A Monadic Approach to Certified Exact Real Arithmetic

Russell O'Connor Radboud University Nijmegen

> TYPES / TFP 2006 April 19, 2006

Certified Real Arithmetic

- Arbitrary precision real number computation
- We have fast complex libraries
 - MPFR
- We have slow certified implementations
 - C-CoRN
- We want to find the sweet spot of easy to certify fast enough real arithemetic.

Certified Reals Arithmetic

- Why certified?
 - Toward certified computer algebra
 - Certified calculator
 - Disproof of Merten's conjecture
 - Requires approximating roots of zeta function
 - Kepler conjecture
 - 99% certain it is correct
 - We are going to make that 100%.

Completion

- Let X be a "metric space".
- Define C(X) the metric space of regular functions.

$$C(X) \stackrel{\text{\tiny def}}{=} \{ f : \mathbb{Q}^+ \Rightarrow X \mid \forall \varepsilon_1 \varepsilon_2, \overline{B}_{\varepsilon_1 + \varepsilon_2}(f(\varepsilon_1), f(\varepsilon_2)) \}$$

Completion

- Let X be a "metric space".
- Define C(X) the metric space of regular functions.

$$C(X) \stackrel{\text{def}}{=} \{ f : \mathbb{Q}^+ \Rightarrow X \mid \forall \varepsilon_1 \varepsilon_2, \overline{B}_{\varepsilon_1 + \varepsilon_2}(f(\varepsilon_1), f(\varepsilon_2)) \}$$

- C is a monad.
 - $-X \hookrightarrow C(X)$
 - $-C(C(X)) \rightarrow C(X)$
 - $-(X \to Y) \Rightarrow (C(X) \to C(Y))$

Uniform Continuity

Suppose

- X is a nice metric space.
- $-f: X \to Y$ is uniformly continuous with modulus μ .
- $-x: \mathbb{Q}^+ \Rightarrow X$ is a regular function.

Uniform Continuity

Suppose

- X is a nice metric space.
- $-f: X \to Y$ is uniformly continuous with modulus μ .
- $-x: \mathbb{Q}^+ \Rightarrow X$ is a regular function.

Then

- $f \circ x \circ \mu : \mathbb{Q}^+ \Rightarrow Y$ is a regular function.

Uniform Continuity

Suppose

- X is a nice metric space.
- $-f: X \to Y$ is uniformly continuous with modulus μ .
- $-x: \mathbb{Q}^+ \Rightarrow X$ is a regular function.
- Then
 - $f \circ x \circ \mu : \mathbb{Q}^+ \Rightarrow Y$ is a regular function.
- This yields the map operation of type

$$(X \to Y) \Rightarrow (C(X) \to C(Y)).$$

Uniformly Continuous Functions

- Q is nice.
- Uniformly continuous functions, $\mathbb{Q} \to \mathbb{Q}$:
 - $-\lambda x$. -x
 - $-\lambda x$. |x|
 - $-\lambda x$, c + x
 - $-\lambda x. cx$
 - $\lambda \varepsilon (c^{-1}\varepsilon)$'s a modulus of continuity
- All these lift to $C(\mathbb{Q}) \to C(\mathbb{Q})$.

Uniformly Continuous, Curried Functions

- $X \to \mathbb{Q}$ is a metric space.
 - Using the ∞-norm.
- More uniformly continuous functions,

$$\mathbb{Q} \to ([a, b] \to \mathbb{Q})$$
:

- $-\lambda x. \lambda y. x + y$
- $-\lambda x. \lambda y. xy$
- All these lift to $C(\mathbb{Q}) \to C([a, b] \to \mathbb{Q})$.
 - Isomorphic to $C(\mathbb{Q}) \to C([a, b]) \to C(\mathbb{Q})$.

Reciprocal

- Let $x : C(\mathbb{Q})$ and x # 0.
- Consider 0 < a < x where $a : \mathbb{Q}$.
- Consider the domain $[a, \infty) \cap \mathbb{Q}$.

