
Constructing Strictly Positive Types

A Joint venture of the Nottingham Container

Consortium and the Epigram Team

Peter Morris

w/ Thorsten Altenkirch

pwm@cs.nott.ac.uk

University of Nottingham

Constructing Strictly Positive Types – p. 1/10

First up

• This talk is about dependently typed programming,
specifically the datatypes we use to do it

• What we have:

data A : ? n : Nat
Vec A n : ?

where
ε : Vec A 0

; a : A as : Vec A n
a::as : Vec A (1+ n)

• + Pattern matching, Structural Recursion. . .

Constructing Strictly Positive Types – p. 2/10

First up

• This talk is about dependently typed programming,
specifically the datatypes we use to do it

• What we have:

data A : ? n : Nat
Vec A n : ?

where
ε : Vec A 0

; a : A as : Vec A n
a::as : Vec A (1+ n)

• + Pattern matching, Structural Recursion. . .

Constructing Strictly Positive Types – p. 2/10

First up

• This talk is about dependently typed programming,
specifically the datatypes we use to do it

• What we have:

data A : ? n : Nat
Vec A n : ?

where
ε : Vec A 0

; a : A as : Vec A n
a::as : Vec A (1+ n)

• + Pattern matching, Structural Recursion. . .

Constructing Strictly Positive Types – p. 2/10

What else?

• We really want to add more support for the
programmer

• Reusable libraries of code to use with a range of
datatypes

• Datatype Generics (Vectors, Lists, Telescopes. . .)

• Remove Boilerplate

• We’d also like to be able to express the theory of our
datatypes in the language

• To better define what datatypes ARE

• To explain the generation of ⇐ rec and ⇐ case
gadgets

• To build Epigram in Epigram?

Constructing Strictly Positive Types – p. 3/10

What else?

• We really want to add more support for the
programmer

• Reusable libraries of code to use with a range of
datatypes

• Datatype Generics (Vectors, Lists, Telescopes. . .)

• Remove Boilerplate

• We’d also like to be able to express the theory of our
datatypes in the language

• To better define what datatypes ARE

• To explain the generation of ⇐ rec and ⇐ case
gadgets

• To build Epigram in Epigram?

Constructing Strictly Positive Types – p. 3/10

data currently

Data declarations must conform to Luo’s syntactic test for
strict positivity

· · ·
a : A f : B a → WA B

sup a f : WA B
Is OK

· · ·
f : (X → Bool) → Bool

c f : X
Is not (Negative)

· · ·
ts : List (RoseTree A)
node ts : RoseTree a

Is also rejected. . .

Constructing Strictly Positive Types – p. 4/10

data currently

Data declarations must conform to Luo’s syntactic test for
strict positivity

· · ·
a : A f : B a → WA B

sup a f : WA B
Is OK

· · ·
f : (X → Bool) → Bool

c f : X
Is not (Negative)

· · ·
ts : List (RoseTree A)
node ts : RoseTree a

Is also rejected. . .

Constructing Strictly Positive Types – p. 4/10

data currently

Data declarations must conform to Luo’s syntactic test for
strict positivity

· · ·
a : A f : B a → WA B

sup a f : WA B
Is OK

· · ·
f : (X → Bool) → Bool

c f : X
Is not (Negative)

· · ·
ts : List (RoseTree A)
node ts : RoseTree a

Is also rejected. . .

Constructing Strictly Positive Types – p. 4/10

data currently

Data declarations must conform to Luo’s syntactic test for
strict positivity

· · ·
a : A f : B a → WA B

sup a f : WA B
Is OK

· · ·
f : (X → Bool) → Bool

c f : X
Is not (Negative)

· · ·
ts : List (RoseTree A)
node ts : RoseTree a

Is also rejected. . .

Constructing Strictly Positive Types – p. 4/10

What are containers?

Containers have a set of Shapes. S : ?. . .

and for each shape, some set of Positions where data goes
P : ∀s : S ⇒ ?

For example:
Lists have a shape very similar to the natural numbers. . .
and given a shape the set of positions has exactly that many
elements

ε • • • • • •

Closed under: µ,+,×,K →. . .

Constructing Strictly Positive Types – p. 5/10

What are containers?

Containers have a set of Shapes. S : ?. . .

and for each shape, some set of Positions where data goes
P : ∀s : S ⇒ ?

For example:
Lists have a shape very similar to the natural numbers. . .

and given a shape the set of positions has exactly that many
elements

ε • • • • • •

Closed under: µ,+,×,K →. . .

Constructing Strictly Positive Types – p. 5/10

What are containers?

Containers have a set of Shapes. S : ?. . .
and for each shape, some set of Positions where data goes
P : ∀s : S ⇒ ?

For example:
Lists have a shape very similar to the natural numbers. . .
and given a shape the set of positions has exactly that many
elements

ε • • • • • •

Closed under: µ,+,×,K →. . .

Constructing Strictly Positive Types – p. 5/10

What are containers?

