Enhancing Elementary Affine Logic type inference with implicit cœrcions

Vincent Atassi — LIPN, Univ. Paris 13

TYPES Workshop, April 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Time bounded logics

- Origins: Subsystems of linear logic (Girard 98)
- Complexity properties are *Intrinsic* to the system (They don't rely on an analysis independent of type system)
- Complexity bounds are *implicit* (no bound is demanded to the user)
- It provides a logical characterisation of complexity classes
- \Rightarrow We use (polymorphic) multiplicative fragment as a type system for $\lambda\text{-calculus}$
- \Rightarrow Performs higher-order polymorphic langage complexity analysis

From Linear Logic (LL) to bounded time logics

$$\frac{\overline{A \vdash A} (AX)}{\Gamma, \Delta \vdash B} (CUT)$$

$$\frac{\overline{\Gamma \vdash A} B, \Delta \vdash C}{\Gamma, A \multimap B \vdash C} (-\circ -I) \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} (-\circ -r)$$

Figure: Core MLL

 \Rightarrow Usual rules of intuitionnistic logic. Except that there is no contraction: cut-elimination is in a linear number of steps. \Rightarrow Types *linear* lambda-calculus From Linear Logic (LL) to bounded time logics (2)

$$\frac{\overline{(A\times)}}{\overline{(A\times)}} = \frac{\overline{(A\times)}}{\overline{(A\times)}} = \frac{\overline{(A\times)}}{\overline{(A\times)}} (AX) = \frac$$

Figure: MLL + exponentials

 \Rightarrow Contraction, controled by modality "!", allows to recover full expressive power of intuitionnistic logic: cut-elimination is non-elementary

 \Rightarrow Variants of the rules on modalities will yield intermediary complexity classes.

Restriction of modality introduction

 \Rightarrow Boxes formed this way have a stratification property which leads to time bounded normalization

 \Rightarrow this stratification also allows for the application of the abstract part of Lamping's algorithm for Optimal Reduction

Some results

- ELL (resp. LLL) proof-nets reduce in elementary (resp. polynomial) time
- One can encode a Turing machine in LLL if a polynomial bound is given
- Elementary functions can be encoded in ELL
- It is undecidable whether a λ-term will reduce in polynomial time

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is undecidable wether an F typed λ-term will reduce in polynomial time

Related works

There is already an abundant litterature in this field:

- Base works:
 - ▶ Girard, Inf. & Comput. 98: ELL and LLL
 - Asperti, LICS 98; Asperti-Roversi 02: Affine variants
- Type inference:
 - ► Coppola-Martini, 2001: first type inference for EAL
 - Baillot, TCS 04: type inference for propositionnal LAL
 - ▶ Baillot-Terui, TLCA 05: *efficient* type inference for EAL
 - Submitted: Atassi-Baillot-Terui 06: efficient type inference for a polymorphic LAL variant (system F type decoration)

We will focus on type inference for Elementary Affine Logic, a variant of ${\rm ELL}.$

Complexity analysis performed isn't that useful, but the system is simpler and presented method scales to a polynomial logic.

- Presentation of EAL type system
- Type inference algorithm
- Extension of type system with subtyping to handle coercions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EAL type system

Natural deduction presentation with associated proof term (affine variant: unrestricted weakening):

$$\frac{\Gamma \vdash M : B}{\Gamma, x : A \vdash X : A} (VAR) = \frac{\Gamma \vdash M : B}{\Gamma, x : A \vdash M : B} (WEAK)$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \multimap B} (ABS) = \frac{\Gamma_1 \vdash M_1 : A \multimap B}{\Gamma_1, \Gamma_2 \vdash (M_1) M_2 : B} (APPL)$$

$$\frac{\Gamma_1 \vdash t_1 : |A_1 \dots \Gamma_n \vdash t_n : |A_n = x_1 : A_1, \dots, x_n : A_n \vdash M : B}{\Gamma_1, \dots, \Gamma_n \vdash M\{t_i/x_i\} : |B} (PROM)$$

$$\frac{x_1 : |A, \dots, x_n |A, \Gamma \vdash M : B}{|x : A, \Gamma \vdash M\{x/x_1, \dots, x/x_n\} : B} CONTR$$

Figure: EAL type system

⇒ Slight restriction of previous Sequent calculus presentation ⇒ (prom) and (contr) rule are not syntax directed — it is no big problem for (contr) but is for (prom)

PROM rule applications are boxes

Figure: Box placement for Church integer 2, resulting type is $!(A \multimap A) \multimap !A \multimap !A$

