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First up

• This talk is about dependently typed programming,
specifically the datatypes we use to do it

• What we have:

data A : ? n : Nat
Vec A n : ?

where
ε : Vec A 0

; a : A as : Vec A n
a::as : Vec A (1+ n)

• + Pattern matching, Structural Recursion. . .
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What else?

• We really want to add more support for the
programmer

• Reusable libraries of code to use with a range of
datatypes

• Datatype Generics (Vectors, Lists, Telescopes. . . )

• Remove Boilerplate

• We’d also like to be able to express the theory of our
datatypes in the language

• To better define what datatypes ARE

• To explain the generation of ⇐ rec and ⇐ case
gadgets

• To build Epigram in Epigram?
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data currently

Data declarations must conform to Luo’s syntactic test for
strict positivity

· · ·
a : A f : B a → WA B

sup a f : WA B
Is OK

· · ·
f : (X → Bool) → Bool

c f : X
Is not (Negative)

· · ·
ts : List (RoseTree A)
node ts : RoseTree a

Is also rejected. . .
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What are containers?

Containers have a set of Shapes. S : ?. . .

and for each shape, some set of Positions where data goes
P : ∀s : S ⇒ ?

For example:
Lists have a shape very similar to the natural numbers. . .
and given a shape the set of positions has exactly that many
elements

ε • • • • • •

Closed under: µ,+,×,K →. . .
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Indexed Containers

Are given by:

• A Type of Shapes

• For each shape an Output index. . .

• and a Type of Positions

• And for each position an Input index

I ,O : ?
IC I O : ?

where

S : ?

q : S → O

P : S → ?

r : ∀s : S ⇒ P s → I

(

q

|SC

P

|

r

) : IC I O
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Extension

The Extension of an Indexed Container (q |SCP |r) : IC I O

gives rise to a functor:

Jq |SCP |rK : (I → ?) → (O → ?)

which is given by:

Jq |SCP |rK X o ⇒

∃s : S ⇒ (o = q s)× (∀p : P s ⇒ X (r s p))
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What we have done

• We have a Universe of Indexed Containers which
contains codes for all Strictly Positive Families.

• The codes and interpretation are both Epigram
datatypes.

• This gives us a semantic, compositional notion of SPFs
in Epigram

• Functions in this universe are generic programs.

• Conclusion? Defining what we really mean by
‘datatype’ can give us Generic programming for all
Epigram datatypes
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SPF

data
~I : Vec ? n O : ?

SPF ~I O : ?
where

‘Z’ : SPF (~I ::O) O

T : SPF ~I O

‘wk’ T : SPF (~I ::I ) O

f : ∀t : Fin n ⇒ SPF ~I O

‘Tag’ f : SPF ~I (O ×Fin n) ‘0’, ‘1’ : SPF ~I O

f : O → O ′ T : SPF ~I O

‘Σ’O f T : SPF ~I O ′

f : O ′ → O T : SPF ~I O

‘∆’O f T : SPF ~I O ′

f : O → O ′ T : SPF ~I O

‘Π’O f T : SPF ~I O ′

T : SPF (~I ::O) O

‘µ’ T : SPF ~I O
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El

data T : F ~I O ~T : Tel ~I o : O

JT K ~T o : ?
where

v : JT K ~T ~X o

top v : J‘Z’K (~T ::T ) o

v : JT K ~T ~X o

pop v : J‘wk’ T K (~T ::T ) o

v : Jf tK ~T o

tag v : J‘Tag’f K ~T (o; t) void : J‘1’K ~T o

v : JT K ~T o

σo v : J‘Σ’f T K ~T (f o)

v : JT K ~T (f o)

δ v : J‘∆’f T K ~T o

~v : ∀o : O ; p : (f o) = o ′JT K ~T o

π ~v : J‘Π’f T K ~T o ′

v : JT K (~T ::(‘µ’ T )) o

in v : J‘µ’ T K ~T o
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