Types and Layered Logics
for Program Verification

O. Shkaravska

Institute of Cybernetics
at Tallinn University of Technology

TYPES-2006, Nottingham

0. Shkaravska Types and Layered Logics for Program Verification

9 Program Logics: From Strongest to Specialised Assertions

9 Soundness of Specialised Assertions

e Help !!! To Prove Soundness

0. Shkaravska Types and Layered Logics for Program Verification

Program Logics: From Strongest to Specialised Assertions

Strongest Assertions

Uustalu, Saabas — “Compositional Type Systems
for Stack-Based Low-Level Languages”.
The low-level language with an operand stack

@ Val —bool, int.

@ a state:

@ labels, ¢ (in a program counter pc)
@ an operand stack os: List(Val)
@ a storage st: Var — Val

0. Shkaravska Types and Layered Logics for Program Verification

Program Logics: From Strongest to Specialised Assertions

Strongest Assertions

Uustalu, Saabas — “Compositional Type Systems
for Stack-Based Low-Level Languages”.
The low-level language with an operand stack

@ Val —bool, int.

@ a state:

@ labels, ¢ (in a program counter pc)
@ an operand stack os: List(Val)
@ a storage st: Var — Val

Strongest assertions mirror operational semantics

{pc=¢ Nos=n:(¢ A st=0c}
store x
{pc=4+1 No0s=(A st=0[x:=n]}

0. Shkaravska Types and Layered Logics for Program Verification

Program Logics: From Strongest to Specialised Assertions

Specialised (Abstracted) Assertions

Specify the property we are interested in.
Abstract from irrelevant details.

0. Shkaravska Types and Layered Logics for Program Verification

Program Logics: From Strongest to Specialised Assertions

Specialised (Abstracted) Assertions

Specify the property we are interested in.
Abstract from irrelevant details.
For instance: the special property of interest: stack error
freedom.
The abstraction and its meaning:
@ abstr(3) = int, meaning of the abstraction (|int|) = {int},
@ abstr(3:: ¢) =int :: abstr (¢),
@ abstr (¢) =+, meaning (| x|) = {int, bool}*.

0. Shkaravska Types and Layered Logics for Program Verification

Program Logics: From Strongest to Specialised Assertions

Specialised (Abstracted) Assertions

Specify the property we are interested in.

Abstract from irrelevant details.

For instance: the special property of interest: stack error
freedom.

The abstraction and its meaning:

@ abstr(3) = int, meaning of the abstraction (|int|) = {int},
@ abstr(3:: ¢) =int :: abstr (¢),
@ abstr (¢) =+, meaning (| x|) = {int, bool}*.

Specialised Assertion

{pc=¢ N os=7:V}storex {pc=¢+1 A 0s =V}

0. Shkaravska Types and Layered Logics for Program Verification

Soundness of Specialised Assertions

What is Soundness

What is soundness
{A} c {B} is sound iff
it is provable from the logic of the strongest specifications
together with the rule of consequence
{Afc{B} (A—B)— (A —B)
{A'} c {B'}

O. Shkaravska

Types and Layered Logics for Program Verification

Soundness of Specialised Assertions

What is Soundness

What is soundness
{A} c {B} is sound iff
it is provable from the logic of the strongest specifications

together with the rule of consequence
{Afc{B} (A—B)— (A —B)

{A} c {B"}

Yet another definition — via abstract operational semantics?
If typing appears from abstract interpretation —
@ {(] abstrA |)} c {(| abstrB |)}

0. Shkaravska Types and Layered Logics for Program Verification

Soundness of Specialised Assertions

What is Soundness

What is soundness
{A} c {B} is sound iff
it is provable from the logic of the strongest specifications

together with the rule of consequence
{Afc{B} (A—B)— (A —B)

{A} c {B"}

Yet another definition — via abstract operational semantics?
If typing appears from abstract interpretation —
@ {(] abstrA |)} c {(| abstrB |)}

@ the preservation of evaluation principle:
(¢, ¢, 0), ¢~ (¢, o) implies
(¢, abstr (¢),), ¢ ~ (¢, abstr(¢’),).

0. Shkaravska Types and Layered Logics for Program Verification

Help !!! To Prove Soundness

A “consequence” may be difficult to prove

An expression free subgoal
{A}jc{B} (A—B)— (A —B)
(A} c {B'}
The subgoal (A — B) — (A" — B’) may be difficult to prove.

Consequence:

0. Shkaravska Types and Layered Logics for Program Verification

Help !!! To Prove Soundness

A “consequence” may be difficult to prove

An expression free subgoal
{A}jc{B} (A—B)— (A —B)
(A} c {B'}
The subgoal (A — B) — (A" — B’) may be difficult to prove.

Consequence:

The case of composition

{Ac}ci {Bi} {A2}cz {Bz}
A— A; OK

B, — A, may betoo strong
B, — B may betoo strong

{A} c1;¢; {B}

\

0. Shkaravska Types and Layered Logics for Program Verification

Help !!! To Prove Soundness

Modularised Subgoal

{Ai}c1 {B1} {Az} c2 {B2}
A—>A1

A—>A1 — Bl —>A2

A—A —B —A,—B,—B

{A} c1;c2 {B}

It is sound!

0. Shkaravska Types and Layered Logics for Program Verification

Help !!! To Prove Soundness

Parametric Specialised Assertions

In fact,
{7A1} C1 {781} {7A2} Co {782}
A —7A
A —7A; —7B1 —7A,
A —?A —7B; —7A, —7B, —7B
{?A} C1;,Co {78}
is sound!

That is we have a “template lemma”,
where parameters may be instantiated by arbitrary assertions ...

0. Shkaravska Types and Layered Logics for Program Verification

Summary

Summary

@ The proof-of-the-concept template specialised logic
have been designed.

0. Shkaravska Types and Layered Logics for Program Verification

Summary

Summary

@ The proof-of-the-concept template specialised logic
have been designed.

@ It helps in soundness proving for type systems.

@ Future work
@ Testing ...

0. Shkaravska Types and Layered Logics for Program Verification

Summary

Summary

@ The proof-of-the-concept template specialised logic
have been designed.

@ It helps in soundness proving for type systems.

@ Future work

@ Testing ...

@ How do the preservation of evaluation
for an abstract operational semantics and *this*
soundness interplay?

0. Shkaravska Types and Layered Logics for Program Verification

	Program Logics: From Strongest to Specialised Assertions
	Soundness of Specialised Assertions
	Help !!! To Prove Soundness
	Summary

