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Two views of the work

1. Study of the relationship between natural deduction and sequent

calculus.

2. Study of extensions of λ-calculus and of ways to extend

Curry-Howard to sequent calculus.
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Ground ideas

1. Folklore view regards β-normal deductions as counterparts to

cut-free derivations.

2. Various works refine this view isolating classes of cut-free

derivations in 1-1 correspondence to β-normal deductions.

3. Permutation of logical inferences account for redundancy of

sequent calculus as compared to natural deduction.
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Works in the area

cuts
permutations

(logical inferences)
term calculus

Kleene, 1952 no yes no

Zucker, 1974 yes yes no

Pottinger, 1977 yes yes yes

Herbelin, 1994 yes no yes

Mints, 1994 no yes no

Dyckhoff&Pinto, 1997 no yes yes

Schwichtenberg, 1999 no yes yes

Esṕırito Santo&Pinto, 2003 yes yes yes

4



The generalised multiary λ-calculus λJm and other works
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λJm: the generalised multiary λ-calculus

Expressions t, u, v ::= x | λx.t | t(u, l, (x)v)
︸ ︷︷ ︸

gm-application

l ::= [] | u :: l

Sequents Γ` t :A Γ;B` l :C

Typing rules
x :A, Γ`x :A

Axiom
x :A, Γ` t :B

Γ`λx.t :A ⊃ B
Right

Γ` t :A ⊃ B Γ`u :A Γ;B` l :C x :C, Γ`v :D

Γ` t(u, l, (x)v) :D
gm − Elim

Γ;C` [] :C
Ax

Γ`u :A Γ;B` l :C

Γ;A ⊃ B`u :: l :C
Lft

Remark: In Γ;B` l :C, i) B is “main and linear” and
ii) B = B1 ⊃ ... ⊃ Bk ⊃ C, for some k ≥ 0.
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Reduction rules

(λx.t)(u, [], (y)v) →β1
s(s(u, x, t), y, v)

(λx.t)(u, v :: l, (y)v) →β2
s(u, x, t)(v, l, (y)v)

t(u, l, (x)v)(u′, l′, (y)v′) →π t(u, l, (x)v(u′, l′, (y)v′))

• s stands for gm-substitution

• β = β1 ∪ β2

βπ-normal forms: t, u, v ::= x | λx.t | x(u, l, (y)v)

l ::= u :: l | []

Result: →βπ is confluent and SN for typable terms.
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Some definitions

(1) Particular cases of gm-application t(u, l, (x)v):

expression abbreviation subsystem

generalised application t(u, [], (x)v) t(u, (x)v) λJ

multiary application t(u, l, (x)x) t(u, l) λm

simple application t(u, [], (x)x) t(u) λ

(2) v is x-normal if v = x or v = x(u, l, (y)v′) v′ is y-normal and x 6∈ u, l, v′.

Example: x(u0, l0, (y)y(u1, l1, (z)z)) is x-normal

iff x, y 6∈ u0, l0, u1, l1
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Classes of gm-applications

V(u1, l1, (y1)v1) . . . (un, ln, (yn)vn) V = x or V = λx.t

x(u1, l1, (y1)v1) . . . (un, ln, (yn)vn) vi is yi-normal

x(u1, l1) . . . (un, ln) x(u1, (y1)v1) . . . (un, (yn)vn) vi is yi-normal

x(u, l) x(u, (y)v) v is y-normal

x(u1)...(un)
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Overlaps and permutations

Three ways of expressing multiple application: (1) multiary application.

(2) normal generality. (3) iterated application.

t(u, append(l, u′ :: l′), (y)v)
�

µ

ν
- t(u, l, (x)x(u′, l′, (y)v))

proviso:

x /∈ u′, l′, v

t(u, l, (x)x)(u
′
, l

′
, (y)v)

�

rq

-

Other rules:

(h) t(u, l, (x)x)(u′, l′, (y)v) →h t(u,append(l, u′ :: l′), (y)v)

(s) t(u, l, (x)v) →s s(t(u, l), x, v) if v 6= x

(r) t(u, l, (x)v) →r s(t(u, l), x, v) if v is x-main-linear-appl.

(r′) t(u, l, (x)v) →r′ s(t(u, l), x, v) if v 6= x & is not x-main-linear-appl.

Remarks: q ⊆ h−1; r ⊆ π−1; r ∪ r′ = s;
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Combining reduction and permutation
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Combined normal forms

t
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q
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Cm ⊇ Herbelin-nfs
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A1 = βr′-nfs

A2 = βrr′-nfs

A3 = βr′q-nfs

B = βrr′q-nfs
= β-normal λ-terms

C = cut-free (unary)
sequent terms

Cm = cut-free multiary
sequent terms

Some results:

(1) →βrr′ , →βrr′q, →βrr′h are confluent

(2) →βrr′ , →βr′q, →βr′h are SN for typable terms

(3) q and h postpone over β and s = rr′
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Final remarks

1. λJm is a handy tool for systematic studies in structural proof

theory.

2. Permutations capture overlaps between constructors of λJm and

are related to alternative ways of expressing multiple application.

3. Future work includes:

(a) the missing confluence and termination results;

(b) postponement of those rules related to organization of

multiple application (two-stages computation);

(c) a new classification of rules (β, r′ vs q, r, π, h, µ, ν).
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