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How do we define general recursive functions
in Type Theory? Only structurally recursive
functions are directly definable. Three differ-

ent solutions:

e Bove/Capretta 2001:
Inductive Domain Predicate

e Capretta 2005:
Coinductive Partial Codomain

e Prophecy Method:
Coinductive Abstract Output



Informal definition of the quicksort algorithm:

gs: [N] — [N]
gs [] =[]
gs(z ::1) = (gsl<y) +H = 2 (gsl>z)
where
l<g =y 1]y < 7]
>z =y < 1l]y>2a]

Example:

qs [77 97 1787 57 2]
= (as[1,5,2]) ++ 7 :: (as[9, 8])
[1727 57 77 87 9]

Not acceptable in Type Theory:
l<; and [>g; not subterms of [.



First Method (Bove)

Inductive Domain Predicate: Dgs: [N] — Prop

dm| . Dqs [] dcons x hl h2 : Dqs (33 .. l)

gs: ({: [N])(Dgsl) — [N]
gs [] dnii =[]
gs (QU . l) (dconsxlhl hz) =
(gsl<z h1) +H x 2 (qsl>z ho)

In this case we can prove that Dqgs is always
satisfied:

QS: [N] — [N]
QSI=gqsl(pl)



Advantages:

e Close to Informal Definition

e Recursive Equations (erase proofs)

e Easy Proofs

Disadvantages:

e No Partial Application

e \We must always give a proof of the domain
predicate
(Proof = Trace of Computation)

e No Type of Partial Recursive Functions

5



Second Method (Capretta 2005)

Coinductive type of partial elements:

B Type b: B x. BY
BY: Type 'b': BY pax:. BY

Colnductive

Examples of elements in N¥:
l_5—l
>3
D>D>DD>D - infinite

Partial functions:
fi:A— B means f: A— B

All general recursive functions can be formal-
ized in this type.

Partial recursive functions are the arrows of the
Kleisli category of the strong monad —%.



Advantages:

e No Proofs Needed

e Partial Application

e Type of Partial Recursive Functions

Disadvantages:

e Difficult to Program

e NO Recursive Equations

e Difficult Proofs



Prophecy Method

Abstract coinductive representation of outputs:

Colnductive [N]9: Type

r: N y1,yz: [N]®
gslng; : [N]9s gslncons zy1 yo: [N]9®

Elements of [N]9 are binary trees
(possibly non-wellfounded)

gsincons T Y1 Yo =

N
Y1 Yo

Abstract definition of quicksort:

gs*: [N] — [N]9®
gs* [] = gslng;
qs* (x :: 1) = gslncons = (qs* l<,) (95 I>2)

Recursive calls guarded by constructor gslncons



Example gs*[7,9,1,8,5,2] gives the tree:

/ \
SN
2 i o/i

0/ \o

N

We must evaluate the tree to get a (partial)
list, an element of [N]¥:

evaluategs: [N]% — [N]”

e Turn an element of [N]% into a partial well-
founded tree.

e Evaluate well-founded trees by structural
recursion.



Well-founded trees are characterized by an in-
ductive predicate:

y: [N]%
Finiteyg, y: Prop

Inductive

finitey; : Finiteggn qslny;

hq: Finiteqs|n y1 ho: Finiteqs|n Yo

finitecons ¢ y1 y1 h1 ho: Finiteqsln (gsIncons = y1 Y2 )

Evaluation of finite trees:
evalpipite - (¥ [N]qs>(Finiteqs|n y) — [N]
evalFinite gsing; finiten; = []
evalrinite (aslncons  y1 y2) (finitecons = y1 y2 hy ho)
= (evalFinite y1 1) + = (evalpjnite Y2 h2)
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Trees are potentially infinite (if the computa-
tion doesn’'t terminate).

So evalgite IS NOt always applicable.

Idea: scan the tree at progressively higher depths,
letting the clock tick > at each step.

scandepthi (y: [N]qS)N — Maybe(Finiteqslny)

ADPPIY scangenty, at progressively increasing depths:
If we get Some, use evalf;ite;

If we get None, tick > and try at higher depth.
We obtain:

evaluategs : [N]9 — [N]¥

gs: [N] — [N]¥
qs ! = evaluateqgs (qs* ()

11



Recursive Equations:

qs[] ~ []

qsl<y ~> 11  Qsl>g ~ T2

qs(x i) ~»r1+Hx::iro
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Advantages:

e Partial Application

e Type of Partial Recursive Functions

e Recursive Equations

Disadvantages:

e Inefficient Evaluation

e Proof of Equations Very Hard
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Example with a partial function:

f:N—=N
fOo=0
fGn)=fGn)+ fn

Colnductive C¢: Type

y1,y2: Cs
co: G csyryo: G

f*: N — Cf
f*0=r¢g
f*(Sn) =cs (f*(Sn)) (f*n)

1=

/\0
/\

/\
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