TYPE SYSTEMS FOR RESOURCE USE OF

COMPONENT SOFTWARE

Marc Bezem Hoang Truong

Department of Informatics
University of Bergen

TYPES 2006
18-21 April, Nottingham, UK

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE

MARrC BEzEM, HOANG TRUONG

INTRODUCTION

INTRODUCTION

e We study some abstract component languages and develop type
systems that

e allow one to derive upper bounds of simultaneously active instances of
every involved components.

e This talk describes the language with: instantiation, deallocation,
composition and its type system.

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrc BEzEM, HoA

COMPONENT LANGUAGE

SYNTAX

e Main features: instantiation, deallocation, and composition

C = a,.,z

Prog = Decls; E
Decls = =< F
A . E =

| newx

| delx

| EE

| (E+E)
| (B E)
I {E}

e Standard BNF; overbar for Kleene closure.

Component names

Program
Declarations, x € C
Expressions
Empty
Instantiation
Deallocation
Sequential
Choice
Parallel
Scope

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE

MARrC BEzEM, HOANG TRUONG

COMPONE}

AN EXAMPLE PROGRAM

EXAMPLE

d=<e e<e
a— ({newd }newe || newd)deld
b— (newa + newe newd)dele;

newb

e d, e are primitive, newb is the main expression.

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrc BezeMm, Ho.

COMPONENT LANGUAGE

SMALL-STEP OPERATIONAL SEMANTICS

e Transition between configurations
e A configuration T is a binary tree of threads.

o A thread ST is a stack of pairs (M, E) of a local store M and an
expression F.

e Local store M is a multiset over component names. Each element of
M represents an instance.

VB, ST ST

ST:[.. | ST ST
N\ /

Stack/thread Configuration

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

COMPONENT LANGUAGE

SMALL-STEP OPERATIONAL SEMANTICS

e Terminal configuration: (M, e€).

o Define one-step transition based on patterns of branches:
ST . ST’

N Vo
AR V

e Next: define rules for ST and ST':

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

COMPONENT LANGUAGE

RULES FOR PATTERNS

Rules for new and del :

(osNew) . = _
x— A € Decls
(osDel) . = :

zeM

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MAaRrc BeEzeMm, HoanGg T

COMPONENT LANGUAGE

RULES FOR PATTERNS (CONT.)

Rules for choice and scope:

M,(A+ B)E M, AE
(osChoice) : =
A
M’ {A}E []7
(osPush) |:| =
M, E
(osPop) =

MARrC BEzEM, HOANG TRUONG

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE

COMPONENT LANGUAGE

RULES FOR PATTERNS (CONT.)

Rules for parallel composition:

M,(A| B)E M,E
(osParlntr) (4] 5) =

M,E
(osParElim) = -

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM

e Running the example program

Start [[], newb

osNew — ’[b],(newa + newe newd)dele ‘

osChoice — ’ [0], newa dele ‘ (or ’ [b], newe newd dele ‘)

(osNew) — ’[b, al,({newd }newe || newd)deld dele ‘

a— ({newd }newe || newd)deld

b— (newa + newe newd)dele;

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM (CONT.)

’[b,a],({newd}newe | newd)deld dele ‘

’[],{newd}newe ‘
(

(osParlntr) — ’[b, al, deld dele ‘ i ;
, new

[],{newd }newe

(osNew) — ’[b, al, deld dele ‘ (

[], newe ||[], newd

(osPush) — ’[b, al, deld dele ‘ (

d—<e¢ e—<ce

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

COMPONENT LANGUAGE

RUNNING THE EXAMPLE PROGRAM (CONT.)

(osParElim) — ’ [b,a,d], deld dele ‘g’ [], newe H [d],e‘

(osNew) —

[b,a], deld dele ‘ (

(osPop) — ’ [b,a,d], deld dele ‘;’ [], newe ‘

(osNew

[b,a,d], deld dele ‘/—’ [e],e‘

—
(osParElim) —

[b,a,d,e], deld dele ‘

(osDel) — | [b,a, €], dele

)
)
)
)
)
)

(osDel) — | [b,a], € (terminal)

What is the maximum number of instances of each component in all
possible states?

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

TYPE SYSTEM

TYPE SYSTEM GOALS

Goals of the type system:

Find the maximum number of simultaneously active instances for
every components,

Ensure the safety of deallocation primitive del (cannot delete a
nonexistent instance),

Rule out recursion or mutual recursion in declarations,

Be compositional (type of an expression can be computed from types
of its subexpressions),

Be decidable.

TyPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrc BEzEM, HoA

TYPE SYSTEM

e Types are tuples of a multiset and two signed multisets over
component names:
X = (xt x° X1
X% multiset, X°, X! signed multisets.
e Typing judgment:
o TFE:X
where store o is a multiset over component names (for the safety of del in
E) and basis [is a list of declarations.
e X(x): maximum number of instances of = during the execution of E,
e X°(x): maximum change in the number of instances of z after the
execution of F,

e X!(z): minimum change in the number of instances of z after the execution
of E.

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MAaRrc BeEzeMm, HoanGg T NG

TYPE SYSTEM

TYPING RULES

e Rules for startup, new and del :
(Axiom)
(Lot e(LILID

(New)
o, A:X =z ¢ dom(lN)
ol x—< At newz (X' 4+, X°+z, X! 4+ x)

(Del)
o, A: X zedom(lN

[z],T F delx :([],[—=], [—=x])

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

TYPE SYSTEM

TYPING RULES (CONT.)

e Sequencing two expressions A and B:

(Seq)
01,TFA:X o0o0,TFB:Y A B#e

o1U (o — X, THAB: (XU (X°+Y?), X+ Yo Xl 4+ Y1)

For safety of B, it is required that o1 + X' D 02, so AB requires
oo — X! for the safety of B in composition.

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

TYPE SYSTEM

TYPING RULES (CONT.)

e Rules for choice, scope, and parallel composition:

(Choice)
o1,TFA:X o, TFBY

o1UoTH(A+ B)(XtUYi XeUuYe XNyl

(Parallel)
[,TFA:X [],TFB:Y

[L.TF (A B): (X + Y7, X0+ Y0, X +Y)

(Scope)
[, - A:X

(1T {A} (X5 (11D

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

TYPE SYSTEM

TYPING RULES (CONT.)

e Weakening rules for store and basis:

(WeakenS)
o,NA:X oCoy
o1,TFA:X
(WeakenB)

o1,TFA:X o5, BY x¢dom(lN)
o1,l,t<BFA: X

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

TYPING EXAMPLES

Ne Fe: ()
. [1,d= e+ newd :{[d],[d], [d]) eF€5<> Fe:()
[l.d=< et {newd}:([d],[].[]) [ld=eke:() (1)
[l,d=< e e=< el {newd}:([d],[].[])

S

We

Fe() Fe()

Wella=er ey

(1) Ne

[1,d=< €,e< et newe : {[e],[e], [e])

S d=c.e= ¢ {newdnewc :([d,c], [c], [c]) (2)

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

SOUNDNESS AND TYPE INFERENCE

SOUNDNESS AND TYPE INFERENCE

e We proved the soundness using the standard technique:

e notion of well-typed configurations,
e Preservation and Progress lemmas.

e We have a polynomial type inference algorithm. (All possible runs are
exponential.)

e More info.: http://www.ii.uib.no/~hoang/

TYPE SYSTEMS FOR RESOURCE USE OF COMPONENT SOFTWARE MARrC BEzEM, HOANG TRUONG

Thank you.

TEMS FOR RESOUR OFTWARE

	Introduction
	Component Language
	Type system
	Soundness and Type Inference

