
To memory safety through proofs and beyond

Hongwei Xi

Boston University

Work partly funded by NSF grant CCR-0229480

To memory safety through proofs and beyond – p. 1

Overview of the talk

Introduction to ATS

Combining Programming with Theorem Proving

Introduction to Stateful Views

Ascribing Types to library functions in C

Conclusion

To memory safety through proofs and beyond – p. 2

ATS

ATS is a programming language with a type system rooted
in the framework Applied Type System (ATS). In ATS, a
variety of programming paradigms are supported in a
typeful manner, including:

Functional programming (available)

Imperative programming with pointers (available)

Object-oriented programming (available)

Modular programming (available)

Assembly programming (under development)

Here is the current homepage of ATS:
http://www.cs.bu.edu/˜hwxi/ATS/ATS.html

To memory safety through proofs and beyond – p. 3

Applied Type System (ATS)

ATS is a framework developed to facilitate the design
and formalization of (advanced) type systems in
support of practical programming.

The name applied type system refers to a type system
formed in ATS, which consists of two components:

static component (statics), where types are formed
and reasoned about.
dynamic component (dynamics), where programs
are constructed and evaluated.

The key salient feature of ATS: statics is completely
separate from dynamics. In particular, types cannot
depend on programs.

To memory safety through proofs and beyond – p. 4

Examples of applied type systems:

The simply-typed λ-calculus

The second-order polymorphic λ-calculus (System F)

The higher-order polymorphic λ-calculus (System Fω)

Dependent ML (DML)

The second-order polymorphic λ-calculus with guarded
recursive types (impredicative formulation)

To memory safety through proofs and beyond – p. 5

Non-examples of applied type systems:

The dependent λ-calculus (λP)

The calculus of constructions (λC)

To memory safety through proofs and beyond – p. 6

Syntax for statics

The statics is a simply typed language and a type in the
statics is referred to as a sort. We write b for a base sort
and assume the existence of two special base sorts
type and bool .

sorts σ ::= b | σ1 → σ2

c-sorts σc ::= (σ1,σn) ⇒ σ

sta. terms s ::= a | sc(s1, . . . , sn) | λa : σ.s | s1(s2)

sta. var. ctx. Σ ::= ∅ | Σ, a : σ

In practice, we also have base sorts int and addr for
integers and addresses (or locations), respectively. Let
us use B, I, L and T for static terms of sorts bool , int ,
addr and type, respectively.

To memory safety through proofs and beyond – p. 7

Some static constants

1 : () ⇒ type

true : () ⇒ bool

false : () ⇒ bool

→ : (type, type) ⇒ type

⊃ : (bool , type) ⇒ type

∧ : (bool , type) ⇒ type

≤ : (type, type) ⇒ bool (impredicative formulation)

Also, for each sort σ, we assume that the two static
constructors ∀σ and ∃σ are assigned the sc-sort
(σ → type) ⇒ type.

To memory safety through proofs and beyond – p. 8

Constraint relation

A constraint relation is of the following form:

Σ; ~B |= B

where ~B stands for a sequence of static boolean terms
(often referred to as assumptions).

To memory safety through proofs and beyond – p. 9

A Sample Constraint

The following constraint is generated when an
implementation of binary search on arrays is type-checked:

Σ; ~B |= l + (h − l)/2 + 1 ≤ sz

where

Σ = h : int , l : int , sz : int

~B = l ≥ 0, sz ≥ 0, 0 ≤ h + 1, h + 1 ≤ sz , 0 ≤ l, l ≤ sz , h ≥ l

We may employ linear integer programming to solve such a
constraint.

To memory safety through proofs and beyond – p. 10

Some (unfamiliar) forms of types

Asserting type: B ∧ T

Guarded type: B ⊃ T

Here is an example involving both guarded and asserting
types:

∀a : int . a ≥ 0 ⊃ (int(a) → ∃a′ : int . (a′ < 0) ∧ int(a′))

This type can be assigned to a function from nonnegative
integers to negative integers. As a probably more
interesting example, the usual run-time assertion function
can be given the following type:

∀a : bool . bool(a) → (a = true) ∧ 1

To memory safety through proofs and beyond – p. 11

Syntax for dynamics

dyn. terms d ::= x | dc(d1, . . . , dn) |

lam x.d | app(d1, d2) |

⊃+ (v) | ⊃− (d) |

∀+(v) | ∀−(d) |

∧(d) | let ∧ (x) = d1 in d2 |

∃(d) | let ∃(x) = d1 in d2

values v ::= x | dcc(v1, . . . , vn) | lam x.d |

⊃+ (v) | ∀+(v) | ∧(v) | ∃(v)

dyn. var. ctx. ∆ ::= ∅ | ∆, x : s

To memory safety through proofs and beyond – p. 12

Typing judgment

A typing judgment is of the following form:

Σ; ~B; ∆ ` d : T

where
Σ : static variable context
~B : assumption set
∆ : dynamic variable context
d : dynamic term
T : type

To memory safety through proofs and beyond – p. 13

The subtyping rule

We have the following subtyping rule:

Σ; ~B; ∆ ` d : T Σ; ~B |= T ≤ T ′

Σ; ~B; ∆ ` d : T ′

To memory safety through proofs and beyond – p. 14

A datatype declaration in ATS

datatype list (type, int) =
| {a:type} nil (a, 0)
| {a:type, n:int | n >= 0}

cons (a, n+1) of (a, list (a, n))

The concrete syntax means the following:

nil : ∀a : type. list(a, 0)

cons : ∀a : type.∀n : int .

n ≥ 0 ⊃ ((a, list(a, n)) ⇒ list(a, n + 1))

To memory safety through proofs and beyond – p. 15

A function declaration in ATS

fun append {a:type, m:nat, n:nat}
(xs: list (a, m), ys: list (a, n))

: list (a, m+n) =
case xs of

| nil () => ys
| cons (x, xs) =>

cons (x, append (xs, ys))

The concrete syntax means that the function append is
assigned the following type:

∀a : type.∀m : nat .∀n : nat .

(list(a,m), list(a, n)) → list(a,m + n)

To memory safety through proofs and beyond – p. 16

Overview of the rest of the talk

Combining Programming with Theorem Proving

Introduction to Stateful Views

Ascribing Types to library functions in C

Conclusion

To memory safety through proofs and beyond – p. 17

Another function declaration in ATS

fun concat {a:type, m:nat, n:nat}
(xss: list (list (a, m), n))

: list (a, m*n) = // m*n is non-linear
case xss of

| nil () => nil
| cons (xs, xss) =>

append (xs, concat xss)

Unfortunately, this code currently cannot pass
type-checking in ATS because non-linear constraints on
integers are involved.

To memory safety through proofs and beyond – p. 18

Programming with theorem proving

We introduce a new sort prop into the statics and use P
for static terms of sort prop, which are often referred to
as props.

A prop is like a type, which is intended to be assigned to
special dynamic terms that we refer to as proof terms.

A proof term is required to be pure and total, and it is to
be erased before program execution. In particular, we
do not extract programs out of proofs. Consequently,
we can and do construct classical proofs.

To memory safety through proofs and beyond – p. 19

A dataprop declaration in ATS

dataprop MUL (int, int, int) =
| {n:int} MULbas (0, n, 0)
| {m:nat, n:int, p:int}

MULind (m+1, n, p+n) of MUL (m, n, p)
| {m:pos, n:int, p:int}

MULneg (˜m, n, ˜p) of MUL (m, n, p)

The concrete syntax captures the following definition:

0 ∗ n = 0

(m + 1) ∗ n = m ∗ n + n

(−m) ∗ n = −(m ∗ n)

To memory safety through proofs and beyond – p. 20

A proof function declaration in ATS

prfun aLemma {m:nat, n:nat, p:int} .<m>.
(pf: MUL (m, n, p)): [p >= 0] prunit =

case* pf of
| MULbas () => ’()
| MULind pf’ =>

let prval _ = aLemma pf’ in ’() end

The proof function establishes:

∀m : nat .∀n : int .∀p : int . MUL(m,n, p) → (p ≥ n) ∧ 1

We need to verify that lemma is a total function:

〈m〉 is a termination metric.

case? requires pattern matching to be exhaustive.
To memory safety through proofs and beyond – p. 21

An example of programming with theorem proving

fun concat {a:type, m:nat, n:nat}
(xss: list (list (a, n), m))

: [p:nat] ’(MUL (m, n, p) | list (a, p)) =
case xss of

| nil () => ’(MULbas | nil)
| cons (xs, xss) =>

let val ’(pf | res) = concat xss in
’(MULind pf | append (xs, res))

end

Remark Proofs are completely erased before program
execution. In other words, there is no proof construction at
run-time.

To memory safety through proofs and beyond – p. 22

Overview of the rest of the talk

Introduction to Stateful Views

Ascribing Types to library functions in C

Conclusion

To memory safety through proofs and beyond – p. 23

Stateful views

A stateful view is a linear prop (not a linear type).

Given a type T and an address L, T@L is a primitive
stateful view meaning that a value of the type T is
stored at the location L.

Given two stateful views V1 and V2, we use V1 ⊗ V2 for a
stateful view that joins V1 and V2 together.

We also provide a means for forming recursive stateful
views.