Reciprocal

- Let $x : C(\mathbb{Q})$ and x # 0.
- Consider 0 < a < x where $a : \mathbb{Q}$.
- Consider the domain $[a, \infty) \cap \mathbb{Q}$.
- λy . $(\max(a, y))^{-1}$ is uniformly continuous with modulus $\lambda \varepsilon$. εa^2 .
- Map x over this uniformly continuous function.

Calculus

Taylor series!

$$\cos(a) = \sum_{i=0}^{\infty} \frac{(-1)^{i} a^{2i}}{(2i)!}$$

Alternating sums easily make regular functions.

$$-\cos_{\mathbb{Q}}:\mathbb{Q}\to C(\mathbb{Q})$$

- bind
$$\cos_{\mathbb{Q}} : C(\mathbb{Q}) \to C(\mathbb{Q})$$

Range Reduction - exp

$$\exp(x) = \frac{1}{\exp(-x)}$$

Range Reduction - In

$$\ln(x) = -\ln(\frac{1}{x})$$

Range Reduction - exp

$$\exp(x) = \exp^2(\frac{x}{2})$$

Range Reduction - cos

$$\cos(x) = 1 - 2\sin^2(\frac{x}{2})$$

Range Reduction - sin

$$\sin(x) = 3\sin(\frac{x}{3}) - 4\sin^3(\frac{x}{3})$$

Range Reduction - In

$$\ln(x) = \ln\left(\frac{x}{2^n}\right) + n\ln(2)$$

Range Reduction - In

$$\ln(x) = \ln(\frac{3}{4}x) + \ln(\frac{4}{3})$$

Range Reduction - arctan

$$\arctan(x) = -\arctan(-x)$$

Range Reduction - arctan

$$0 \le x \Rightarrow \arctan(x) = \frac{\pi}{2} - \arctan(\frac{1}{x})$$

Range Reduction - arctan

$$0 \le x \Rightarrow \arctan(x) = \frac{\pi}{4} + \arctan(\frac{x-1}{x+1})$$

 π

$$\pi = 48 \arctan(\frac{1}{38}) + 80 \arctan(\frac{1}{57}) + 28 \arctan(\frac{1}{239}) + 96 \arctan(\frac{1}{268})$$

Compression

- $[a \varepsilon, a + \varepsilon]$ contains a unique smallest rational.
- Let $approx_{\varepsilon}(a)$ be that rational.
- Let $x : C(\mathbb{Q})$.
- $\lambda \varepsilon$. approx_{$\varepsilon/2$} $(x(\varepsilon/2)) : C(\mathbb{Q})$

is equivalent to x but "smaller".

Correctness

- What does it mean to be correct?
 - Could prove properties of these functions.
 - Could prove equivalence to a reference standard.
- C-CoRN
 - Provides a reference implementation of real numbers in Coq.
- Formalize this theory in your favourite system!

Speed

- Is this fast enough?
- What is fast enough?
- Hales's proof of the Kepler conjecture provides a "test suite".
- Haskell prototype: Few Digits
 - Entered in the "Many Digits" competition
 - Did not finish last!

Other Representations

$$C(X) \quad \{f : \mathbb{Q}^+ \Rightarrow X \mid \forall \varepsilon_1 \varepsilon_2, \overline{B}_{\varepsilon_1 + \varepsilon_2}(f(\varepsilon_1), f(\varepsilon_2)) \}$$

$$\text{Gauge} \qquad \text{Base}$$

$$\{2^n \mid n : \mathbb{Z}\} \qquad \{a \, 2^b \mid a, b : \mathbb{Z}\}$$

$$\{\varphi^n \mid n : \mathbb{Z}\} \qquad \mathbb{Z}[\varphi]$$

Other Work

- Use the type $\mathbb{Q} + C(\mathbb{Q})$
 - Run rational operations when it is known to be rational
 - Sometimes rational operations are slower
- Have functions return an interval
 - Return a point the the result is known to be precise

More Information

- Google "Few Digits"
 - http://r6.ca/FewDigits/
- Upcoming paper in Mathematical Structures in Computer Science.