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Abstract

Truly nested datatypes are families of datatypes that are
indexed over all types such that the constructors relate
different family members (unlike the homogeneous lists).
Moreover, even the family name is involved in the expression
that gives the index the argument type of the constructor
refers to. Although these families are not directly definable in
Coq, there are systems of rewrite rules that are known to yield
only terminating functions and that provide the means of
iterating over elements of these families. However, there do
not seem to exist genuine induction principles (the
dependently-typed versions of recursors and not just iterators).
A way out (that is surprisingly close to the TYPES ’03 talk of
P. Aczel) will be shown and illustrated with examples that
have been fully formalized in Coq.
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Relating different family members

Coq < Inductive List (A:Set) : Set :=
Coq < | nil : List A
Coq < | cons : A -> List A -> List A.
List is defined
List rect is defined
List ind is defined
List rec is defined

Coq < Fixpoint map (A B:Set)(f:A->B)(l:List A){struct l}
Coq < :List B :=
Coq < match l with
Coq < | nil => nil
Coq < | cons a l’=> cons (f a) (map f l’) end.

Coq < Check map.
map

: forall A B : Set, (A -> B) -> List A -> List B
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powerlists

Coq < Inductive PList : Set->Type:=
Coq < | zero : forall A:Set, A -> PList A
Coq < | succ : forall A:Set, PList (A * A)%type -> PList A.

Note the target type Type which is required with predicative Set.

Coq < Definition myPList : PList nat :=
Coq < succ (succ (succ (zero (((1,2),(3,4)),((5,6),(7,8)))))).

Clearly, every inhabitant of PList A contains 2n elements of A for
some (unspecified) n.
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powerlists into lists

Coq < Fixpoint unzip (A:Set)(l:List (A*A)){struct l}:List A:=
Coq < match l return List A with
Coq < | nil => nil
Coq < | cons (a1,a2) l’ => cons a1 (cons a2 (unzip l’))
Coq < end.

Coq < Fixpoint PListToList(A:Set)(l:PList A){struct l}:List A:=
Coq < match l in PList A return List A with
Coq < | zero a => cons a (nil )
Coq < | succ l’ => unzip (PListToList l’)
Coq < end.

Eval compute in (PListToList myPList). gives the
list of elements 1, . . . , 8.
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programming is more demanding: summing up a powerlist

We want a function sumPList : PList nat -> nat that sums
up the elements. First specify:

Coq < Fixpoint sumList (l:List nat) : nat :=
Coq < match l with nil => 0
Coq < | cons n l’ => n + sumList l’ end.

Coq < Definition sumPListSpec := forall (l:PList nat),
Coq < sumPList l = sumList (PListToList l).

This is an algorithm, but we may do deforestation to it.
Problem:

sumPList (succ l) :=?? for l:PList(nat*nat).
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solution

Define a more general function:

Coq < Fixpoint sumPList’ (A:Set)(l:PList A){struct l}
Coq < : (A->nat)->nat :=
Coq < match l in PList A return (A->nat)->nat with
Coq < | zero A a => fun f => f a
Coq < | succ l’ => fun f => sumPList’ l’
Coq < (fun a => let(a1,a2):=a in f a1 + f a2) end.

Coq < Definition sumPList l := sumPList’ l (fun x=>x).

A more general specification:

Coq < Definition sumPList’Spec :=
Coq < forall (A:Set)(l:PList A)(f:A->nat),
Coq < sumPList’ l f = sumList(map f (PListToList l)).
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proving the specification

Coq automatically generates an induction principle for PList:

Coq < Check PList ind :
Coq < forall P : (forall A : Set, PList A -> Prop),
Coq < (forall (A : Set) (a : A), P A (zero a)) ->
Coq < (forall (A : Set) (l : PList (A * A)),
Coq < P (A * A)%type l -> P A (succ l)) ->
Coq < forall (A : Set) (l : PList A), P A l.

This can still be understood by induction with a measure.
The specification before can be readily verified with this principle.
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3-bushes

The obvious “complexification” of the 2-bushes by Bird et al.
In Coq, they can be introduced axiomatically:

Coq < Variable Bsh3 : Set->Set.

Coq < Variable bnil3 : forall (A:Set), Bsh3 A.

Coq < Variable bcons3: forall (A:Set),
Coq < A -> Bsh3(Bsh3(Bsh3 A)) -> Bsh3 A.

