Dependent Type Theory of Stateful
Higher-Order Functions

Aleksandar Nanevski

Harvard University

joint with Greg Morrisett and Lars Birkedal

TYPES 2006, Nottingham
April 20, 2006

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions —= p. 1

Dependent type theory

e Type theory is a program logic:
— types can express and enforce precise program properties

e Doubles up as a programming language.

e Prototypical higher-order language (e.g, polymorphism,
Inductive/recursive types, subset types, etc.)

e Problem: must be purely functional
— recursion allowed, if you prove termination
— effects like state, 10, etc., usually second class

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 2

Hoare Logic

e Logic for imperative programs.

e Specifies partial correctness via Hoare triple { P} £ {Q}:
— If P holds, then E diverges or terminates in a state ()
— P precondition
— (: postcondition

e Usually targets first-order languages
— but recent advances in the higher-order case

e Reasoning about state and aliasing very streamlined
— Separation Logic by O’Hearn, Pym, Reynolds, Yang...

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 3

Type theory for imperative programs

e Why not integrate Hoare Logic into a Type Theory?

e Benefits:
— types can enforce correct use of effectful programs
— add effects to type theory
— preserves equational reasoning about pure programs

e |dea: follow specifications-as-types principle
— Type of Hoare triples { P}x: A{Q}
— precondition P, postcondition (), return result of type A.
— Dependencies allow P and () to talk about program data.

e In this talk: Hoare Type Theory (HTT)
— for reasoning about state and aliasing

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 4

Outline

e Introduction v/
e Assertion logic
e Types and terms
e Typechecking

e Conclusions

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 5

Heaps

e Partial functions, assigning to each natural number at most
one value.

e Assertion seleq,.(H, M, N):
— Inthe heap H, location M pointsto N : 7.

e Function upd_.(H, M, N):
— Returns a new heap in which M pointsto N : 7.

e 7 IS a monomorphic type.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 6

Axioms on heaps

e McCarthy’s axioms for functional arrays.

(ax1) seleq,(upds(H, M, N), M, N)

(ax2) My # My A seleq(updg(H, M1, Ny), Ma, No) D
seleq 4 (H, Ms, N>)

e And:

(ax3) seleq,(empty, M, N) D L
(ax4) seleqq(H, M, N1) Aseleqy(H, M, Ns) D N1 = No

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions —= p. 7

Assertions

e Classical multi-sorted first-order logic with equality
e Sorts: heaps and all types of HTT
e Plus: type polymorphism (predicative)

e Examples
— heap equality can be defined:

H,=H, = VinatVa.Vr:o.
seleq,, (H1,l,x) CD seleq,, (Hs, !, x)

— Also definable: disjoint union H = H, & H,

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 8

Some derived assertions

e \We can define propositions from Separation Logic.
— Variable mem denotes current heap.

emp = (mem = empty)
M+—, N = (mem = upd, (empty, M, N))
M —,. N = seleq, (mem, M, N)
Px@Q = 3Jhy,hoheap.(mem = hy W ho)
Alh1/mem]P A [ho /mem|Q
P—x(Q = VYhq,ho:heap.(hy = hy & mem)

D [hy/mem|P D [ho/mem|Q

this(H) (mem = H)

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 9

Example: swap

e Swap content of locations = and y (here natural numbers).

e Spec with no aliasing between x and v
— «, (. type variables

swap:Va.V 3. 11z:nat.I1y:nat.
{r—omxy—gn}r:1
{z—gn*xyr—qgm}

e For a spec with aliasing, use A instead of x

Debpendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 10

Example: swap

e Swap content of locations = and y (here natural numbers).

e Spec with no aliasing between x and v
— «, (. type variables

swap:Va.V 3. 11z:nat.I1y:nat.
m:an:f{x —qmxyr—gnlr:1
{z =g nxyr—, m}
e For a spec with aliasing, use A instead of x
e m, n. dummy variables

Debpendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 10

Outline

e Introduction v/

e Assertion logic v/
e Types and terms
e Typechecking

e Conclusions

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 11

Type structure

e Primitive types: nat, bool, 1

e Dependent functions: IIz:A. B — standard
e Polymorphic types: Va. A — standard

e Hoare types: {P}z:A{Q}

— Hoare types are monads
— encapsulate effectful computations
— but also formalize reasoning by strongest postconditions

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 12

Term structure

e Pure fragment: higher-order functions, polymorphism...

e Impure fragment — first-order imperative language
— sequence of commands, ending with a return value

— primitives for allocation, strong update, lookup, deallocation,
conditionals, recursion

— recursive functions must be annotated with a type

e Monadic constructs:
— dia B
- suspends the effectful computation E
suspension is pure, so it can appear in types
— letdiaxz =M in &
- run M, then E

