A.

− Dependencies allow P and Q to talk about program data.

• In this talk: Hoare Type Theory (HTT)
− for reasoning about state and aliasing
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Outline

• Introduction X

• Assertion logic

• Types and terms

• Typechecking

• Conclusions
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Heaps

• Partial functions, assigning to each natural number at most
one value.

• Assertion seleqτ (H,M,N):
− In the heap H , location M points to N : τ .

• Function updτ (H,M,N):
− Returns a new heap in which M points to N : τ .

• τ is a monomorphic type.

Dependent Type Theory of Stateful Higher-Order Functions – p. 6



Axioms on heaps

• McCarthy’s axioms for functional arrays.

(ax1) seleqA(updA(H, M, N), M, N)

(ax2) M1 6= M2 ∧ seleqA(updB(H, M1, N1), M2, N2) ⊃

seleqA(H, M2, N2)

• And:

(ax3) seleqA(empty, M, N) ⊃ ⊥

(ax4) seleqA(H, M, N1) ∧ seleqA(H, M, N2) ⊃ N1 = N2
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Assertions

• Classical multi-sorted first-order logic with equality

• Sorts: heaps and all types of HTT

• Plus: type polymorphism (predicative)

• Examples
− heap equality can be defined:

H1 = H2 ≡ ∀l:nat.∀α.∀x:α.

seleqα(H1, l, x) ⊂⊃ seleqα(H2, l, x)

− Also definable: disjoint union H = H1 ] H2
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Some derived assertions

• We can define propositions from Separation Logic.
− Variable mem denotes current heap.

emp ≡ (mem = empty)

M 7→τ N ≡ (mem = updτ (empty, M, N))

M ↪→τ N ≡ seleqτ (mem, M, N)

P ∗ Q ≡ ∃h1, h2:heap.(mem = h1 ] h2)

∧[h1/mem]P ∧ [h2/mem]Q

P —∗Q ≡ ∀h1, h2:heap.(h2 = h1 ] mem)

⊃ [h1/mem]P ⊃ [h2/mem]Q

this(H) ≡ (mem = H)
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Example: swap

• Swap content of locations x and y (here natural numbers).

• Spec with no aliasing between x and y:
− α, β: type variables

swap:∀α.∀β.Πx:nat.Πy:nat.

{x 7→α m ∗ y 7→β n}r : 1

{x 7→β n ∗ y 7→α m}

• For a spec with aliasing, use ∧ instead of ∗

• m, n: dummy variables
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Type structure

• Primitive types: nat, bool, 1

• Dependent functions: Πx:A. B – standard

• Polymorphic types: ∀α. A – standard

• Hoare types: {P}x:A{Q}

− Hoare types are monads

− encapsulate effectful computations

− but also formalize reasoning by strongest postconditions
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Term structure

• Pure fragment: higher-order functions, polymorphism...

• Impure fragment – first-order imperative language
− sequence of commands, ending with a return value

− primitives for allocation, strong update, lookup, deallocation,
conditionals, recursion

− recursive functions must be annotated with a type

• Monadic constructs:
− dia E

· suspends the effectful computation E

· suspension is pure, so it can appear in types

− let dia x = M in E
· run M , then E
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Monadic terms

• Definition and typing of characteristic monadic terms:

unit : A → M(A) =

λx. dia x

map : (A → B) → M(A) → M(B) =

λf. λx. dia (let dia y = x in f y)

idemp : M(M(A)) → M(A) =

λx. dia (let dia y = x in let dia z = y in z)

• Dependently typed unit:

unit’ : Πx:A. {P}y:A{x = y ∧ P} =

λx. dia x
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Example: swap

• Swap content of x and y

swap :∀α.∀β. Πx:nat. Πy:nat.
m:α. n:β. {x 7→α m * y 7→β n} r : unit

{x 7→β n * y 7→α m} =

Λα.Λβ. λx. λy. dia (u = !x; v = !y;
y := u; x := v;
( ))
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Example: swap twice

• Swapping twice in a row is identity.

identity = Λα.Λβ.λx.λy. dia(let dia = swap α β x y
dia = swap β α x y

in
( )

end)

− Heap invariance apparent from the type.

identity : ∀α.∀β.Πx:nat.Πy:nat.
m:α,n:β,h:heap.{(x 7→α m * y 7→β n) ∧ this(h)} r : 1

{this(h)}
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Judgments

• Typechecking by computing strongest postconditions.