The second argument of bcons3 is more complex than Bsh3 A.
With powerlists, the family index has been A * A.
Here, it is Bsh3(Bsh3 A).
A reference to the family itself. And even a nested reference.
This second nesting only adds spice but is not required
to qualify as truly nested.
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Definition

A truly nested datatype is a nested datatype with a call to the
family name within a type argument of an argument of one of the
datatype constructors.

bcons3: A -> Bsh3(Bsh3(Bsh3 A)) -> Bsh3 A
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enumerating ternary trees

Coq < Inductive Tri : Set := L:Tri | N:Tri->Tri->Tri->Tri.

We want to have the 3-bush with all the ternary trees of height
less than m.
For m := 3, this would be the following list:

Coq < Definition myTriList := L :: N L L L
Coq < :: N (N L L L) L L
Coq < :: N L (N L L L) L
Coq < :: N (N L L L) (N L L L) L
Coq < :: N L L (N L L L)
Coq < :: N (N L L L) L (N L L L)
Coq < :: N L (N L L L) (N L L L)
Coq < :: N (N L L L) (N L L L) (N L L L)
Coq < :: nil.
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Coq < Definition mkTriBsh3’ : nat ->
Coq < forall (A:Set), (Tri->A) -> Bsh3 A :=
Coq < fun m A f =>
Coq < (fix F (n:nat)(A:Set)(f:Tri->A){struct n} : Bsh3 A :=
Coq < match n with
Coq < | 0 => bnil3
Coq < | S m => bcons3 (f L) (F m (fun t1 => F m
Coq < (fun t2 => (F m (fun t3 => f(N t3 t2 t1)))))
Coq < end)
Coq < m A f.

Coq < Definition mkTriBsh3 (m:nat) := mkTriBsh3’ m (fun x=>x).

mkTriBsh3 3 has the 9 desired elements, but contains 29 bcons3
and 21 bnil3. mkTriBsh3 4 has the 730 desired elements and
2640 bcons3 and 1911 bnil3.
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the question

How can we analyze the elements of Bsh3 Tri?

Currently, we only have the constructors.
And they are not accepted by Coq for an inductive definition (“not
strictly positive”).

The computational solution appears in a joint paper with Andreas
Abel and Tarmo Uustalu (TCS 333(1-2), pp. 3-66, 2005).
We propose inductive type families with an iterator in the style of
Nax Mendler that guarantees termination of all functions
expressible in this (definitional) extension of system Fω.

But there has been no logical system that allows to reason by
induction on the structure of those inductive families.
This is the new contribution of the present talk.
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Definition k0 := Set.
Definition k1 := k0 -> k0.
Definition k2 := k1 -> k1.
Definition sub_k1 (X Y:k1) : Set := forall A:Set, X A -> Y A.
Infix "c_k1" := sub_k1 (at level 60).

Variable F : k2.
Variable mu2 : k1
Variable InStd : F mu2 c_k1 mu2
Variable MIt: forall G : k1,

(forall X : k1, X c_k1 G -> F X c_k1 G) -> mu2 c_k1 G.
Assumption MItRedStd : forall (G:k1)

(s:forall X:k1, X c_k1 G -> F X c_k1 G)(A:Set)(t:F mu2 A),
MIt s (InStd t) = s _ (MIt s) _ t.

What would be an induction principle for mu2?
It should be a dependently-typed version of MIt.
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generalization of the constructor

Idea: generalize the system of Uustalu and Vene to rank 2.

In : ∀X : κ1.X ⊆ µ2 → FX ⊆ µ2

instead of
InStd : Fµ2 ⊆ µ2

And this is even accepted as an inductive definition in Coq with In
the single constructor of µ2.
The minimality scheme for sort Set generated by Coq has type

∀G : κ1. (∀X : κ1.X ⊆ µ2 → X ⊆ G → FX ⊆ G ) → µ2 ⊆ G

This is even the lifting of the type of Mendler’s recursor
to nested datatypes.
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generalization of the constructor

Idea: generalize the system of Uustalu and Vene to rank 2.

In : ∀X : κ1.X ⊆ µ2 → FX ⊆ µ2

instead of
InStd : Fµ2 ⊆ µ2

And this is even accepted as an inductive definition in Coq with In
the single constructor of µ2.
The minimality scheme for sort Set generated by Coq has type
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the generated induction principle

Coq’s induction principle supports the following reasoning:
Given a predicate P : ∀A. µ2A → Prop, we may deduce P holds
universally – ∀A∀r : µ2A.PA r , if,
for every X : κ1 and every j : X ⊆ µ2, from the inductive
hypothesis

∀A∀x : XA, PA(j A x)

we can infer (this is called the inductive step)

∀A∀t : FXA.PA(In j t) .

