Separability in classical lambda calculi

Silvia Ghilezan

University of Novi Sad, Serbia

joint work with

Hugo Herbelin

INRIA Futurs, France

Silvia Likavec

University of Turin, Italy

- * Böhm's theorem in lambda calculus
- * Böhm's theorem in classical setting
- * Failure of separability in $\lambda\mu$
- * Restoration of separability in $\Lambda\mu$
- * Extension of Parigot's $\lambda\mu$
- * Discussion on separability in symmetric $\overline{\lambda}\mu\widetilde{\mu}$

Böhm's theorem in lambda calculus

BT1 If M and N are two different $\beta\eta$ normal forms, then there is a context $C[\]$ such that

$$\ast \ C[M]$$
 reduces to x

*
$$C[N]$$
 reduces to y
 $C_1[] = (\lambda xy.C[])I\Omega$
 $C_1[M] = I$
 $C_1[N] = \Omega$

BT2 If M and N are two different $\beta\eta$ normal forms, then there is a context C[] such that C[M] reduces to a normal form, whereas C[N] is nonterminating.

Consequences of BT

Maximality of consistent equality

P and Q having different $\beta\eta$ nf (P=Q cannot be proved in $\lambda_{\beta\eta}$)

* By BT, $\lambda_{\beta\eta} + P = Q$ is inconsistent

* By BT, $\lambda_{eta\eta}$ is maximal consistent for normalisable terms

Observational equivalence

M, N observationally equiv. *iff* C[M] has a nf $\Leftrightarrow C[N]$ has a nf

* By BT, observational equivalence for normalisable terms coincides with $\beta\eta$ -equivalence

* Proof of **BT** is a refutation procedure for observational equivalence

Failure of separability in Parigot's $\lambda\mu$

 $\begin{array}{lll} M & ::= & x \| \lambda x.M \| MM \| \mu \alpha.c & (\text{unnamed terms}) \\ c & ::= & [\alpha]M & (\text{named terms, or commands}) \end{array}$

Failure of separability in Parigot's $\lambda\mu$

 $M ::= x \| \lambda x.M \| MM \| \mu \alpha.c$ (unnamed terms) $c ::= [\alpha]M$ (named terms, or commands) Reduction rules $(\beta) \qquad (\lambda x.M) N \quad \to \quad M[N/x]$ $(\mu_{app}) \quad (\mu \alpha.c) N \quad \rightarrow \quad \mu \alpha.c[[\alpha](\Box N))/\alpha]$ $(\mu_{var}) \quad [\beta]\mu\alpha.c \quad \rightarrow \quad c[\beta/\alpha]$ $(\eta_{\mu}) \qquad \mu \alpha. [\alpha] M \quad \rightarrow \quad M$ if lpha not free in M $(\eta) \qquad \lambda x.(M x) \quad \to \quad M$ if x not free in M

David and Py [2001]: failure of separability in $\lambda\mu$

Restoration of separability in $\Lambda\mu$

de Groote, Ong, Selinger, Saurin[2005] - alternative syntax $\Lambda\mu$ -calculus

 $M, c \quad ::= \quad x \mid \lambda x.M \mid MM \mid \mu \alpha.c \mid [\alpha]M$

Separability proposition

If M and N are not equal in $\Lambda\mu$ -calculus their observational behaviour is separable, i.e., for distinct fresh variables x and y, there is a context $M_1 \dots M_n$, such that $M M_1 \dots M_n = x$ and $N M_1 \dots M_n = y$.

Reasons

The difference lies in the rule μ_{var} which in the case of Parigot's $\lambda\mu$ -calculus can only occur in a configuration of the form

$$M(\mu\gamma.[\beta]\mu\alpha.c) \rightarrow M(\mu\gamma.c[\beta/\alpha])$$

while in the case of Saurin's $\lambda\mu$ -calculus, it can also occur in a configuration of the form

$$M\left([\beta]\mu\alpha.c\right) \rightarrow M\left(c[\beta/\alpha]\right)$$

so that the computational effect of any $\mu\alpha.c$ can be cancelled if we succeed in putting it in a context of the form $[\beta]\Box$. This last property is actually the reason why Saurin's completeness theorem works.

