Combined normal forms in sequent calculus

J. Espírito Santo, M.J. Frade, L. Pinto
Universidade do Minho
Braga, Portugal

TYPES '06

Nottingham, 18-21 April 2006

Two views of the work

1. Study of the relationship between natural deduction and sequent calculus.
2. Study of extensions of λ-calculus and of ways to extend Curry-Howard to sequent calculus.

Ground IDEAS

1. Folklore view regards β-normal deductions as counterparts to cut-free derivations.
2. Various works refine this view isolating classes of cut-free derivations in 1-1 correspondence to β-normal deductions.
3. Permutation of logical inferences account for redundancy of sequent calculus as compared to natural deduction.

WORKS IN THE AREA

cuts permutations
term calculus
(logical inferences)

Kleene, 1952	no	yes	no
Zucker, 1974	yes	yes	no
Pottinger, 1977	yes	yes	yes
Herbelin, 1994	yes	no	yes
Mints, 1994	no	yes	no
Dyckhoff\&Pinto, 1997	no	yes	yes
Schwichtenberg, 1999	yes	yes	yes
Espírito Santo\&Pinto, 2003	yes	yes	

The Generalised multiary λ-CALCULUS $\lambda \mathbf{J m}$ AND OTHER WORKS

$\mathbf{C m}=$ cut-free multiary
$\mathbf{C}=$ cut-free (unary)
sequent terms
$\mathbf{B}=\beta$-normal λ-terms

$\lambda \mathbf{J m}$: THE GENERALISED MULTIARY λ-CALCULUS

$\underline{\text { Expressions }} \quad t, u, v \quad::=x|\lambda x . t| \underbrace{t(u, l,(x) v)}_{\text {gm-application }}$

$$
l::=\quad[] \mid u:: l
$$

Sequents $\quad \Gamma \vdash t: A \quad \Gamma ; B \vdash l: C$
$\underline{\text { Typing rules }} \overline{x: A, \Gamma \vdash x: A}$ Axiom $\frac{x: A, \Gamma \vdash t: B}{\Gamma \vdash \lambda x . t: A \supset B}$ Right

$$
\begin{gathered}
\frac{\Gamma \vdash t: A \supset B}{} \begin{array}{r}
\Gamma \vdash u: A \quad \Gamma ; B \vdash l: C \quad x: C, \Gamma \vdash v: D \\
\Gamma \vdash t(u, l,(x) v): D \\
\\
\frac{\Gamma ; C \vdash[]: C}{} A x
\end{array} \frac{\Gamma \vdash u: A \quad \Gamma ; B \vdash l: C}{\Gamma ; A \supset B \vdash u:: l: C} L f t
\end{gathered}
$$

Remark: In $\Gamma ; B \vdash l: C, \quad$ i) B is "main and linear" and
ii) $B=B_{1} \supset \ldots \supset B_{k} \supset C$, for some $k \geq 0$.

Reduction RUlES

$$
\begin{array}{rll}
(\lambda x . t)(u,[],(y) v) & \rightarrow_{\beta_{1}} & \mathbf{s}(\mathbf{s}(u, x, t), y, v) \\
(\lambda x . t)(u, v:: l,(y) v) & \rightarrow_{\beta_{2}} & \mathbf{s}(u, x, t)(v, l,(y) v) \\
t(u, l,(x) v)\left(u^{\prime}, l^{\prime},(y) v^{\prime}\right) & \rightarrow_{\pi} & t\left(u, l,(x) v\left(u^{\prime}, l^{\prime},(y) v^{\prime}\right)\right)
\end{array}
$$

- s stands for gm-substitution
- $\beta=\beta_{1} \cup \beta_{2}$
$\begin{array}{lll}\beta \pi \text {-normal forms: } \quad t, u, v & :: & =x|\lambda x . t| x(u, l,(y) v) \\ l & ::= & u:: l \mid[]\end{array}$
Result: $\rightarrow_{\beta \pi}$ is confluent and SN for typable terms.

Some Definitions

(1) Particular cases of gm-application $t(u, l,(x) v)$:

	expression	abbreviation	subsystem
generalised application	$t(u,[],(x) v)$	$t(u,(x) v)$	$\lambda \mathbf{J}$
multiary application	$t(u, l,(x) x)$	$t(u, l)$	$\lambda \mathbf{m}$
simple application	$t(u,[],(x) x)$	$t(u)$	λ

(2) v is x-normal if $v=x$ or $v=x\left(u, l,(y) v^{\prime}\right) v^{\prime}$ is y-normal and $x \notin u, l, v^{\prime}$.

Example: $\quad x\left(u_{0}, l_{0},(y) y\left(u_{1}, l_{1},(z) z\right)\right) \quad$ is x-normal iff $x, y \notin u_{0}, l_{0}, u_{1}, l_{1}$

CLASSES OF GM-APPLICATIONS

Overlaps And PERMUTATIONS

Three ways of expressing multiple application: (1) multiary application.
(2) normal generality. (3) iterated application.

Other rules:
(h) $t(u, l,(x) x)\left(u^{\prime}, l^{\prime},(y) v\right) \quad \rightarrow_{h} \quad t\left(u, \operatorname{append}\left(l, u^{\prime}:: l^{\prime}\right),(y) v\right)$
$(s) \quad t(u, l,(x) v) \quad \rightarrow_{s} \quad \mathbf{s}(t(u, l), x, v) \quad$ if $v \neq x$
$(r) \quad t(u, l,(x) v) \rightarrow_{r} \mathbf{s}(t(u, l), x, v) \quad$ if v is x-main-linear-appl.
$\left(r^{\prime}\right) \quad t(u, l,(x) v) \rightarrow_{r^{\prime}} \quad \mathbf{s}(t(u, l), x, v) \quad$ if $v \neq x \&$ is not x-main-linear-appl.
$\underline{\text { Remarks: }} \quad q \subseteq h^{-1} ; \quad r \subseteq \pi^{-1} ; \quad r \cup r^{\prime}=s ;$

COMBINING REDUCTION AND PERMUTATION

$$
\begin{array}{ll}
\text { A1 } & =\beta r^{\prime}-\mathrm{nfs} \\
\mathbf{A 2} & =\beta r r^{\prime}-\mathrm{nfs} \\
\mathbf{A 3} & =\beta r^{\prime} q \text {-nfs } \\
\mathbf{B} & =\beta r r^{\prime} q \text {-nfs } \\
& =\beta \text {-normal } \lambda \text {-terms } \\
\mathbf{C} & =\begin{array}{l}
\text { cut-free (unary) } \\
\text { sequent terms }
\end{array}
\end{array}
$$

$\mathbf{C m}=$ cut-free multiary sequent terms

Some results:
(1) $\rightarrow_{\beta r r^{\prime}}, \rightarrow_{\beta r r^{\prime} q}, \rightarrow_{\beta r r^{\prime} h}$ are confluent
(2) $\rightarrow_{\beta r r^{\prime}}, \rightarrow_{\beta r^{\prime} q}, \rightarrow_{\beta r^{\prime} h}$ are SN for typable terms
(3) q and h postpone over β and $s=r r^{\prime}$

Final remarks

1. $\lambda \mathbf{J m}$ is a handy tool for systematic studies in structural proof theory.
2. Permutations capture overlaps between constructors of $\lambda \mathbf{J m}$ and are related to alternative ways of expressing multiple application.
3. Future work includes:
(a) the missing confluence and termination results;
(b) postponement of those rules related to organization of multiple application (two-stages computation);
(c) a new classification of rules $\left(\beta, r^{\prime}\right.$ vs $\left.q, r, \pi, h, \mu, \nu\right)$.
