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INTRODUCTION

INTRODUCTION

e We study some abstract component languages and develop type
systems that

e allow one to derive upper bounds of simultaneously active instances of
every involved components.

e This talk describes the language with: instantiation, deallocation,
composition and its type system.
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COMPONENT LANGUAGE

SYNTAX

e Main features: instantiation, deallocation, and composition

C = a,.,z

Prog = Decls; E
Decls = =< F
A . E =

|  newx

| delx

| EE

| (E+E)
| (B E)
I {E}

e Standard BNF; overbar for Kleene closure.

Component names

Program
Declarations, x € C
Expressions
Empty
Instantiation
Deallocation
Sequential
Choice
Parallel
Scope
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COMPONE}

AN EXAMPLE PROGRAM

EXAMPLE

d=<e e<e
a— ({newd }newe || newd)deld
b— (newa + newe newd)dele;

newb

e d, e are primitive, newb is the main expression.

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrc BezeMm, Ho.



COMPONENT LANGUAGE

SMALL-STEP OPERATIONAL SEMANTICS

e Transition between configurations
e A configuration T is a binary tree of threads.

o A thread ST is a stack of pairs (M, E) of a local store M and an
expression F.

e Local store M is a multiset over component names. Each element of
M represents an instance.

VB, ST ST

ST:[ .. | ST ST
N\ /

Stack/thread Configuration

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG



COMPONENT LANGUAGE

SMALL-STEP OPERATIONAL SEMANTICS

e Terminal configuration: (M, e€).

o Define one-step transition based on patterns of branches:
ST . ST’

N Vo
AR V

e Next: define rules for ST and ST':
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COMPONENT LANGUAGE

RULES FOR PATTERNS

Rules for new and del :

(osNew) . = _
x— A € Decls
(osDel) . = :

zeM
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COMPONENT LANGUAGE

RULES FOR PATTERNS (CONT.)

Rules for choice and scope:

M,(A+ B)E M, AE
(osChoice) : =
A
M’ {A}E []7
(osPush) |:| =
M, E
(osPop) =

MARrC BEzEM, HOANG TRUONG

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE



COMPONENT LANGUAGE

RULES FOR PATTERNS (CONT.)

Rules for parallel composition:

M,(A| B)E M,E
(osParlntr) (4] 5) =

M,E
(osParElim) = -
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COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM

e Running the example program

Start [[], newb

osNew — ’[b],(newa + newe newd)dele ‘

osChoice — ’ [0], newa dele ‘ (or ’ [b], newe newd dele ‘)

(osNew) — ’[b, al,({newd }newe || newd)deld dele ‘

a— ({newd }newe || newd)deld

b— (newa + newe newd)dele;
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COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM (CONT.)

’[b,a],({newd}newe | newd)deld dele ‘

’[],{newd}newe ‘
(

(osParlntr) — ’[b, al, deld dele ‘ i ;
, new

[],{newd }newe

(osNew) — ’[b, al, deld dele ‘ (

[], newe ||[], newd

(osPush) — ’[b, al, deld dele ‘ (

d—<e¢ e—<ce
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COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM (CONT.)

(osParElim) — ’ [b,a,d], deld dele ‘g’ [], newe H [d],e‘

(osNew) —

[b,a], deld dele ‘ (

(osPop) — ’ [b,a,d], deld dele ‘;’ [], newe ‘

(osNew

[b,a,d], deld dele ‘/—’ [e],e‘

—
(osParElim) —

[b,a,d,e], deld dele ‘

(osDel) — | [b,a, €], dele

)
)
)
)
)
)

(osDel) — | [b,a], € (terminal)

What is the maximum number of instances of each component in all
possible states?
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TYPE SYSTEM

TYPE SYSTEM GOALS

Goals of the type system:

Find the maximum number of simultaneously active instances for
every components,

Ensure the safety of deallocation primitive del (cannot delete a
nonexistent instance),

Rule out recursion or mutual recursion in declarations,

Be compositional (type of an expression can be computed from types
of its subexpressions),

Be decidable.
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TYPE SYSTEM

e Types are tuples of a multiset and two signed multisets over
component names:
X = (xt x° X1
X% multiset, X°, X! signed multisets.
e Typing judgment:
o TFE:X
where store o is a multiset over component names (for the safety of del in
E) and basis [ is a list of declarations.
e X(x): maximum number of instances of = during the execution of E,
e X°(x): maximum change in the number of instances of z after the
execution of F,

e X!(z): minimum change in the number of instances of z after the execution
of E.
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TYPE SYSTEM

TYPING RULES

e Rules for startup, new and del :
(Axiom)
(Lot e(LILID

(New)
o, A:X =z ¢ dom(lN)
ol x—< At newz (X' 4+, X°+z, X! 4+ x)

(Del)
o, A: X zedom(lN

[z],T F delx :([],[—=], [—=x])

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG



TYPE SYSTEM

TYPING RULES (CONT.)

e Sequencing two expressions A and B:

(Seq)
01,TFA:X o0o0,TFB:Y A B#e

o1U (o — X, THAB: (XU (X°+Y?), X+ Yo Xl 4+ Y1)

For safety of B, it is required that o1 + X' D 02, so AB requires
oo — X! for the safety of B in composition.
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TYPE SYSTEM

TYPING RULES (CONT.)

e Rules for choice, scope, and parallel composition:

(Choice)
o1,TFA:X o, TFBY

o1UoTH(A+ B)(XtUYi XeUuYe XNyl

(Parallel)
[,TFA:X [],TFB:Y

[L.TF (A B): (X + Y7, X0+ Y0, X +Y)

(Scope)
[, - A:X

(1T {A} (X5 (11D
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TYPE SYSTEM

TYPING RULES (CONT.)

e Weakening rules for store and basis:

(WeakenS)
o,NA:X oCoy
o1,TFA:X
(WeakenB)

o1,TFA:X o5, BY x¢dom(lN)
o1,l,t<BFA: X
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TYPING EXAMPLES

Ne Fe: ()
. [1,d= e+ newd :{[d],[d], [d]) eF€5<> Fe:()
[l.d=< et {newd}:([d],[].[]) [ld=eke:() (1)
[l,d=< e e=< el {newd}:([d],[].[])

S

We

Fe() Fe()

Wella=er ey

(1) Ne

[1,d=< €,e< et newe : {[e],[e], [e])

S d=c.e= ¢ {newdnewc :([d,c], [c], [c]) (2)
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SOUNDNESS AND TYPE INFERENCE

SOUNDNESS AND TYPE INFERENCE

e We proved the soundness using the standard technique:

e notion of well-typed configurations,
e Preservation and Progress lemmas.

e We have a polynomial type inference algorithm. (All possible runs are
exponential.)

e More info.: http://www.ii.uib.no/~hoang/
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Thank you.
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