
A Certified Implementation

of a Distributed Security Logic

Nathan Whitehead

University of California, Santa Cruz

nwhitehe@cs.ucsc.edu

based on joint work with

Mart́ın Abadi

University of California, Santa Cruz

abadi@cs.ucsc.edu

George Necula

University of California, Berkeley

necula@cs.berkeley.edu

1 TYPES, April 20, 2006, Nottingham



Access Control

• Modern access control systems must work in a distributed

manner.

• They need to decide when untrusted code is safe to execute.

• It is possible to combine Binder and the calculus of constructions

in a general purpose distributed security logic.

• This can express policies relying on

trust through assertions from authorities

and trust through checking safety proofs.

2 TYPES, April 20, 2006, Nottingham



Game Cell Phone Example

3 TYPES, April 20, 2006, Nottingham



Example Policy Excerpt

use r_TAL in

forall P:prg

mayrun(P) :- believe(safe P),

believe(economical P).

end

use r_TAL in

forall L:prg

believe(safe L) :-

lib_signer says trusted(L).

believe(economical L) :-

lib_signer says trusted(L).

end

4 TYPES, April 20, 2006, Nottingham



BCC

• BCC combines Binder and the calculus of constructions.

• Equivalently, start with Datalog as the base for an access control

system, then add in features as necessary.

• We add to Datalog the says operator, function symbols, and

special predicates sat and believe connected to the calculus of

constructions.

• says allows distributed reasoning.

• sat(P) means P is true by some proof, believe(P) means P is

believed to be true.

5 TYPES, April 20, 2006, Nottingham



6 TYPES, April 20, 2006, Nottingham



Reference Monitor Requirements (Anderson)

• Must always be invoked for every access control decision and

cannot be bypassed.

• Must be tamper-proof.

• Must be “small enough to be subject to analysis and tests, the

completeness of which can be assured” (i.e. correct).

Since reference monitors are critical to security, it is a good place to

focus our energy on proving correctness.

7 TYPES, April 20, 2006, Nottingham



Motivation

• Combining different logics could lead to subtle inconsistencies.

• Our ad hoc implementation surely contains bugs.

• We turn to Coq in order to express our logic formally and

prove theorems about it to gain assurance that it works.

• We then extract a certified implementation for the logic.

8 TYPES, April 20, 2006, Nottingham



Related Work

• There are many existing formal models of access control.

• Some previous reference monitors have been certified by hand.

• DHARMA is a certified implementation of a distributed

delegation logic encoded into PVS and extracted into Lisp.

DHARMA is based on access control lists and delegation, while

BCC is based on predicate logic and proof checking.

• Proof-carrying authentication has been done for other

undecidable security logics.

9 TYPES, April 20, 2006, Nottingham



Contributions

We encode a series of logics leading up to BCC.

Datalog — encoding, proof of decidability, decision procedure

Binder — encoding, proof of decidability, decision procedure

Horn logic — encoding, sound proof checker, incomplete prover

BCC — encoding, sound proof checker, incomplete prover

10 TYPES, April 20, 2006, Nottingham



Datalog for Access Control

student(avik).

student(bethany).

faculty(cormac).

lab(X) :- student(X).

lab(X) :- faculty(X).

lounge(X) :- faculty(X).

mayopen(X, door1) :- lab(X).

mayopen(X, door2) :- lab(X).

mayopen(X, door3) :- lab(X).

mayopen(X, door4) :- lounge(X).

11 TYPES, April 20, 2006, Nottingham



Encoding Datalog in Coq

Inductive term : Set :=

| ident : nat -> term

| var : nat -> term.

Inductive atomic : Set :=

| atom : nat -> list term -> atomic.

Inductive form : Set :=

| clause : atomic -> list atomic -> form.

Inductive derive : list form -> atomic -> Prop :=

| derive_step :

forall (LF : list form)(F : form)(S : substitution),

In F LF ->

forallelts atomic

(fun x => derive LF (subs_atomic S x))

(body F) ->

derive LF (subs_atomic S (head F)).

12 TYPES, April 20, 2006, Nottingham



Proving Decidability

• Decision procedure works by bottom-up evaluation.

• Most important part of algorithm is matching clauses against

database.

Soundness If a match is found, applying the substitution to the

body of the clause yields atomic formulas in the database.

Completeness If no match is found, there is no such substitution.

Termination Extending the database eventually reaches a fix point.

13 TYPES, April 20, 2006, Nottingham



Program Extraction - Translating

Definition

match_term (T1 T2 : term) : option substitution :=

match T1 with

| ident i =>

match T2 with

| ident j =>

if eq_nat_dec i j then

Some nil

else None

| var j => None

end

| var i =>

match T2 with

| ident j => Some ((i,j)::nil)

| var j => None

end

end.

