Types and Layered Logics for Program Verification

O. Shkaravska

Institute of Cybernetics at Tallinn University of Technology

TYPES-2006, Nottingham

Outline

- 1 Program Logics: From Strongest to Specialised Assertions
- Soundness of Specialised Assertions
- Help !!! To Prove Soundness

Strongest Assertions

Uustalu, Saabas – "Compositional Type Systems for Stack-Based Low-Level Languages".
The low-level language with an operand stack

- Val bool, int.
- a state:
 - labels, ℓ (in a program counter pc)
 - an operand stack os: List(Val)
 - a storage st: Var → Val

Strongest assertions mirror operational semantics

```
\{pc = \ell \land os = n :: \zeta \land st = \sigma\}
\mathbf{store} \ x
\{pc = \ell + 1 \land os = \zeta \land st = \sigma[x := n]\}
```

Strongest Assertions

Uustalu, Saabas – "Compositional Type Systems for Stack-Based Low-Level Languages".

The low-level language with an operand stack

- Val bool, int.
- a state:
 - labels, ℓ (in a program counter pc)
 - an operand stack os: List(Val)
 - a storage st: Var → Val

Strongest assertions mirror operational semantics

$$\{ pc = \ell \ \land \ os = n :: \zeta \ \land \ st = \sigma \}$$

$$store \ x$$

$$\{ pc = \ell + 1 \ \land \ os = \zeta \ \land \ st = \sigma[x := n] \}$$

Specialised (Abstracted) Assertions

Specify the property we are interested in.

Abstract from irrelevant details.

For instance: the special property of interest: stack error freedom.

The abstraction and its meaning:

- abstr(3) = int, meaning of the abstraction (|int|) = {int},
- $abstr(3 :: \zeta) = int :: abstr(\zeta),$
- $abstr(\zeta) = \star$, meaning $(|\star|) = \{int, bool\}^{\star}$.

Specialised Assertion

$$\{pc = \ell \ \land \ os = \tau :: \Psi\}$$
 store $x \{pc = \ell + 1 \ \land \ os = \Psi\}$

Specialised (Abstracted) Assertions

Specify the property we are interested in.

Abstract from irrelevant details.

For instance: the special property of interest: stack error freedom.

The abstraction and its meaning:

- abstr(3) = int, meaning of the abstraction (|int|) = $\{int\}$,
- $abstr(3 :: \zeta) = int :: abstr(\zeta),$
- $abstr(\zeta) = \star$, meaning $(|\star|) = \{int, bool\}^{\star}$.

Specialised Assertion

$$\{pc = \ell \ \land \ os = \tau :: \Psi\}$$
 store $x \ \{pc = \ell + 1 \ \land \ os = \Psi\}$

Specialised (Abstracted) Assertions

Specify the property we are interested in.

Abstract from irrelevant details.

For instance: the special property of interest: stack error freedom.

The abstraction and its meaning:

- abstr(3) = int, meaning of the abstraction (|int|) = $\{int\}$,
- $abstr(3 :: \zeta) = int :: abstr(\zeta),$
- $abstr(\zeta) = \star$, meaning $(|\star|) = \{int, bool\}^{\star}$.

Specialised Assertion

$$\{pc = \ell \land os = \tau :: \Psi\} \text{ store } x \{pc = \ell + 1 \land os = \Psi\}$$

What is Soundness

What is soundness

 $\{A\}$ c $\{B\}$ is sound iff it is provable from the logic of the strongest specifications together with the rule of consequence

$$\frac{\{\tilde{A}\}\ c\ \{B\}\qquad (A\longrightarrow B)\longrightarrow (\tilde{A}'\longrightarrow B')}{\{A'\}\ c\ \{B'\}}$$

Yet another definition – via abstract operational semantics?

If typing appears from abstract interpretation -

- {(| abstrA |)} c {(| abstrB |)}
- the *preservation of evaluation* principle:

$$(\ell, \zeta, \sigma), c \leadsto (\ell', \zeta', \sigma') \text{ implies}$$

 $(\ell, abstr(\zeta),), c \leadsto (\ell', abstr(\zeta'),).$

What is Soundness

What is soundness

 $\{A\}$ c $\{B\}$ is sound iff it is provable from the logic of the strongest specifications together with the rule of consequence

$$\frac{\{A\}\ c\ \{B\}\qquad (A\longrightarrow B)\longrightarrow (A'\longrightarrow B')}{\{A'\}\ c\ \{B'\}}$$

Yet another definition - via abstract operational semantics?