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 13

Monadic terms

e Definition and typing of characteristic monadic terms:

unit @ A — M(A) =
Ax. dia x
map : (A— B)— M(A) — M(B) =
Af. Ax. dia (letdiay =z in f y)
idemp : M(M(A)) — M(A) =
Az. dia (letdiay = z in letdia z = y in 2)

Debpnendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 14

Monadic terms

e Definition and typing of characteristic monadic terms:

unit @ A — M(A) =
Ax. dia x
map : (A— B)— M(A) — M(B) =
Af. Ax. dia (letdiay =z in f y)
idemp : M(M(A)) — M(A) =
Az. dia (letdiay = z in letdia z = y in 2)
e Dependently typed unit:

unitt : Ilz:A. {P}y:A{x =y A P} =
Az. dia x

Debpnendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 14

Example: swap

e Swap content of x and y

swap Va.V(3. 1x:nat. Ily:nat.
m:a. n:B. {x+—, m*yr—gn}r: unit
{xi=any o m) -

Aa.AB. Ax. Ay. dia (u=x; v =ly;
Y= U X =V,

()

Debpendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 15

Example: swap twice

e Swapping twice in a row is identity.

identity = Aa. AG.Ax.\y. dia(let dia _=swap o G x y
dia _=swap S axy
In
()
end)

— Heap invariance apparent from the type.

identity : Vo.V3.11x:nat.I1y:nat.
m:a,n:3,h:heap.{(x —4 m*y =4z n) Athisth)} r: 1
{this(h)}

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 16

Outline

e Introduction v/

e Assertion logic v/
e Types and terms v/
e Typechecking

e Conclusions

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 17

Judgments

e Typechecking by computing strongest postconditions.

e Typechecking is completely syntax-directed.
— effectful programs are (part of) the proofs of their specs
— remaining part of the proof must discharge intermediate assertions
— no whole-program reasoning

e Judgment: A; P+ E = x:A. Q)
— A variable context
— FE: computation
— P: what holds before E runs (precondition)
— A: return result
— (. how the heap is changed after £ (strongest postcondition)
— () 1s output

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 18

Typechecking deallocation

e dealloc(M); E
— deallocates memory at location M, and proceeds to run £

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Typechecking deallocation

e dealloc(M); E
— deallocates memory at location M, and proceeds to run £

e Typing rule:

A; P F dealloc(M); E = y:B. Q)

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Typechecking deallocation

e dealloc(M); E
— deallocates memory at location M, and proceeds to run £

e Typing rule:
A F M : nat

A; P F dealloc(M); E = y:B. Q)

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Typechecking deallocation

e dealloc(M); E
— deallocates memory at location M, and proceeds to run £

e Typing rule:

A F M : nat
AFPD(M— —)

A; P F dealloc(M); E = y:B. Q)

e proving P O (M < —) can be postponed

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Typechecking deallocation

e dealloc(M); E
— deallocates memory at location M, and proceeds to run £

e Typing rule:

A F M : nat
AFPD(M— —)

A:; - =vybB.Q
A; P F dealloc(M); E = y:B. Q)

e proving P O (M < —) can be postponed

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Typechecking deallocation

dealloc(M); E
— deallocates memory at location M, and proceeds to run £

Typing rule:

A F M : nat
AFPD(M— —)

A;Po(M— —)—oemp)E=yB.Q
A; P F dealloc(M); E = y:B. Q)

proving P O (M < —) can be postponed
P o (Ry — R5) isaheap obtained by switching R, with R in P

connectives o and — definable in HTT, but independent of x and —x

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 19

Soundness

e In addition to equational theory, we define call-by-value
operational semantics

e Soundness must show that P - E = x:A.) indeed has the
Intuitive semantics

e Soundness requires Preservation and Progress (as usual in
type systems) but here much stronger

e Preservation: evaluation preserves types and canonical
forms.

e Progress: well-typed programs do not get stuck.

e Progress depends on the soundness of the assertion logic.
— assertion logic soundness proved by simple denotational argument

Dependent Tvpe Theorv of Stateful Hiogher-Order Functions — p. 20

Related work

e Extended static checking tools: ESC/Java, SPlint, Spec#,
Cyclone...

— Hoare-like annotations verified during type checking
— but usually no semantic foundations
e Dependent types and effects ([Zhu, Xi1’05], [Shao, Trifonov,
Saha, Papaspyrou’05])
— but types cannot depend on effectful programs

e Hoare Logic for higher-order functions
([Schroder,Mossakowski’02], [Honda, Berger, Yoshida’05])

— simply typed underlying language (with effects)
— Hoare triples do not integrate into a type system

Dependent Tvpe Theorv of Stateful Higher-Order Functions — p. 21

Conclusions

HTT is a type-theoretic version of Hoare Logic
— dually: Hoare Logic for a dependently typed language
— dually: Type Theory with monadic effects

Specifications-as-types principle via monad { P}x: A{Q}
Specifications like in Separation Logic.

Definable connectives * and — from Separation Logic (but
new connectives o and —o also needed).