Translating $\Lambda\mu$ into Parigot's $\lambda\mu$

 $\lambda \mu_{\text{tp}}$ extension of $\lambda \mu$:

* continuation constant tp * dynamic binder $\widehat{\mu}$ tp Naive interpretation $\Lambda \mu$ in $\lambda \mu$ * $\mu \alpha.M$ as a $\lambda \mu$ -term $\mu \alpha.[tp]M$ * $[\alpha]M$ as a $\lambda \mu$ -term $\widehat{\mu}$ tp. $[\alpha]M$ Formal embedding: $\Pi : \Lambda \mu \mapsto \lambda \mu_{tp}$

$$\Pi(x) = x$$

$$\Pi(\lambda x.M) = \lambda x.\Pi(M)$$

$$\Pi(MN) = \Pi(M)\Pi(N)$$

$$\Pi(\mu\alpha.M) = \mu\alpha.[tp]\Pi(M)$$

$$\Pi([\alpha]M) = \hat{\mu}tp.[\alpha]\Pi(M)$$

Rules of
$$\lambda \mu_{\mathrm{tp}}$$

If M=N in $\Lambda\mu$ then $\Pi(M)=\Pi(N)$ in $\lambda\mu_{\mbox{tp}}\mbox{-calculus}.$

Translating $\lambda \mu_{\mathrm{tp}}$ back into $\Lambda \mu$

In order to show the equivalence of $\lambda \mu_{tp}$ and $\Lambda \mu$ Formal embedding $\Sigma : \lambda \mu_{tp} \mapsto \Lambda \mu$

$$\Sigma(x) = x$$

- $\Sigma(\lambda x.M) \qquad = \quad \lambda x.\Sigma(M)$
- $\Sigma(M N) = \Sigma(M) \Sigma(N)$
- $\Sigma(\mu\alpha.[\beta]M) = \mu\alpha.([\beta]\Sigma(M))$ if β distinct of tp
- $\Sigma(\mu\alpha.[\operatorname{tp}]M) \quad = \quad \mu\alpha.(\Sigma(M))$
- $\Sigma(\widehat{\mu} \operatorname{tp}.[\alpha]M) = [\alpha]\Sigma(M) \qquad \text{ if } \alpha \text{ distinct of tp}$

 $\Sigma(\widehat{\mu} \mathrm{tp.}[\mathrm{tp}]M) = \Sigma(M)$

Separability in $\lambda \mu_{tp}$

If M = N in $\lambda \mu_{\mathrm{tp}}$ then $\Sigma(M) = \Sigma(N)$ in $\Lambda \mu$ -calculus.

Separability in $\lambda \mu_{tp}$

If M = N in $\lambda \mu_{\text{tp}}$ then $\Sigma(M) = \Sigma(N)$ in $\Lambda \mu$ -calculus.

If M = N in $\Lambda \mu$ then $\Pi(M) = \Pi(N)$ in $\lambda \mu_{\text{tp}}$ -calculus.

Separability in $\lambda \mu_{tp}$

If M = N in $\lambda \mu_{\text{tp}}$ then $\Sigma(M) = \Sigma(N)$ in $\Lambda \mu$ -calculus.

If M = N in $\Lambda \mu$ then $\Pi(M) = \Pi(N)$ in $\lambda \mu_{tp}$ -calculus.

$\lambda \mu_{\mathrm{tp}}$ is observationally complete

for any M and N not equal there exists a context $M_1 \ldots M_n$, such that $M M_1 \ldots M_n = x$ and $N M_1 \ldots M_n = y$ for x and y being arbitrary fresh variables.

