Computation by Prophecy

Venanzio Capretta
University of Ottawa

with

Ana Bove
Chalmers University of Technology

TYPES 2006
Nottingham, 18—21 April 2006

How do we define general recursive functions
in Type Theory? Only structurally recursive
functions are directly definable. Three differ-

ent solutions:

e Bove/Capretta 2001:
Inductive Domain Predicate

e Capretta 2005:
Coinductive Partial Codomain

e Prophecy Method:
Coinductive Abstract Output

Informal definition of the quicksort algorithm:

gs: [N] — [N]
gs [] =[]
gs(z ::1) = (gsl<y) +H = 2 (gsl>z)
where
l<g =y 1]y < 7]
>z =y < 1l]y>2a]

Example:

qs [77 97 1787 57 2]
= (as[1,5,2]) ++ 7 :: (as[9, 8])
[1727 57 77 87 9]

Not acceptable in Type Theory:
l<; and [>g; not subterms of [.

First Method (Bove)

Inductive Domain Predicate: Dgs: [N] — Prop

dm| . Dqs [] dcons x hl h2 : Dqs (33 .. l)

gs: ({: [N])(Dgsl) — [N]
gs [] dnii =[]
gs (QU . l) (dconsxlhl hz) =
(gsl<z h1) +H x 2 (qsl>z ho)

In this case we can prove that Dqgs is always
satisfied:

QS: [N] — [N]
QSI=gqsl(pl)

Advantages:

e Close to Informal Definition

e Recursive Equations (erase proofs)

e Easy Proofs

Disadvantages:

e No Partial Application

e \We must always give a proof of the domain
predicate
(Proof = Trace of Computation)

e No Type of Partial Recursive Functions

5

Second Method (Capretta 2005)

Coinductive type of partial elements:

B Type b: B x. BY
BY: Type 'b': BY pax:. BY

Colnductive

Examples of elements in N¥:
l_5—l
>3
D>D>DD>D - infinite

Partial functions:
fi:A— B means f: A— B

All general recursive functions can be formal-
ized in this type.

Partial recursive functions are the arrows of the
Kleisli category of the strong monad —%.

Advantages:

e No Proofs Needed

e Partial Application

e Type of Partial Recursive Functions

Disadvantages:

e Difficult to Program

e NO Recursive Equations

e Difficult Proofs

Prophecy Method

Abstract coinductive representation of outputs:

Colnductive [N]9: Type

r: N y1,yz: [N]®
gslng; : [N]9s gslncons zy1 yo: [N]9®

Elements of [N]9 are binary trees
(possibly non-wellfounded)

gsincons T Y1 Yo =

N
Y1 Yo

Abstract definition of quicksort:

gs*: [N] — [N]9®
gs* [] = gslng;
qs* (x :: 1) = gslncons = (qs* l<,) (95 I>2)

Recursive calls guarded by constructor gslncons

Example gs*[7,9,1,8,5,2] gives the tree:

/ \
SN
2 i o/i

0/ \o

N

We must evaluate the tree to get a (partial)
list, an element of [N]¥:

evaluategs: [N]% — [N]”

e Turn an element of [N]% into a partial well-
founded tree.

e Evaluate well-founded trees by structural
recursion.

Well-founded trees are characterized by an in-
ductive predicate:

y: [N]%
Finiteyg, y: Prop

Inductive

finitey; : Finiteggn qslny;

hq: Finiteqs|n y1 ho: Finiteqs|n Yo

finitecons ¢ y1 y1 h1 ho: Finiteqsln (gsIncons = y1 Y2)

Evaluation of finite trees:
evalpipite - (¥ [N]qs>(Finiteqs|n y) — [N]
evalFinite gsing; finiten; = []
evalrinite (aslncons y1 y2) (finitecons = y1 y2 hy ho)
= (evalFinite y1 1) + = (evalpjnite Y2 h2)

10

Trees are potentially infinite (if the computa-
tion doesn’'t terminate).

So evalgite IS NOt always applicable.

Idea: scan the tree at progressively higher depths,
letting the clock tick > at each step.

scandepthi (y: [N]qS)N — Maybe(Finiteqslny)

ADPPIY scangenty, at progressively increasing depths:
If we get Some, use evalf;ite;

If we get None, tick > and try at higher depth.
We obtain:

evaluategs : [N]9 — [N]¥

gs: [N] — [N]¥
qs ! = evaluateqgs (qs* ()

11

Recursive Equations:

qs[] ~ []

qsl<y ~> 11 Qsl>g ~ T2

qs(x i) ~»r1+Hx::iro

12

Advantages:

e Partial Application

e Type of Partial Recursive Functions

e Recursive Equations

Disadvantages:

e Inefficient Evaluation

e Proof of Equations Very Hard

13

Example with a partial function:

f:N—=N
fOo=0
fGn)=fGn)+ fn

Colnductive C¢: Type

y1,y2: Cs
co: G csyryo: G

f*: N — Cf
f*0=r¢g
f*(Sn) =cs (f*(Sn)) (f*n)

1=

/\0
/\

/\

14