14 TYPES, April 20, 2006, Nottingham



Program Extraction - Translating

let match_term t1 t2 =

match t1 with

| Ident i ->

(match t2 with

| Ident j ->

(match eq_nat_dec i j with

| Left -> Some Nil

| Right -> None)

| Var j -> None)

| Var i ->

(match t2 with

| Ident j ->

Some ((i, j) :: Nil)

| Var j -> None)

15 TYPES, April 20, 2006, Nottingham



Program Extraction - Simplifying

Lemma forall_dec :

forall (A:Set)(P:A->Prop)(L:list A),

(forall (x:A), {P x} + {~P x}) ->

{forallelts A P L} + {~forallelts A P L}.

Proof.

intros A P L H.

induction L.

left. unfold forallelts.

intros x H2.

simpl in H2; contradiction.

elim IHL; intro IHL2; clear IHL.

assert ({P a}+{~ P a}).

...

simpl. right; assumption.

Qed.

16 TYPES, April 20, 2006, Nottingham



Program Extraction - Simplifying

let rec forall_dec l h =

match l with

| Nil -> Left

| Cons (a, l0) ->

(match forall_dec l0 h with

| Left -> h a

| Right -> Right)

17 TYPES, April 20, 2006, Nottingham



Program Extraction - Generating

Definition eq_term_dec (A1 A2 : term) : {A1 = A2} + {A1 <> A2}.

intros A1 A2.

decide equality A1 A2;

apply eq_nat_dec.

Defined.

18 TYPES, April 20, 2006, Nottingham



Program Extraction - Generating

let eq_term_dec a1 a2 =

match a1 with

| Ident x ->

(match a2 with

| Ident n0 -> eq_nat_dec x n0

| Var n0 -> Right)

| Var x ->

(match a2 with

| Ident n0 -> Right

| Var n0 -> eq_nat_dec x n0)

19 TYPES, April 20, 2006, Nottingham



Binder (DeTreville)

• Binder adds a says operator and the notion of

importing/exporting clauses from one context to another.

• There are several other choices for extending Datalog, Binder is

convenient because it is simple and practical.

• Encoding in Coq:

Inductive atomic : Set :=

| bare : nat -> list term -> atomic

| says : term -> nat -> list term -> atomic.

• Redoing proofs is actually easy, just need some additional checks

for equality between principals.

20 TYPES, April 20, 2006, Nottingham



Binder - Distributed User Authorization

authority(V) :-

root says authority(V).

authority(V) :-

authority(U),

U says authority(V).

valid-user(V) :-

authority(U),

U says valid-user(V).

21 TYPES, April 20, 2006, Nottingham



Horn Logic

• Function symbols allow structured data, not just identifiers.

Can model access control lists and capabilities.

Works on tree data structures (e.g. file systems, XML).

• Encoding in Coq:

Inductive term : Set :=

| var : nat -> term

| func : nat -> list term -> term.

• The downside is that we lose general completeness.

22 TYPES, April 20, 2006, Nottingham



Induction Scheme for Terms

Induction over terms gets complicated by the inner list term.
Luckily the Scheme command automatically generates the correct
induction principle.

term_rec :

forall (P : term -> Set) (Q : list term -> Set),

(forall (n : nat) (l : list term), Q l -> P (func n l)) ->

(forall n : nat, P (var n)) ->

Q nil ->

(forall t : term, P t ->

forall l : list term, Q l -> Q (t :: l)) ->

forall t : term, P t.

23 TYPES, April 20, 2006, Nottingham



Certified Proof Checker

• We could proceed as before and prove a specific algorithm is

sound but not complete.

• Instead we construct a certified proof checker.

• This lets any proof generator be used.

• Since its result is checked, this guarantees soundness even if the

algorithm is not encoded in Coq.

24 TYPES, April 20, 2006, Nottingham



Encoding Horn Logic Proofs

Inductive derive : list form -> atomic -> Prop :=

| derive_step :

forall (LF : list form)(F : form)(S : substitution),

In F LF ->

forallelts atomic

(fun x => derive LF (subs_atomic S x))

(body F) ->

derive LF (subs_atomic S (head F)).

Inductive prf : Set :=

| prf_step : nat -> substitution -> list prf -> prf.

25 TYPES, April 20, 2006, Nottingham



Proof Validity

Inductive valid_proof : list form -> atom * prf -> Prop :=

| valid_proof_step :

forall (i:nat)(Prg:list form)(Rule:form)(Body:list atom)

(Subs:list (nat*term))(Subprfs:list prf)(G:atom),

i < length Prg ->

Rule = nth i Prg (clause (atm 0 nil) nil) ->

Body = map (fun x => subs_atomic x Subs)

(body Rule) ->

length Body = length Subprfs ->

(forall (x:atom*prf),

In x (zip atom prf Body Subprfs) ->

valid_proof Prg x

) ->

G = subs_atomic (head Rule) Subs ->

valid_proof Prg (G, (prf_step i Subs Subprfs)).