Assertions checked by pushing strongest postconditions

Proofs-as-programs principle (modulo proofs of assertion)
guarantees no need for whole-program reasoning

Paper available at: http://www.eecs.harvard.edu/ aleks

Dependent Tvpe Theorv of Stateful Higher-Order Functions — p. 22

Future work

e Higher-order assertion logic

e Cook completeness

e Abstract types

e Local state

e Hoare logic for concurrency and runST

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 23

Example

e Swapping twice in a row is identity.

identity : V.V 3.1Ix:nat.Ily:nat.
m:a,n:3,h:heap.{(x —4 m*y 3 n) A this(h)} r: 1
{this(h)} =

Aa. AG.Ax. \y. dia(let dia u=swap o 5 xy
diav=swap 0 axy
In
()
end)

Debpendent Tvpe Theorv of Stateful Hiaher-Order Functions — p. 24

Monadic equations

e Equational theory [Pfenning,Davies’99]
e Implements monadic laws, but as 5 and » rules.

letdiaz =dia Fin ' =53 (E/x)F
M :{P}x:A{Q} =, dia(letdiaz =M inx)

e Where (E'/x)F'is monadic linearization

(M/x)F = |[M/z]F
(command; £ /x)F' = command; (E"/x)F
(letdiay = FE'in E"Jx)F = letdiay=FE"in (E"/x)F

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 25

Example: swap

e Swap content of locations = and y (here natural numbers).
— Spec with no aliasing between x and y.

swap:Va, (3.11z, y:nat.
m:a.n:f{x —, mxyr—gnpr:1
{ZIZ‘ =R kY g m}

— Spec with aliasing between x and y:

swap:Va, (3.11z, y:nat.
m:a.n:B.h:heap.{x —, m Ay —gn Athis(h)}r:
{this(updﬁ(upda(ha Y, m)7 €L, n))}

e m, n, h—dummy variables

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 26

Typechecking allocation

e v =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking allocation

e v =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

e Typing rule:

A; PFx =aloc,(M); E = y:B.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking allocation

e v =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

e Typing rule:

A F 1 type

A; PFx =aloc,(M); E = y:B.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking allocation

e v =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

e Typing rule:

A F T :type
AFEM:T

A; PFx =aloc,(M); E = y:B.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking allocation

e r =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

e Typing rule:

A F 1 type
AFM:T
A, x:nat; - FE = yB.Q

A; PFx =aloc,(M); E = y:B.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking allocation

e r =alloc,(M); E
— allocates memory and initializes with M :7
— x binds the address of allocated memory

e Typing rule:

A F 1 type
AFM:T
A,xnat; P (x—, M) E=yB.Q

A; PFax =alloc,(M); E = y:B. (3x:nat.Q))

® P x(x+, M) means x disjoint from P, and hence fresh.

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 27

Typechecking letdia

e Typing rule:

A;PFletdarz=Kin F = y:B. (dx:A. Q)

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 28

Typechecking letdia

e Typing rule:
A+ K : {Rl}fL’A{RQ}

A;PFletdarz=Kin F = y:B. (dx:A. Q)

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 28

Typechecking letdia

e Typing rule:

A+ K : {Rl}SL'A{RQ}

A;PlEletdax=Kin E = y:B. (d2:A. Q)

e P D Ry« T implements “small footprints”

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 28

Typechecking letdia

e Typing rule:

A+ K : {Rl}CL’A{RQ}
Ajx:A;Po (R — Ry)F E = y:B. Q

A;PlEletdax=Kin E = y:B. (d2:A. Q)

e P D Ry« T implements “small footprints”

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 28

Typechecking dia

e Typing rule:

A,Rl*TkEiﬂiAP A"PDRl—ORQ
A dia F : {Rl}CL’A{RQ}

e Precondition Ry = T
— FE can run in any heap with a fragment R

e Strongest postcondition P must imply R, — Rs
— the ending heap obtained from initial by swapping R; with Ry

Dependent Tvpe Theorv of Stateful Hiaher-Order Eunctions — p. 29

	Dependent type theory
	Hoare Logic
	Type theory for imperative programs
	Outline
	Heaps
	Axioms on heaps
	Assertions
	Some derived assertions
	Example: swap
	Example: swap

	Outline
	Type structure
	Term structure
	Monadic terms
	Monadic terms

	Example: swap
	Example: swap twice
	Outline
	Judgments
	Typechecking deallocation
	Typechecking deallocation
	Typechecking deallocation
	Typechecking deallocation
	Typechecking deallocation
	Typechecking deallocation

	Soundness
	Related work
	Conclusions
	Future work
	Example
	Monadic equations
	Example: swap
	Typechecking allocation
	Typechecking allocation
	Typechecking allocation
	Typechecking allocation
	Typechecking allocation
	Typechecking allocation

	Typechecking letdia
	Typechecking letdia
	Typechecking letdia
	Typechecking letdia

	Typechecking dia

