The DemoNat project

Patrick Thévenon patrick.thevenon@univ-savoie.fr

LAMA, Université de Savoie Chambéry

> 18 April 2006 Types 2006 Nottingham

The DemoNat project

• Aim of the projet :

 Develop a program able to Analyse and validate proofs in natural language

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うへつ

- What is it for :
 - Students can write proofs in a natural way
 - Faster to learn, because more intuitive
- Teams involved in the projet :
 - Lattice/Talana (Jussieu)
 - Calligramme (Nancy)
 - LAMA (Chambéry)

The system

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

My work in this project

- Practical :
 - Definition of a restricted language
 - Implementation of a prover
- Theoretical :
 - Principal type properties in a calculus with two arrows

・ロト (雪) (日) (日) (日) (日)

Study of a logic system observed from the prover

The Restricted language

- Uses a small grammar (let, assume, prove, deduce,...)
- Allows to give hints to the prover (by, with)
- Describes a tree of logical (meta) rules
- To each rule is associated a formula that justifies it

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めへで

The prover

- A resolution prover
- the prover is a functor (formulas are abstract type)
- To have a prover :
 - give a logic (definition of formulas, unification,...)

・ロト (雪) (日) (日) (日) (日)

- apply the functor to it
- Has been applied to
 - classical propositional and first order
 - will be used in PhoX, proof assistant developped by C. Raffalli

Lazy decomposition

- Problem : how to compute a set of clauses from a formula ?
- The justification of each step of a proof does not need to use the whole complexity of hypothesis
- We don't want to decompose everything while proving $F \to F$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うへつ

- The idea :
 - Decompose formulas during the proof search
 - clauses are sets of formulas (not necessarily atomic formulas)

A logical system from the prover

The logical rules (Pro	positional logic)	
$\frac{S = S'; \Gamma, A \lor B}{S; \Gamma, A, B}$	$\frac{S = S'; \Gamma, \neg (A \lor B)}{S; \Gamma, \neg A}$	$\frac{S = S'; \Gamma, \neg (A \lor B)}{S; \Gamma, \neg B}$
Same with arrows $(A ightarrow B = \neg A \lor B)$		
$S=S'; \Gamma, eg(A \wedge$	$B) S = S'; \Gamma, A \wedge B$	$S = S'; \Gamma, A \wedge B$
$S; \Gamma, \neg A, \neg B$	<u></u> <i>S</i> ; Г, А	<i>S</i> ; Г, <i>B</i>
$\frac{S = S'; \Gamma, A; \Gamma', \neg A}{S; \Gamma, \Gamma',} Res \frac{S = S'; \Gamma, A, A}{S; \Gamma, A} Contr$		

・ロト・日本・モン・モン・モー うへぐ

Logical rules

A Logical system

- dual to sequent calculus (elimination rules)
- similar to calculus of structures (non branching rules)

Aim

 Find a complete strategy of proof search : No resolution on formulas that are subformulas of unifiable formulas People interested can

ask me for more information or a private demonstration

・ロト・日本・日本・日本・日本・日本・日本

 Go see my web page : www.lama.univ-savoie.fr/~thevenon