26 TYPES, April 20, 2006, Nottingham



Properties

• First show valid proof is decidable. From this proof we extract

a proof checker function.

• Then show valid proof is sound with respect to derive.

• Some subtlety here; we need to make sure extracted code does

not make extra assumptions about its data.

This is true of valid proof because proof data objects are

entirely in Set.

27 TYPES, April 20, 2006, Nottingham



Encoding BCC

Encoding for calculus of constructions from Bruno Barras’ CoC.

Inductive sort : Set :=

| kind : sort

| set : sort

| prop : sort.

Inductive ccterm : Set :=

| Srt : sort -> ccterm

| Ref : nat -> ccterm

| Abs : ccterm -> ccterm -> ccterm

| App : ccterm -> ccterm -> ccterm

| Prod : ccterm -> ccterm -> ccterm.

Inductive term : Set :=

| var : nat -> term

| func : nat -> list term -> term

| cctrm : ccterm -> term.

28 TYPES, April 20, 2006, Nottingham



Inductive patomic : Set :=

| pred : nat -> list term -> patomic

| sat : list ccterm -> ccterm -> patomic

| believe : list ccterm -> ccterm -> patomic.

Inductive atomic : Set :=

| bare : patomic -> atomic

| says : term -> patomic -> atomic.

Inductive form : Set :=

| clause : atomic -> list atomic -> form

| use_sig : list ccterm -> form -> form

| forallb : nat -> form -> form

| forallcc : ccterm -> form -> form.

Inductive wf : list ccterm -> Prop :=

| wf_nil : wf nil

| wf_var : forall e T s, typ e T (Srt s) -> wf (T :: e)

with typ : list ccterm -> ccterm -> ccterm -> Prop :=

| type_prop : forall e, wf e -> typ e (Srt prop) (Srt kind)

| type_set : forall e, wf e -> typ e (Srt set) (Srt kind)

29 TYPES, April 20, 2006, Nottingham



| type_var :

forall e,

wf e -> forall (v : nat) t, lift t e v -> typ e (Ref v) t

| type_abs :

forall e T s1, typ e T (Srt s1) ->

forall M (U : term) s2, typ (T :: e) U (Srt s2) ->

typ (T :: e) M U -> typ e (Abs T M) (Prod T U)

| type_app :

forall e v (V : term), typ e v V ->

forall u (Ur : term), typ e u (Prod V Ur) -> typ e (App u v) (subst v Ur)

| type_prod :

forall e T s1, typ e T (Srt s1) ->

forall (U : term) s2, typ (T :: e) U (Srt s2) -> typ e (Prod T U) (Srt s2)

| type_conv :

forall e t (U V : term),

typ e t U -> conv U V -> forall s, typ e V (Srt s) -> typ e t V.

30 TYPES, April 20, 2006, Nottingham



Inductive form : Set :=

| clause : atomic -> list atomic -> form

| use_sig : list ccterm -> form -> form

| forallcc : ccterm -> form -> form.

Inductive derive : list form -> atomic -> Prop :=

| derive_sat :

forall (LF : list form)(e : list ccterm)(o t : ccterm),

typ e o t -> derive LF (bare (sat e t))

| derive_believe :

forall (LF : list form)(e : list ccterm)(o t : ccterm),

typ e o t -> derive LF (bare (believe e t))

| derive_step :

forall (LF : list form)(F : form)(S : substitution),

In F LF ->

no_free_cc_vars F ->

forallelts atomic

(fun x => derive LF (subs_atomic S x))

(body F) ->

derive LF (subs_atomic S (head F)).

...

31 TYPES, April 20, 2006, Nottingham



BCC - The Big Picture

32 TYPES, April 20, 2006, Nottingham



Size Statistics

Datalog Encoding and proofs are 2500 lines of Coq, extracted to

300 lines of OCaml, of which 50 are redundant definitions of

bool, option, etc..

Binder 2600 lines of Coq for encoding and all proofs.

Horn logic Encoding and proofs are 1000 lines of Coq (without

completeness), generic prover is 200 lines of Prolog.

BCC Encoding and proofs are 2100 lines of Coq, prover is 500 lines

of Prolog.

33 TYPES, April 20, 2006, Nottingham



Future Work

• Characterize completeness conditions for BCC and restriction on

calculus of construction terms.

• Prove more meta-theory about BCC to make sure semantic

description is correct, for example forms of conservativity.

• Perhaps automate proof checker generation from description of

Coq predicate, or alter extraction to do this automatically.

• Develop big realistic examples.

34 TYPES, April 20, 2006, Nottingham



Conclusions

• In the end we have certified implementations of a series of

security logics suitable for a variety of access control applications.

• Coq worked well for this application, there were no deal-breakers.

The hardest things were managing the explosion of lemmas and

keeping track of where we were in the proof.

• If you have suggestions for improvement or if I did everything

wrong, please let me know!

35 TYPES, April 20, 2006, Nottingham


