Separability in classical lambda calculi

Silvia Ghilezan
University of Novi Sad, Serbia
joint work with
Hugo Herbelin
INRIA Futurs, France
Silvia Likavec
University of Turin, Italy

Plan

* Böhm's theorem in lambda calculus
* Böhm's theorem in classical setting
* Failure of separability in $\lambda \mu$
* Restoration of separability in $\Lambda \mu$
* Extension of Parigot's $\lambda \mu$
* Discussion on separability in symmetric $\bar{\lambda} \mu \widetilde{\mu}$

Böhm's theorem in lambda calculus

BT1 If M and N are two different $\beta \eta$ normal forms, then there is a context C [] such that

* $C[M]$ reduces to x
* $C[N]$ reduces to y

$$
C_{1}[]=(\lambda x y . C[]) I \Omega
$$

$$
C_{1}[M]=I
$$

$$
C_{1}[N]=\Omega
$$

BT2 If M and N are two different $\beta \eta$ normal forms, then there is a context $C[]$ such that $C[M]$ reduces to a normal form, whereas $C[N]$ is nonterminating.

Consequences of BT

Maximality of consistent equality

P and Q having different $\beta \eta$ nf ($P=Q$ cannot be proved in $\lambda_{\beta \eta}$)

* By $\mathrm{BT}, \lambda_{\beta \eta}+P=Q$ is inconsistent
* By $\mathrm{BT}, \lambda_{\beta \eta}$ is maximal consistent for normalisable terms

Observational equivalence
M, N observationally equiv. iff $C[M]$ has a nf $\Leftrightarrow C[N]$ has a nf

* By BT, observational equivalence for normalisable terms coincides with
$\beta \eta$-equivalence
* Proof of $B T$ is a refutation procedure for observational equivalence

Failure of separability in Parigot's $\lambda \mu$

$$
\begin{array}{lll}
M::=x|\lambda x . M| M M \mid \mu \alpha . c & \text { (unnamed terms) } \\
c::=[\alpha] M & \text { (named terms, or commands) }
\end{array}
$$

Failure of separability in Parigot's $\lambda \mu$

\[

\]

David and Py [2001]: failure of separability in $\lambda \mu$

Restoration of separability in $\Lambda \mu$

de Groote, Ong, Selinger, Saurin[2005] - alternative syntax
$\Lambda \mu$-calculus

$$
M, c::=x\|\lambda x . M\| M M\|\mu \alpha . c\|[\alpha] M
$$

Separability proposition
If M and N are not equal in $\Lambda \mu$-calculus their observational behaviour is separable, i.e., for distinct fresh variables x and y, there is a context $M_{1} \ldots M_{n}$, such that $M M_{1} \ldots M_{n}=x$ and $N M_{1} \ldots M_{n}=y$.

Reasons

The difference lies in the rule $\mu_{v a r}$ which in the case of Parigot's $\lambda \mu$-calculus can only occur in a configuration of the form

$$
M(\mu \gamma \cdot[\beta] \mu \alpha . c) \quad \rightarrow \quad M(\mu \gamma \cdot c[\beta / \alpha])
$$

while in the case of Saurin's $\lambda \mu$-calculus, it can also occur in a configuration of the form

$$
M([\beta] \mu \alpha . c) \quad \rightarrow \quad M(c[\beta / \alpha])
$$

so that the computational effect of any $\mu \alpha . c$ can be cancelled if we succeed in putting it in a context of the form $[\beta] \square$. This last property is actually the reason why Saurin's completeness theorem works.