To memory safety through proofs and beyond – p. 24

A dataview declaration in ATS

dataview array_v (type, int, addr) =
| {a:type, l:addr}

ArrayNone (a, 0, l)
| {a:type, l:addr}

ArraySome (a, n+1, l) of
(a @ l, array_v (a, n, l+1))

The concrete syntax means the following:

ArrayNone : ∀a : type.∀l : addr. array_v(a, 0, l)

ArraySome : ∀a : type.∀n : nat .∀l : addr.

(a@l, array_v(a, n, l + 1)) →

array_v(a, n + 1, l)

To memory safety through proofs and beyond – p. 25

Some built-in functions

dynval getPtr : // read from a pointer
{a:type, l:addr} (a@l | ptr l) -> (a@l | a)

dynval setPtr : // write to a pointer
{a1:type, a2:type, l:addr}

(a1@l | ptr l, a2) -> (a2@l | unit)

getPtr : ∀a : type.∀l : addr . (a@l | ptr(l)) → (a@l | a)

setPtr : ∀a1 : type.∀a2 : type.∀l : addr .

(a1@l | ptr(l), a2) → (a2@l | 1)

To memory safety through proofs and beyond – p. 26

Viewtypes

A viewtype is a linear type.

viewtypes VT := T | (V | VT)

The intuition is that the construction of values of viewtypes
may consume resources.

To memory safety through proofs and beyond – p. 27

Accessing the first element of an array

fun getFirst {a:type, n:int, l:addr | n > 0}
(pf: array_v (a, n, l) | p: ptr l)

: ’(array_v (a, n, l) | a) =
let

prval ArraySome (pf1, pf2) = pf
val ’(pf1 | x) = getPtr (pf1 | p)

in
’(ArraySome (pf1, pf2) | x)

end

getF irst : ∀a : type.∀n : int .∀l : addr .n > 0 ⊃

(array_v(a, n, l) | ptr(l)) → (array_v(a, n, l) | a)

To memory safety through proofs and beyond – p. 28

A proof function for view change (1)

Lemma (Takeout) Assume array_v(T, I0, L) for some
T, I0, L. If I1 is an integer satisfying 0 ≤ I1 < I0, then we
have T@L + I1 and T@L + I1

� array_v(T, I, L).

Proof: We proceed by induction on I1.

I1 = 0. . . .

I1 > 0. Clearly, I0 > 0 holds. So we have T@L and
array_v(T, I0 − 1, L + 1). By induction hypothesis, we
have T@L + 1 + (I1 − 1), which is T@L + I1, and
T@L + I1

� array_v(T, I0 − 1, L + 1), which yields
T@L + I1

� array_v(T, I0, L + 1) when combined with
T@L.

To memory safety through proofs and beyond – p. 29

A proof function for view change (2)

prfun takeOutLemma
{a:type, n:int, i:nat, l:addr | i < n} .<i>.

(pf: array_v (a, n, l))
: ’(a @ l+i, a @ l+i -o array_v (a, n, l)) =

let
prval ArraySome (pf1, pf2) = pf

in
sif i > 0 then

let
prval ’(pf21, pf22) = // induction hypothesis

takeOutLemma {a, n-1, i-1, l+1} (pf2)
in

’(pf21, llam pf21 => ArraySome(pf1, pf22 pf21))
end

else ’(pf1, llam pf1 => ArraySome (pf1, pf2))
end

To memory safety through proofs and beyond – p. 30

Subscripting an array

// implementing array subscription
fun get {a:type, n:int, i:nat, l:addr | i < n}

(pf: array_v (a, n, l) | p: ptr l, i: int i)
: ’(array_v (a, n, l) | a) =

let
prval ’(pf1, pf2) = takeOutLemma {a, n, i, l} (pf)

val ’(pf1 | x) = getPtr (pf1 | p padd i)
in

’(pf2 pf1 | x)
end

To memory safety through proofs and beyond – p. 31

Overview of the talk

Ascribing ATS Types to library functions in C

Conclusion

To memory safety through proofs and beyond – p. 32

Ascribing types to C library functions

By ascribing types in ATS to C library functions, we expect
to facilitate safer and securer programming with these
functions in ATS.

