
A Dependently Typed Framework for
Maintaining Invariants

László Németh

Department of Computer Science
Bilgi University, Istanbul

TYPES’06 - Nottingham

László Németh A Dependently Typed Framework for Maintaining Invariants

Introduction

Maintaining accurate information about programs is important

Embedded systems: run-time and space behaviour,
guarantees (size)

Agressively optimising compilers: any predicate which
allows transformation according to some criteria (speed,
space)

certified compilers: ’ rewrote application of head in line 42,
because the list can never be empty’

ultimately: certified code

Where to find this information?

given some unannotated code, try to discover it: static
analysis (difficult)

force the user to annotate (or write it in a sufficiently rich
language)

?
László Németh A Dependently Typed Framework for Maintaining Invariants

Haskell: Prelude vs Report

Legacy code: Haskell Prelude ⇐⇒ useful information: Report

Examples:

’The sequence enumFromTo e1e3 is the list
[e1, e1 + 1, e1 + 2, . . . , e3]’. The list is empty if e1 > e3.

(R : A -> A -> * ; xs : List A !
data !--------------------------------!

! Sorted R xs : *)

(a : A ; ss : Sorted R bs ; p : Sm R a bs !
where (---------------------! ; !--!

! snil : Sorted R nil) ! scons a ss p : Sorted R (cons a bs))

’The Ix class is used to map a contiguous subrange of
values in a type onto integers. . . . the nullary constructors
are assumed to be numbered left-to-right with the indices
being 0 to n − 1 inclusive’. : they are N’s and SORTED

careful reading of the Prelude+Report shows up dozens

László Németh A Dependently Typed Framework for Maintaining Invariants

Approach

1 Devise enriched types which allows statically track
invariants we are interested in

2 Transform well-typed Haskell functions to functions in a DT
language which manipulates those invariants

3 Use the stronger type system to maintain and possibly
establish properties

4 If typechecks extract
Haskell code + rewrite rules
Transformed code (beware of code duplication)

László Németh A Dependently Typed Framework for Maintaining Invariants

In this talk

Two properties

Size of lists

(Sortedness)

We

pretend that Haskell is strict

deal only with a handful of functions from the Prelude
((++), filter, take, dropWhile, intersect, etc)

use Epigram because it is theorem proving well disguised

compiler = GHC

All (well-typed) combinations of those functions maintain the
invariants

László Németh A Dependently Typed Framework for Maintaining Invariants

Size (dependently)

(A : * ; lp : Le lb l ; up : Le l ub !
data !---------------------------------------!

! BList A lp up : *)

where (------------------------! ;
! bnil : BList A leZ leZ)

(a : A ; as : BList A lp up !
!--!
! bcons a as : BList A (leS lp) (leS up))

László Németh A Dependently Typed Framework for Maintaining Invariants

Map Works

(f : all a : A => B ; xs : BList A lp up !
let !--!

! bmap f xs : BList B lp up)
bmap f xs <= rec xs
{ bmap f xs <= case xs

{ bmap f bnil => bnil
bmap f (bcons x xs) => bcons (f x) (bmap f xs)

}
}

and we get the usual goodies

(xs : BList A (leS n) u !
let !------------------------!

! bhead xs : A)
bhead xs <= case xs

{ bhead (bcons m’’ ms) => m’’
} László Németh A Dependently Typed Framework for Maintaining Invariants

Other Prelude Functions

append adds the lower bounds and the upper bounds
(think of the definition list comprehensions!)

filter changes the proof about the lower bound to zero (ie
the proof of)

intersect sets the lower bound to zero and the upper bound
to the minimum of the length of the lists

take n sets the length to be exactly n if the lower bound is
greater than n.

. . .

László Németh A Dependently Typed Framework for Maintaining Invariants

What Transformations are Possible

take 3 ==>

lambda xs.
case xs of

(x1:xs1) ->
x1 : case xs1 of

(x2:xs2) ->
x2 : case xs2 of

(x3:xs3) -> x3 : []

László Németh A Dependently Typed Framework for Maintaining Invariants

Message

Instead of a whispering important properties (in the Report)

SAY

them in the types of (dependently typed) functions and make
some compiler

SEE

them.

László Németh A Dependently Typed Framework for Maintaining Invariants

Summary

more you say more you (should) get

can be done under the hood (no extension to Core or
Haskell itself)

the approach complements the optimising capabilities of
GHC

TODO

PiE - formalise the Prelude (plus the Report!) in Epigram:
good for the soul, good for compilation, and Haskell
programmers can also read it

once we established some invariant (and possibly acted
upon) it is a shame to throw it away

László Németh A Dependently Typed Framework for Maintaining Invariants