Translating $\Lambda \mu$ into Parigot's $\lambda \mu$

$$
\lambda \mu_{\mathrm{tp}} \text { extension of } \lambda \mu:
$$

* continuation constant tp
* dynamic binder $\widehat{\mu}$ tp

Naive interpretation $\Lambda \mu$ in $\lambda \mu$
$* \mu \alpha . M$ as a $\lambda \mu$-term $\mu \alpha .[$ tp $] M \quad *[\alpha] M$ as a $\lambda \mu$-term $\widehat{\mu}$ tp. $[\alpha] M$
Formal embedding: $\Pi: \Lambda \mu \mapsto \lambda \mu_{\mathrm{tp}}$

$$
\begin{array}{ll}
\Pi(x) & =x \\
\Pi(\lambda x \cdot M) & =\lambda x \cdot \Pi(M) \\
\Pi(M N) & =\Pi(M) \Pi(N) \\
\Pi(\mu \alpha \cdot M) & =\mu \alpha \cdot[\operatorname{tp}] \Pi(M) \\
\Pi([\alpha] M) & =\widehat{\mu} \operatorname{tp} \cdot[\alpha] \Pi(M)
\end{array}
$$

Rules of $\lambda \mu_{\mathbf{t p}}$

$$
\begin{array}{llll}
\left(\mu_{\mathrm{tp}}\right) & {[\mathrm{tp}] \hat{\mu} \mathrm{tp} . c} & \rightarrow & c \\
\left(\eta_{\mathrm{tp}}\right) & \widehat{\mu} \mathrm{tp} \cdot[\mathrm{tp}] M & \rightarrow & M
\end{array}
$$

$$
\text { If } M=N \text { in } \Lambda \mu \text { then } \Pi(M)=\Pi(N) \text { in } \lambda \mu_{\mathbf{t p}} \text {-calculus. }
$$

Translating $\lambda \mu_{\text {tp }}$ back into $\Lambda \mu$

In order to show the equivalence of $\lambda \mu_{\text {tp }}$ and $\Lambda \mu$
Formal embedding $\Sigma: \lambda \mu_{\text {tp }} \mapsto \Lambda \mu$

$$
\begin{array}{lll}
\Sigma(x) & =x & \\
\Sigma(\lambda x \cdot M) & =\lambda x \cdot \Sigma(M) & \\
\Sigma(M N) & =\Sigma(M) \Sigma(N) & \\
\Sigma(\mu \alpha \cdot[\beta] M) & =\mu \alpha \cdot([\beta] \Sigma(M)) & \text { if } \beta \text { distinct of tp } \\
\Sigma(\mu \alpha \cdot[\operatorname{tp}] M) & =\mu \alpha \cdot(\Sigma(M)) & \\
\Sigma(\widehat{\mu} \operatorname{tp} \cdot[\alpha] M) & =[\alpha] \Sigma(M) & \text { if } \alpha \text { distinct of tp } \\
\Sigma(\widehat{\mu} \operatorname{tp} \cdot[\operatorname{tp}] M) & =\Sigma(M) &
\end{array}
$$

Separability in $\lambda \mu_{\text {tp }}$

If $M=N$ in $\lambda \mu_{\text {tp }}$ then $\Sigma(M)=\Sigma(N)$ in $\Lambda \mu$-calculus.

Separability in $\lambda \mu_{\text {tp }}$

If $M=N$ in $\lambda \mu_{\text {tp }}$ then $\Sigma(M)=\Sigma(N)$ in $\Lambda \mu$-calculus.

If $M=N$ in $\Lambda \mu$ then $\Pi(M)=\Pi(N)$ in $\lambda \mu_{\text {tp }}$-calculus.

Separability in $\lambda \mu_{\text {tp }}$

If $M=N$ in $\lambda \mu_{\text {tp }}$ then $\Sigma(M)=\Sigma(N)$ in $\Lambda \mu$-calculus.

If $M=N$ in $\Lambda \mu$ then $\Pi(M)=\Pi(N)$ in $\lambda \mu_{\text {tp }}$-calculus.

$\lambda \mu_{\mathbf{t} \boldsymbol{p}}$ is observationally complete

for any M and N not equal there exists a context $M_{1} \ldots M_{n}$, such that $M M_{1} \ldots M_{n}=x$ and $N M_{1} \ldots M_{n}=y$ for x and y being arbitrary fresh variables.

