
The DemoNat project

Patrick Thévenon
patrick.thevenon@univ-savoie.fr

LAMA, Université de Savoie
Chambéry

18 April 2006
Types 2006
Nottingham



The DemoNat project

• Aim of the projet :
I Develop a program able to

Analyse and validate proofs in natural language

• What is it for :
I Students can write proofs in a natural way
I Faster to learn, because more intuitive

• Teams involved in the projet :
I Lattice/Talana (Jussieu)
I Calligramme (Nancy)
I LAMA (Chambéry)



The system

Translation Automatic prover

Proof in
natural

Language

Proof

validated
Proof in

language
a restricted



My work in this project

• Practical :
I De�nition of a restricted language
I Implementation of a prover

• Theoretical :
I Principal type properties in a calculus with two arrows
I Study of a logic system observed from the prover



The Restricted language

I Uses a small grammar (let, assume, prove, deduce,. . .)

I Allows to give hints to the prover (by, with)

I Describes a tree of logical (meta) rules

I To each rule is associated a formula that justi�es it



The prover

• A resolution prover

• the prover is a functor (formulas are abstract type)

• To have a prover :
I give a logic (de�nition of formulas, uni�cation,. . .)
I apply the functor to it

• Has been applied to
I classical propositional and �rst order
I will be used in PhoX, proof assistant

developped by C. Ra�alli



Lazy decomposition

• Problem : how to compute a set of clauses from a formula ?

• The justi�cation of each step of a proof does not need
to use the whole complexity of hypothesis

• We don't want to decompose everything while proving F → F

• The idea :
I Decompose formulas during the proof search
I clauses are sets of formulas

(not necessarily atomic formulas)



A logical system from the prover

The logical rules (Propositional logic)

S = S
′; Γ,A ∨ B

S ; Γ,A,B

S = S
′; Γ,¬(A ∨ B)

S ; Γ,¬A

S = S
′; Γ,¬(A ∨ B)

S ; Γ,¬B

Same with arrows (A→ B = ¬A ∨ B)

S = S
′; Γ,¬(A ∧ B)

S ; Γ,¬A,¬B

S = S
′; Γ,A ∧ B

S ; Γ,A

S = S
′; Γ,A ∧ B

S ; Γ,B

S = S
′; Γ,A; Γ′,¬A

Res
S ; Γ, Γ′,

S = S
′; Γ,A,A

Contr
S ; Γ,A



Logical rules

A Logical system

I dual to sequent calculus (elimination rules)

I similar to calculus of structures (non branching rules)

Aim

I Find a complete strategy of proof search :
No resolution on formulas that are
subformulas of uni�able formulas



The Last Slide

People interested can

I ask me for more information or a private demonstration

I Go see my web page :
www.lama.univ-savoie.fr/∼thevenon