• Typechecking is completely syntax-directed.
− effectful programs are (part of) the proofs of their specs

− remaining part of the proof must discharge intermediate assertions

− no whole-program reasoning

• Judgment: ∆;P ` E ⇒ x:A. Q

− ∆: variable context

− E: computation

− P : what holds before E runs (precondition)

− A: return result

− Q: how the heap is changed after E (strongest postcondition)

− Q is output
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Typechecking deallocation

• dealloc(M);E

− deallocates memory at location M , and proceeds to run E

• proving P ⊃ (M ↪→ −) can be postponed

• P ◦ (R1 ( R2) is a heap obtained by switching R1 with R2 in P

• connectives ◦ and ( definable in HTT, but independent of ∗ and —∗
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Soundness

• In addition to equational theory, we define call-by-value
operational semantics

• Soundness must show that P ` E ⇒ x:A. Q indeed has the
intuitive semantics

• Soundness requires Preservation and Progress (as usual in
type systems) but here much stronger

• Preservation: evaluation preserves types and canonical
forms.

• Progress: well-typed programs do not get stuck.

• Progress depends on the soundness of the assertion logic.
− assertion logic soundness proved by simple denotational argument
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Related work

• Extended static checking tools: ESC/Java, SPlint, Spec#,
Cyclone...
− Hoare-like annotations verified during type checking

− but usually no semantic foundations

• Dependent types and effects ([Zhu, Xi’05], [Shao, Trifonov,
Saha, Papaspyrou’05])
− but types cannot depend on effectful programs

• Hoare Logic for higher-order functions
([Schröder,Mossakowski’02], [Honda, Berger, Yoshida’05])
− simply typed underlying language (with effects)

− Hoare triples do not integrate into a type system
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Conclusions

• HTT is a type-theoretic version of Hoare Logic
− dually: Hoare Logic for a dependently typed language

− dually: Type Theory with monadic effects

• Specifications-as-types principle via monad {P}x:A{Q}

• Specifications like in Separation Logic.

• Definable connectives ∗ and —∗ from Separation Logic (but
new connectives ◦ and ( also needed).

• Assertions checked by pushing strongest postconditions

• Proofs-as-programs principle (modulo proofs of assertion)
guarantees no need for whole-program reasoning

• Paper available at: http://www.eecs.harvard.edu/˜aleks
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Future work

• Higher-order assertion logic

• Cook completeness

• Abstract types

• Local state

• Hoare logic for concurrency and runST
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Example

• Swapping twice in a row is identity.

identity : ∀α.∀β.Πx:nat.Πy:nat.
m:α,n:β,h:heap.{(x 7→α m * y 7→β n) ∧ this(h)} r : 1

{this(h)} =

Λα.Λβ.λx.λy. dia(let dia u = swap α β x y
dia v = swap β α x y

in
( )

end)
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Monadic equations

• Equational theory [Pfenning,Davies’99]

• Implements monadic laws, but as β and η rules.

let dia x = dia E in F =⇒β 〈E/x〉F

M : {P}x:A{Q} =⇒η dia (let dia x = M in x)

• Where 〈E/x〉F is monadic linearization

〈M/x〉F = [M/x]F

〈command;E ′′/x〉F = command; 〈E ′′/x〉F

〈let dia y = E ′ in E ′′/x〉F = let dia y = E ′ in 〈E ′′/x〉F
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Example: swap

• Swap content of locations x and y (here natural numbers).
− Spec with no aliasing between x and y:

swap:∀α, β.Πx, y:nat.

m:α.n:β.{x 7→α m ∗ y 7→β n}r : 1

{x 7→β n ∗ y 7→α m}

− Spec with aliasing between x and y:

swap:∀α, β.Πx, y:nat.

m:α.n:β.h:heap.{x ↪→α m ∧ y ↪→β n ∧ this(h)}r : 1

{this(updβ(updα(h, y,m), x, n))}

• m, n, h – dummy variables
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Typechecking allocation

• x = allocτ (M);E

− allocates memory and initializes with M :τ

− x binds the address of allocated memory

• P ∗ (x 7→τ M) means x disjoint from P , and hence fresh.
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Typechecking letdia

• Typing rule:

∆ ` K : {R1}x:A{R2}

∆ ` P ⊃ R1 ∗ >
∆, x:A;P ◦ (R1 ( R2) ` E ⇒ y:B. Q

∆;P ` let dia x = K in E ⇒ y:B. (∃x:A. Q)

• P ⊃ R1 ∗ > implements “small footprints”
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Typechecking dia

• Typing rule:

∆;R1 ∗ > ` E ⇒ x:A. P ∆ ` P ⊃ R1 ( R2

∆ ` dia E : {R1}x:A{R2}

• Precondition R1 ∗ >:
− E can run in any heap with a fragment R1

• Strongest postcondition P must imply R1 ( R2

− the ending heap obtained from initial by swapping R1 with R2
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