A Dependently Typed Framework for

Maintaining Invariants

Laszl6 Németh

Department of Computer Science
Bilgi University, Istanbul

TYPES'06 - Nottingham

Laszl6 Németh A Dependently Typed Framework for Maintaining Invariants

Introduction

Maintaining accurate information about programs is important

@ Embedded systems: run-time and space behaviour,
guarantees (size)

@ Agressively optimising compilers: any predicate which
allows transformation according to some criteria (speed,
space)

@ certified compilers: ’ rewrote application of head in line 42,
because the list can never be empty’

@ ultimately: certified code

Where to find this information?
@ given some unannotated code, try to discover it: static
analysis (difficult)
@ force the user to annotate (or write it in a sufficiently rich
language)
e ?

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

Haskell: Prelude vs Report

Legacy code: Haskell Prelude <= useful information: Report

Examples:

@ 'The sequence enumFromTo e;e3 is the list
[e1,e1+1,e1+2,...,e3]. Thelistis empty if e; > es.
(R:A->A->*; xs:ListA!
! Sorted R xs : *)
(a:A; SS:ISOITedeS; p:SmRabs!

where (- U !
! snil : Sorted R nil) ! scons a ss p : Sorted R (cons a bs))

@ 'The Ix class is used to map a contiguous subrange of
values in a type onto integers. ...the nullary constructors
are assumed to be numbered left-to-right with the indices
being 0 to n — 1 inclusive’. : they are N's and SORTED

@ careful reading of the Prelude+Report shows up dozens

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

@ Devise enriched types which allows statically track
invariants we are interested in

@ Transform well-typed Haskell functions to functions in a DT
language which manipulates those invariants

© Use the stronger type system to maintain and possibly
establish properties
© If typechecks extract

o Haskell code + rewrite rules
e Transformed code (beware of code duplication)

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

In this talk

Two properties

@ Size of lists
@ (Sortedness)

We
@ pretend that Haskell is strict

@ deal only with a handful of functions from the Prelude
((++), filter, take, dropWhile, intersect, etc)

@ use Epigram because it is theorem proving well disguised
@ compiler = GHC

All (well-typed) combinations of those functions maintain the
invariants

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

Size (dependently)

(A:*; Ip:Lelbl; up:Lel ub!
data ! !
! BList A lIp up : *)

where (I
I bnil : BList A leZ lez)

(a: A ; as: BList Alp up !
! !

I bcons a as : BList A (leS Ip) (IeS up))

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

Map Works

(f:ala:A=>B; xs: BList Alp up!
let ! !
! bmap f xs : BList B Ip up)
bmap f xs <= rec xs
{ bmap f xs <= case xs
{ bmap f bnil => bnil
bmap f (bcons x xs) => bcons (f x) (bmap f xs)

}

}

and we get the usual goodies

(xs : BList A (IeS n) u !
let ! I

! bhead xs : A)
bhead xs <= case xs
{ bhead (bcons m” ms) => m”

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

Other Prelude Functions

@ append adds the lower bounds and the upper bounds
(think of the definition list comprehensions!)

@ filter changes the proof about the lower bound to zero (ie
the proof of)

@ intersect sets the lower bound to zero and the upper bound
to the minimum of the length of the lists

@ take n sets the length to be exactly n if the lower bound is
greater than n.

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

What Transformations are Possible

take 3 ==>

lambda xs.
case xs of
(x1:xsl) ->
x1 : case xsl of
(x2:xs2) ->
X2 : case xs2 of
(x3:xs3) > x3 : [

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

Instead of a whispering important properties (in the Report)
SAY

them in the types of (dependently typed) functions and make
some compiler

SEE

them.

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

@ more you say more you (should) get

@ can be done under the hood (no extension to Core or
Haskell itself)

@ the approach complements the optimising capabilities of

GHC
TODO

@ PiE - formalise the Prelude (plus the Report!) in Epigram:
good for the soul, good for compilation, and Haskell
programmers can also read it

@ once we established some invariant (and possibly acted
upon) it is a shame to throw it away

LaszI6 Németh A Dependently Typed Framework for Maintaining Invariants