If typing appears from abstract interpretation -

- {(| abstrA |)} c {(| abstrB |)}
- the *preservation of evaluation* principle:

$$(\ell, \zeta, \sigma), c \rightsquigarrow (\ell', \zeta', \sigma') \text{ implies}$$

 $(\ell, abstr(\zeta),), c \rightsquigarrow (\ell', abstr(\zeta'),).$

What is Soundness

What is soundness

 $\{A\}$ c $\{B\}$ is sound iff it is provable from the logic of the strongest specifications together with the rule of consequence

$$\frac{\{A\}\ c\ \{B\}\qquad (A\longrightarrow B)\longrightarrow (A'\longrightarrow B')}{\{A'\}\ c\ \{B'\}}$$

Yet another definition – via abstract operational semantics?

If typing appears from abstract interpretation -

- {(| abstrA |)} c {(| abstrB |)}
- the preservation of evaluation principle:

$$(\ell, \zeta, \sigma), c \leadsto (\ell', \zeta', \sigma') \text{ implies}$$

 $(\ell, abstr(\zeta),), c \leadsto (\ell', abstr(\zeta'),).$

A "consequence" may be difficult to prove

An expression free subgoal

Consequence:
$$\frac{\{A\}\ c\ \{B\}\qquad (A\longrightarrow B)\longrightarrow (A'\longrightarrow B')}{\{A'\}\ c\ \{B'\}}$$
 The subgoal $(A\longrightarrow B)\longrightarrow (A'\longrightarrow B')$ may be difficult to prove.

The case of composition

$$\{A_1\}$$
 c_1 $\{B_1\}$ $\{A_2\}$ c_2 $\{B_2\}$ $A \longrightarrow A_1$ OK
$$B_1 \longrightarrow A_2 \quad \text{may be too strong}$$

$$B_2 \longrightarrow B \quad \text{may be too strong}$$

$$\{A\}$$
 c_1 ; c_2 $\{B\}$

A "consequence" may be difficult to prove

An expression free subgoal

Consequence:
$$\frac{\{A\} \ c \ \{B\} \qquad (A \longrightarrow B) \longrightarrow (A' \longrightarrow B')}{\{A'\} \ c \ \{B'\}}$$

The subgoal $(A \longrightarrow B) \longrightarrow (A' \longrightarrow B')$ may be difficult to prove.

The case of composition

$$\{A_1\}$$
 c_1 $\{B_1\}$ $\{A_2\}$ c_2 $\{B_2\}$ $A \longrightarrow A_1$ OK $B_1 \longrightarrow A_2$ may be too strong $B_2 \longrightarrow B$ may be too strong $\{A\}$ $\{C_1\}$ $\{C_2\}$ $\{B\}$

Modularised Subgoal

$$\begin{cases}
A_1 \} c_1 \{B_1\} & \{A_2\} c_2 \{B_2\} \\
A \longrightarrow A_1 & \\
A \longrightarrow A_1 \longrightarrow B_1 \longrightarrow A_2 \\
A \longrightarrow A_1 \longrightarrow B_1 \longrightarrow A_2 \longrightarrow B_2 \longrightarrow B
\end{cases}$$

$$\begin{cases}
A \} c_1; c_2 \{B\}
\end{cases}$$

It is sound!

Parametric Specialised Assertions

In fact,

$$\begin{array}{ll}
\{?A_1\} c_1 \{?B_1\} & \{?A_2\} c_2 \{?B_2\} \\
?A \longrightarrow ?A_1 \\
?A \longrightarrow ?A_1 \longrightarrow ?B_1 \longrightarrow ?A_2 \\
?A \longrightarrow ?A_1 \longrightarrow ?B_1 \longrightarrow ?A_2 \longrightarrow ?B_2 \longrightarrow ?B
\end{array}$$

$$\begin{array}{ll}
\{?A\} c_1; c_2 \{?B\} \end{array}$$

is sound!

That is we have a "template lemma", where parameters may be instantiated by arbitrary assertions ...

Summary

- The proof-of-the-concept template specialised logic have been designed.
- It helps in soundness proving for type systems.
- Future work
 - Testing ...
 - How do the preservation of evaluation for an abstract operational semantics and *this* soundness interplay?

Summary

- The proof-of-the-concept template specialised logic have been designed.
- It helps in soundness proving for type systems.
- Future work
 - Testing ...
 - How do the preservation of evaluation for an abstract operational semantics and *this* soundness interplay?

Summary

- The proof-of-the-concept template specialised logic have been designed.
- It helps in soundness proving for type systems.
- Future work
 - Testing ...
 - How do the preservation of evaluation for an abstract operational semantics and *this* soundness interplay?