Combined normal forms in sequent calculus

J. Espírito Santo, M.J. Frade, L. Pinto

Universidade do Minho Braga, Portugal

TYPES '06

Nottingham, 18-21 April 2006

Two views of the work

- 1. Study of the relationship between natural deduction and sequent calculus.
- 2. Study of extensions of λ -calculus and of ways to extend Curry-Howard to sequent calculus.

GROUND IDEAS

- 1. Folklore view regards β -normal deductions as counterparts to cut-free derivations.
- 2. Various works refine this view isolating classes of cut-free derivations in 1-1 correspondence to β -normal deductions.
- 3. Permutation of logical inferences account for redundancy of sequent calculus as compared to natural deduction.

WORKS IN THE AREA

	cuts	permutations (logical inferences)	term calculus
Kleene, 1952	no	yes	no
Zucker, 1974	yes	yes	no
Pottinger, 1977	yes	yes	yes
Herbelin, 1994	yes	no	yes
Mints, 1994	no	yes	no
Dyckhoff&Pinto, 1997	no	yes	yes
Schwichtenberg, 1999	no	yes	yes
Espírito Santo&Pinto, 2003	yes	yes	yes

The generalised multiary λ -calculus λJm and other works

$\lambda \mathbf{Jm}$: The generalised multiary λ -calculus

Expressions	$t, u, v ::= x \mid \lambda x.t \mid \underline{t(u, l, (x)v)}$
	gm- $application$
	l ::= [] u :: l
Sequents	$\Gamma \vdash t : A \qquad \Gamma; B \vdash l : C$
Typing rule	$ \frac{S}{x:A, \Gamma \vdash x:A} Axiom \frac{x:A, \Gamma \vdash t:B}{\Gamma \vdash \lambda x.t:A \supset B} Right $
$\Gamma \vdash t : A$	$A \supset B \qquad \Gamma \vdash u : A \Gamma; B \vdash l : C x : C, \Gamma \vdash v : D \qquad \text{and} \qquad Flive$
	$\Gamma \vdash t(u, l, (x)v) : D$
	$\frac{\Gamma \vdash u : A \Gamma; B \vdash l : C}{\Gamma; A \supset B \vdash u :: l : C} Lft$

<u>Remark:</u> In $\Gamma; B \vdash l:C$, i) *B* is "main and linear" and ii) $B = B_1 \supset ... \supset B_k \supset C$, for some $k \ge 0$.

REDUCTION RULES

$$\begin{aligned} &(\lambda x.t)(u,[],(y)v) &\to_{\beta_1} \quad \mathbf{s}(\mathbf{s}(u,x,t),y,v) \\ &(\lambda x.t)(u,v::l,(y)v) &\to_{\beta_2} \quad \mathbf{s}(u,x,t)(v,l,(y)v) \\ &t(u,l,(x)v)(u',l',(y)v') &\to_{\pi} \quad t(u,l,(x)v(u',l',(y)v')) \end{aligned}$$

- s stands for gm-substitution
- $\beta = \beta_1 \cup \beta_2$

 $\begin{array}{rcl} \underline{\beta\pi}\text{-normal forms:} & t, u, v & ::= & x \mid \lambda x.t \mid x(u, l, (y)v) \\ & l & ::= & u :: l \mid [] \end{array}$

<u>Result:</u> $\rightarrow_{\beta\pi}$ is confluent and SN for typable terms.

Some definitions

(1) Particular cases of gm-application t(u, l, (x)v):

	expression	abbreviation	subsystem
generalised application	t(u, [], (x)v)	t(u,(x)v)	$\lambda {f J}$
multiary application	t(u, l, (x)x)	t(u,l)	$\lambda {f m}$
simple application	t(u, [], (x)x)	t(u)	λ

(2) v is x-normal if v = x or v = x(u, l, (y)v') v' is y-normal and $x \notin u, l, v'$.

Example:
$$x(u_0, l_0, (y)y(u_1, l_1, (z)z))$$
 is x-normal
iff $x, y \notin u_0, l_0, u_1, l_1$

CLASSES OF GM-APPLICATIONS

OVERLAPS AND PERMUTATIONS

Three ways of expressing multiple application: (1) multiary application. (2) **normal** generality. (3) iterated application.

Other rules:

(h)
$$t(u,l,(x)x)(u',l',(y)v) \rightarrow_h t(u, \operatorname{append}(l,u'::l'),(y)v)$$

(s)
$$t(u,l,(x)v) \rightarrow_s \mathbf{s}(t(u,l),x,v) \text{ if } v \neq x$$

(r)
$$t(u,l,(x)v) \rightarrow_r \mathbf{s}(t(u,l),x,v)$$
 if v is x-main-linear-appl.

(r') $t(u,l,(x)v) \rightarrow_{r'} \mathbf{s}(t(u,l),x,v)$ if $v \neq x \&$ is not x-main-linear-appl.

<u>Remarks</u>: $q \subseteq h^{-1}$; $r \subseteq \pi^{-1}$; $r \cup r' = s$;

COMBINING REDUCTION AND PERMUTATION

A 1	=	eta r' -nts
$\mathbf{A2}$	=	eta rr'-nfs
A3	=	eta r'q-nfs
В	=	eta rr'q-nfs eta -normal λ -terms
С	=	cut-free (unary) sequent terms
\mathbf{Cm}	=	cut-free multiary sequent terms

<u>Some results</u>:

- (1) $\rightarrow_{\beta rr'}, \rightarrow_{\beta rr'q}, \rightarrow_{\beta rr'h}$ are confluent
- (2) $\rightarrow_{\beta rr'}, \rightarrow_{\beta r'q}, \rightarrow_{\beta r'h}$ are SN for typable terms
- (3) q and h postpone over β and s = rr'

Final remarks

- 1. $\lambda \mathbf{Jm}$ is a handy tool for systematic studies in structural proof theory.
- 2. Permutations capture overlaps between constructors of $\lambda \mathbf{Jm}$ and are related to alternative ways of expressing multiple application.
- 3. Future work includes:
 - (a) the missing confluence and termination results;
 - (b) postponement of those rules related to organization of multiple application (two-stages computation);
 - (c) a new classification of rules $(\beta, r' \text{ vs } q, r, \pi, h, \mu, \nu)$.