Containers have a set of Shapes. S : ?. . .
and for each shape, some set of Positions where data goes
P : ∀s : S ⇒ ?

For example:
Lists have a shape very similar to the natural numbers. . .
and given a shape the set of positions has exactly that many
elements

ε • • • • • •

Closed under: µ,+,×,K →. . .

Constructing Strictly Positive Types – p. 5/10

Indexed Containers

Are given by:

• A Type of Shapes

• For each shape an Output index. . .

• and a Type of Positions

• And for each position an Input index

I ,O : ?
IC I O : ?

where

S : ?

q : S → O

P : S → ?

r : ∀s : S ⇒ P s → I

(

q

|SC

P

|

r

) : IC I O

Constructing Strictly Positive Types – p. 6/10

Indexed Containers

Are given by:

• A Type of Shapes

• For each shape an Output index. . .

• and a Type of Positions

• And for each position an Input index

I ,O : ?
IC I O : ?

where

S : ?

q : S → O

P : S → ?

r : ∀s : S ⇒ P s → I

(q |SC

P

|

r

) : IC I O

Constructing Strictly Positive Types – p. 6/10

Indexed Containers

Are given by:

• A Type of Shapes

• For each shape an Output index. . .

• and a Type of Positions

• And for each position an Input index

I ,O : ?
IC I O : ?

where

S : ?

q : S → O

P : S → ?

r : ∀s : S ⇒ P s → I

(q |SCP |

r

) : IC I O

Constructing Strictly Positive Types – p. 6/10

Indexed Containers

Are given by:

• A Type of Shapes

• For each shape an Output index. . .

• and a Type of Positions

• And for each position an Input index

I ,O : ?
IC I O : ?

where

S : ?

q : S → O

P : S → ?

r : ∀s : S ⇒ P s → I

(q |SCP |r) : IC I O

Constructing Strictly Positive Types – p. 6/10

Extension

The Extension of an Indexed Container (q |SCP |r) : IC I O

gives rise to a functor:

Jq |SCP |rK : (I → ?) → (O → ?)

which is given by:

Jq |SCP |rK X o ⇒

∃s : S ⇒ (o = q s)× (∀p : P s ⇒ X (r s p))

Constructing Strictly Positive Types – p. 7/10

Extension

The Extension of an Indexed Container (q |SCP |r) : IC I O

gives rise to a functor:

Jq |SCP |rK : (I → ?) → (O → ?)

which is given by:

Jq |SCP |rK X o ⇒

∃s : S ⇒ (o = q s)× (∀p : P s ⇒ X (r s p))

Constructing Strictly Positive Types – p. 7/10

What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes

Constructing Strictly Positive Types – p. 8/10

What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes

Constructing Strictly Positive Types – p. 8/10

What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes

Constructing Strictly Positive Types – p. 8/10

What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes

Constructing Strictly Positive Types – p. 8/10

What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes

Constructing Strictly Positive Types – p. 8/10

SPF

data
~I : Vec ? n O : ?

SPF ~I O : ?
where

‘Z’ : SPF (~I ::O) O

T : SPF ~I O

‘wk’ T : SPF (~I ::I) O

f : ∀t : Fin n ⇒ SPF ~I O

‘Tag’ f : SPF ~I (O ×Fin n) ‘0’, ‘1’ : SPF ~I O

f : O → O ′ T : SPF ~I O

‘Σ’O f T : SPF ~I O ′

f : O ′ → O T : SPF ~I O

‘∆’O f T : SPF ~I O ′

f : O → O ′ T : SPF ~I O

‘Π’O f T : SPF ~I O ′

T : SPF (~I ::O) O

‘µ’ T : SPF ~I O

Constructing Strictly Positive Types – p. 9/10

El

data T : F ~I O ~T : Tel ~I o : O

JT K ~T o : ?
where

v : JT K ~T ~X o

top v : J‘Z’K (~T ::T) o

v : JT K ~T ~X o

pop v : J‘wk’ T K (~T ::T) o

v : Jf tK ~T o

tag v : J‘Tag’f K ~T (o; t) void : J‘1’K ~T o

v : JT K ~T o

σo v : J‘Σ’f T K ~T (f o)

v : JT K ~T (f o)

δ v : J‘∆’f T K ~T o

~v : ∀o : O ; p : (f o) = o ′JT K ~T o

π ~v : J‘Π’f T K ~T o ′

v : JT K (~T ::(‘µ’ T)) o

in v : J‘µ’ T K ~T o

Constructing Strictly Positive Types – p. 10/10

	First up
	First up
	First up

	What else?
	What else?

	data currently
	data currently
	data currently
	data currently

	What are containers?
	What are containers?
	What are containers?
	What are containers?

	Indexed Containers
	Indexed Containers
	Indexed Containers
	Indexed Containers

	Extension
	Extension

	What we have done
	What we have done
	What we have done
	What we have done
	What we have done

	SPF
	El