On separability in $\overline{\lambda}\mu\widetilde{\mu}$

Equality in the non-deterministic version is inconsistent.

Focus on $\overline{\lambda}\mu_n$ -calculus, the "canonical" CBN subsystem of $\overline{\lambda}\mu\widetilde{\mu}$. $\overline{\lambda}\mu_n$ -calculus

$$M ::= x \| \lambda x.M \| \mu \alpha.c$$
$$E ::= \alpha \| M \bullet E$$

 $c \quad ::= \quad \langle M \parallel E \rangle$

Reduction rules (η -rules omitted)

$$(\rightarrow^{\beta}) \quad \langle (\lambda x.M) \parallel N \bullet E \rangle \quad \rightarrow \quad \langle M[N/x] \parallel E \rangle$$
$$(\mu_n) \quad \langle \mu \alpha.c \parallel E \rangle \qquad \rightarrow \quad c[E/\alpha]$$

Mutual embedding of $\Lambda\mu$ and $\overline{\lambda}\mu_{n\mathbf{tp}}$

Extend $\overline{\lambda}\mu_n$ to $\overline{\lambda}\mu_{n\mathrm{tp}}$ by adding tp, $\widehat{\mu}\mathrm{tp.}c$ and rules (μ_{tp}) , (η_{tp})

Embedding
$$^{>}:\Lambda\mu\mapsto\overline{\lambda}\mu_{n}$$
tp

$$(x)^{>} = x$$

$$(\lambda x.M)^{>} = \lambda x.(M)^{>}$$

$$(MN)^{>} = \mu \alpha. \langle (M)^{>} \parallel (N)^{>} \bullet \alpha \rangle \quad \alpha \text{ is fresh}$$

$$(\mu \alpha.M)^{>} = \mu \alpha. \langle (M)^{>} \parallel \text{tp} \rangle$$

$$([\alpha]M)^{>} = \hat{\mu} \text{tp} \langle (M)^{>} \parallel \alpha \rangle$$

Embedding
$$_{>}:\overline{\lambda}\mu_{n}$$
tp $\mapsto \Lambda\mu$

 $\begin{array}{rcl} (x)_{>} &=& x \\ (\lambda x.M)_{>} &=& \lambda x.(M)_{>} \\ (\mu \alpha.c)_{>} &=& \mu \alpha.(c)_{>} \\ (\hat{\mu} tp.c)_{>} &=& (c)_{>} \\ (\alpha)_{>} \{O\} &=& (c)_{>} \\ (\alpha)_{>} \{O\} &=& [\alpha]O \\ (tp)_{>} \{O\} &=& O \\ (tp)_{>} \{O\} &=& O \\ (M \bullet E)_{>} \{O\} &=& (E)_{>} \{O(M)_{>} \} \\ (\langle M \parallel E \rangle)_{>} &=& (E)_{>} \{(M)_{>} \} \end{array}$

Conjectures on separability in $\lambda \mu_{tp}$

Conjecture 1 If M = N in $\Lambda\mu$ -calculus then $(M)^> = (N)^>$ in $\overline{\lambda}\mu_{ntp}$ -calculus.

Conjecture 2 If M = N in $\overline{\lambda}\mu_{ntp}$ -calculus then $(M)_{>} = (N)_{>}$ in $\Lambda\mu$ -calculus.

Ongoing and future work

- * Investigation of Böhm's theorem in the simply typed $\lambda\mu$ -calculi and $\overline{\lambda}\mu\widetilde{\mu}$ -calculus based on the Böhm's theorem in the simply typed λ -calculs by Došen and Petrić[2001], Statman[1982], Simpson[1995].
- * Investigation of the Böhm's theorem for CBV $\lambda\mu$ -calculus?
- * Relation of separability results of CBV $\lambda\mu$ -calculus and Böhm's theorem in λ_v , CBV λ -calculus, which is a result by Paolini[2001].