To memory safety through proofs and beyond – p. 33

Ascribing types to malloc and free (1)

The view byte_arr_v(I, L) means that there are I
consecutive bytes of memory available that starts at the
address L.

free :
{n:nat,l:addr}

(byte_arr_v (n, l) | ptr l) -> unit

malloc :
{n:nat} int n ->

[l:addr] (byte_arr_v (n, l) | ptr l)

To memory safety through proofs and beyond – p. 34

Ascribing types to malloc and free (2)

The view free_v(I, L) is abstract. Intutitively, it means that
the I consecutive bytes of memory starting at address L
can be freed if they are available.

free :
{n:nat,l:addr}

(free_v(n,l), byte_arr_v (n,l) |
ptr l) -> unit

malloc :
{n:nat} int n ->

[l:addr]
’(free_v(n,l), byte_arr_v(n,l) | ptr l)

To memory safety through proofs and beyond – p. 35

Ascribing types to malloc and free (3)

dataview malloc_v (int, addr) =
| {n:nat} malloc_v_fail (n, null)
| {n:nat, l:addr | l <> null}

malloc_v_succ (n, l) of
(free_v (n, l), byte_arr_v (n, l))

Given an integer I and an address L, a proof of the view
malloc_v(I, L) can be turned into a proof of the empty view
if L is the null pointer, or it can be turned two proofs of the
views free_v(I, L) and byte_arr_v(I, L), respectively, if L is
not the null pointer.

malloc : {n:nat} int n ->
[l:addr] ’(malloc_v (n, l) | ptr l)

To memory safety through proofs and beyond – p. 36

Ascribing types to malloc and free (4)

fun malloc_exn {n:nat} (n: int n)
: [l:addr]

’(free_v (n,l), byte_arr_v (n,l) |
ptr l) =

let val ’(pf | p) = malloc (n) in
if p <> null then let

prval malloc_v_succ (pf1, pf2) = pf
in

’(pf1, pf2 | p)
end else let

prval malloc_v_fail () = pf
in

raise MemoryAllocException ()
end

end
To memory safety through proofs and beyond – p. 37

Ascribing types to fopen and fclose (1)

Here are the types of fopen and fclose in C:

FILE *fopen(char *path, char *mode);

int fclose(FILE *stream);

To memory safety through proofs and beyond – p. 38

Ascribing types to fopen and fclose (2)

absview FILE_v (addr)
typedef FILE = [l:addr] ’(FILE_v l | ptr l)

dataview fopen_v (addr) =
| fopen_v_fail (null)
| {l:addr | l <> null}

fopen_v_succ (l) of FILE_v l

fopen : (String, String) ->
[l:addr] ’(fopen_v l | ptr l)

fclose : {l:addr} (FILE_v l | ptr l) -> Int

To memory safety through proofs and beyond – p. 39

Can we also handlefcloseall?

Yes, we can, but it is a long story ...

To memory safety through proofs and beyond – p. 40

Related work

Here is only a fraction:

Theorem proving systems: NuPrl, Coq, Isabelle/HOL,
PVS, ...

(Meta) Logical Frameworks: Twelf, ...

Dependently Typed Functional Langauges: Cayenne,
Dependent ML, Delphin, Epigram, Omega, Vera, ...

Alias types, Separation logic, ...

Vault, Effective theory of refinements, L3, ...

To memory safety through proofs and beyond – p. 41

Conclusion and future directions

A design is outlined to support programming with
theorem proving. In particular, we have shown how this
design can be used to guarantee memory safety in the
presence of pointers and pointer arithmetic.

This design is carried out in the programming language
ATS, which is freely available to the public.

It is clearly desirable to formally support reasoning on
properties such as deadlocks and race conditions. After
all, multi-threaded programming is simply indispensable
in general software practice.

To memory safety through proofs and beyond – p. 42

	em Overview of the talk
	em ATS
	em Applied Type System ($ATS $)
	em Examples of applied type systems:
	em Non-examples of applied type systems:
	{em Syntax for statics}
	em Some static constants
	em Constraint relation
	em A Sample Constraint
	em Some (unfamiliar)
forms of types
	em Syntax for dynamics
	em Typing judgment
	em The subtyping rule
	em A datatype declaration in ATS
	em A function declaration in ATS
	em Overview of the rest of the talk
	em Another function declaration in ATS
	em Programming with theorem proving
	em A dataprop declaration in ATS
	em A proof function declaration in ATS
	em �ontsize {16}{16}selectfont An example of programming with theorem proving
	em Overview of the rest of the talk
	em Stateful views
	em A dataview declaration in ATS
	em Some built-in functions
	em Viewtypes
	em Accessing the first element of an array
	em A proof function for view change (1)
	em A proof function for view change (2)
	em Subscripting an array
	em Overview of the talk
	em Ascribing types to C library functions
	em Ascribing types to malloc and free (1)
	em Ascribing types to malloc and free (2)
	em Ascribing types to malloc and free (3)
	em Ascribing types to malloc and free (4)
	em Ascribing types to fopen and fclose (1)
	em Ascribing types to fopen and fclose (2)
	em Can we also handle $�fcloseall $?
	em Related work
	em Conclusion and future directions