What does the inductive hypothesis say for X := µ2 and
j := λAλx : A.x? ∀A∀r : µ2A.PA r !!
Hence, only for the non-canonical elements of µ2 that are not
introduced by InStd , the inductive step requires some work.
Thus, verification completely rests on those non-canonical
elements.
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more on those non-canonical elements

We need to say what the iterative functions do on the
non-canonical elements. The iterator that specializes the recursor
satisfies the following computational rule – even
w. r. t. convertibility in Coq.

Definition comp (A B C:Set)(g:B->C)(f:A->B) : A->C
:= fun x => g (f x).

Infix "o" := comp (at level 90).
Lemma MItRed : forall (G : k1)
(s : forall X : k1, X c_k1 G -> F X c_k1 G)
(X : k1)(j: X c_k1 mu2)(A:Set)(t:F X A),
MIt s (In j t) = s X (fun A => (MIt s (A:=A)) o (j A)) A t.
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what remains to be done

Everything.

We did not yet prove anything interesting with the present system.
Evidently, we want to support the usual reasoning that profits from
structured programming, the “Algebra of Programming”.
This means laws inspired from category theory such a functoriality
or naturality.
And this does not work at all in the present framework. The step
term of MIt has to be too generic:

∀X : κ1.X ⊆ G → FX ⊆ G

Note that we had removed the condition X ⊆ µ2 because we only
wanted iteration.

Ralph Matthes Verification for truly nested datatypes 23/29



Nested Datatypes
Verification

Induction for Mendler’s Style
More Properties for the Approximation
Solution with Inductive-Recursive Definitions

the idea

Instead of that removed condition, we enter new information about
the approximation X :

X is monotone, witnessed by some term m of type
∀A∀B. (A → B) → XA → XB.

m is functorial, i. e., it satisfies the two functor laws.

m is only dependent on the extension of its functional
argument.

The last one is important since rewriting in Coq is not done under
binders.

With these, functoriality properties of the map for µ2 can be
established. But not naturality of the iteratively defined
polymorphic functions of type µ2 ⊆ G .
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adding naturality

We want to have the following datatype constructor:

(** natural transformations from (X,mX) to (Y,mY) *)
Definition NAT(X Y:k1)(j:X c_k1 Y)(mX:mon X)(mY:mon Y):Prop:=
forall (A B:Set)(f:A->B)(t:X A),

j B (mX A B f t) = mY _ _ f (j A t).

In : forall (G:k1)(m:mon G), ext m -> fct1 m -> fct2 m ->
forall j: G c_k1 mu2, NAT j m mapmu2 -> F G c_k1 mu2.

What is mapmu2? It should be the map function for mu2.
But we are about to define mu2. So, this cannot be done in Coq.
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Simultaneous inductive-recursive definitions have been proposed by
Peter Dybjer. Here, we may use an impredicative version of them.
So, µ2 is an inductively defined family, and simultaneously, the
function

mapµ2 : ∀A∀B.(A → B) → µ2A → µ2B

is defined. Its type is isomorphic with

∀A. µ2A → ∀B.(A → B) → µ2B

This can nevertheless be implemented in Coq by using an
unpublished manuscript by Venanzio Capretta.

Ralph Matthes Verification for truly nested datatypes 27/29



Nested Datatypes
Verification

Induction for Mendler’s Style
More Properties for the Approximation
Solution with Inductive-Recursive Definitions

what remains to be done

Capretta defined a more liberal family and then by an inductive set
which are the good elements (to be represented as a sig of Coq).
What he does not provide, is an induction principle. In my case it
is:

mu2Ind : Prop :=
forall P : (forall A : Set, mu2 A -> Prop),

(forall (X : k1) (m : mon X) (e : ext m) (f1 : fct1 m)
(f2 : fct2 m) (j : X c_k1 mu2)(n: NAT j m mapmu2),
(forall (A : Set) (x : X A), P A (j A x)) ->

forall (A:Set)(t : F X A), P A (In e f1 f2 n t)) ->
forall (A : Set) (r : mu2 A), P A r.

Is has been proved in Coq with proof-irrelevance.

In this extension, one can show uniqueness and naturality of
iteratively defined functions. The general results can be
instantiated to treat Bsh3.
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Conclusions

It is now possible to combine the following benefits:

termination of all functions following the recursion schemes
recursion schemes are type-based and not syntax-driven
genericity: no specific shape of the datatype functors required
no continuity properties required
includes truly nested datatypes
categorical laws for program verification
program execution within the convertibility relation of Coq

To do:

More examples
Reasoning principles for conventional style without
non-canonical elements
Primitive recursion (not only iteration)

Thank you for listening.

Typeset with LATEX using Till Tantau’s beamer.cls
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