On separability in $\bar{\lambda} \mu \widetilde{\mu}$

Equality in the non-deterministic version is inconsistent.
Focus on $\bar{\lambda} \mu_{n}$-calculus, the "canonical" CBN subsystem of $\bar{\lambda} \mu \widetilde{\mu}$.

$$
\bar{\lambda} \mu_{n} \text {-calculus }
$$

$$
\begin{array}{ll}
M & ::=x\|\lambda x . M\| \mu \alpha . c \\
E & ::=\alpha \| M \bullet E \\
c & ::=\langle M \| E\rangle
\end{array}
$$

Reduction rules (η-rules omitted)

$$
\begin{array}{ll}
\left(\rightarrow^{\beta}\right)\langle(\lambda x \cdot M) \| N \bullet E\rangle & \rightarrow\langle M[N / x] \| E\rangle \\
\left(\mu_{n}\right)\langle\mu \alpha . c \| E\rangle & \rightarrow c[E / \alpha]
\end{array}
$$

Mutual embedding of $\Lambda \mu$ and $\bar{\lambda} \mu_{n t p}$

Extend $\bar{\lambda} \mu_{n}$ to $\bar{\lambda} \mu_{n \text { tp }}$ by adding tp, $\widehat{\mu}$ tp. c and rules $\left(\mu_{\text {tp }}\right),\left(\eta_{\text {tp }}\right)$

$$
\begin{array}{ll}
& \text { Embedding }{ }^{>}: \Lambda \mu \mapsto \bar{\lambda} \mu_{n \text { tp }} \\
(x)^{>} & =x \\
(\lambda x . M)^{>} & =\lambda x \cdot(M)^{>} \\
(M N)^{>} & =\mu \alpha \cdot\left\langle(M)^{>} \|(N)^{>} \bullet \alpha\right\rangle \quad \alpha \text { is fresh } \\
(\mu \alpha \cdot M)^{>} & =\mu \alpha \cdot\left\langle(M)^{>} \| \text {tp }\right\rangle \\
([\alpha] M)^{>} & =\widehat{\mu} \operatorname{tp}\left\langle(M)^{>} \| \alpha\right\rangle
\end{array}
$$

Embedding $>: \bar{\lambda} \mu_{n t p} \mapsto \Lambda \mu$

$$
\begin{array}{ll}
(x)_{>} & =x \\
(\lambda x . M)_{>} & =\lambda x \cdot(M)_{>} \\
(\mu \alpha . c)_{>} & =\mu \alpha \cdot(c)_{>} \\
(\hat{\mu} \mathrm{tp} . c)_{>} & =(c)_{>} \\
(\alpha)_{>}\{O\} & =[\alpha] O \\
(\operatorname{tp})_{>}\{O\} & =O \\
(M \bullet E)_{>}\{O\} & =(E)_{>}\left\{O(M)_{>}\right\} \\
(\langle M \| E\rangle)_{>} & =(E)_{>}\left\{(M)_{>}\right\}
\end{array}
$$

Conjectures on separability in $\lambda \mu_{\text {tp }}$

Conjecture 1 If $M=N$ in $\Lambda \mu$-calculus then $(M)^{>}=(N)^{>}$in $\bar{\lambda} \mu_{n t p}$-calculus.

Conjecture 2 If $M=N$ in $\bar{\lambda} \mu_{n t p}$-calculus then $(M)_{>}=(N)_{>}$ in $\Lambda \mu$-calculus.

Ongoing and future work

* Investigation of Böhm's theorem in the simply typed $\lambda \mu$-calculi and $\bar{\lambda} \mu \widetilde{\mu}$-calculus based on the Böhm's theorem in the simply typed λ-calculs by Došen and Petrić[2001], Statman[1982], Simpson[1995].
* Investigation of the Böhm's theorem for CBV $\lambda \mu$-calculus?
* Relation of separability results of CBV $\lambda \mu$-calculus and Böhm's theorem in λ_{v}, CBV λ-calculus, which is a result by Paolini[2001].