PROM rule applications are boxes

Figure: Box placement (2) for Church integer 2, resulting type is $!(A \multimap A) \multimap !(A \multimap A)$

PROM rule applications are boxes

Figure: Box placement for Church integer 2, resulting type is $!(A \multimap A) \multimap !(A \multimap A)$

Typability rephrased

Constraints on modalities and box placement:

bracketing Boxes must be well-formed:

- Each auxiliary door ("!") matches a main door
- Any variable is at the same level as its binder

typing Modalities consistency:

- ► Each applied function must be an arrow type (ie. A → B and not !(A → B))
- ► Unification is extended to banged types : ((t : (!ⁿA → B))t₂ : (!^mA) ⇒ m = n)

contraction Any contracted variable must have at least one "!"

 \Rightarrow A pseudo-term is ${\rm EAL}\xspace$ -typable iff it has a simple type and conforms to those conditions

 \Rightarrow A λ -term t is EAL-typable iff there exists a pseudo term p conforming to those conditions s.t. $(p)^- = t$

Typability to type inference

Determining wether a λ -term is EAL-typable:

- Simple type inference
- Term and types free decoration: fresh parameters at all term nodes, fresh parameters for each subtype of occuring types
- Term and type derivation explorations for *linear contraints* generation on those parameters, which will correspond to the previous criterions
- ► Solvability of the generated constraints ⇒ typability, and a solution to the constraints yields a type assignation

Example

Figure: Abtract syntax tree for Church integer 2

Example

Figure: Parametrized abtract syntax tree for Church integer 2

・ロト・4回ト・4回ト・4回ト・4回ト

Example

Figure: Simply typed parametrized abtract syntax tree

Example (2)

Bracketing constraints:

$$n1 \ge 0 \quad n2 + n3 + n5 \ge 0$$

$$n2 + n3 + n5 + n6 = 0 \quad n3 + n5 + n7 = 0$$

$$n3 + n5 \ge 0 \quad n3 \ge 0$$

$$n2 + n3 + n4 = 0 \quad n2 + n3 \ge 0$$

$$n2 \ge 0$$

- Contraction constraints: $p1 \ge 1$
- Type consistency constraints:

$$p1 + n6 = 0$$
 $p1 + n4 = 0$
 $p2 = p3 + n5$ $p2 = p4 + n7$

Plus some bookkeeping ones..

Type inference algorihtm

- Runs in polynomial time w.r.t. typed term size
- Has been implemented (in CAML) except for the resolution part (external LP solver)
- ► Gives an elementary bound: that is to say the height of an exponential tower 2^{2ⁿ}
- But scales well to a polynomial logic and polymorphic types
- And characterises a large set of terms reducible by Lamping's abstract algorithm

ELL and coercions

 \Rightarrow In our framework a *cœrcion* will be any function of type $A \multimap !A$, with A a datatype.

Example

In EAL the square function $\lambda n.(mult) n n$ is not typable, only $\lambda n.(mult) n (coerc_N) n$ is.

 \Rightarrow One faces the same difficulty in LLL or LAL.

 \Rightarrow Now, in the context of type inference, we automatized boxes placement. A further step is to automatize coercions placement. \Rightarrow The same way we enriched the input terms with boxes, we will enrich them with coercive subterms.

We have terms such that $x : B \vdash t : !B$ is derivable, for any base type (integers, binary words, booleans).

Placing coercions is adding *cuts* in proofs: sounds problematic for type inference.

But those cuts have *no computational value*: their only effect is to add modalities on positive sides of arrows, and to remove some on the negative side.

Hence the idea of a subtyping relation on types for expressing coercions: $N \leq !N$ and $!N \multimap N \leq N \multimap !N$.

A subtyping relation for cœrcions

We define first the subtyping relation for base types which admit c α rcions.

Definition

 \leq is defined by:

```
\forall n, m \text{ st } 0 \leq n \leq m, !^n N \leq !^m N \text{ and } !^n B \leq !^m B
```

Proposition

 \leq is reflexive and transitive.

Lemma (Correction of \leq)

If $A \leq B$, then $\exists t$ such that $x : A \vdash t : B$ is derivable and $t \longrightarrow_{\beta}^{*} x$.

Subtyping relation

$$(BASE) \xrightarrow{A \leq B} A \leq B \qquad (VAR) \xrightarrow{\alpha \leq \alpha}$$
$$(PROM) \xrightarrow{A \leq B} \qquad (ARROW) \xrightarrow{A_1 \geq A_2} \xrightarrow{B_1 \leq B_2}$$
$$(ARROW) \xrightarrow{A_1 \geq A_2} \xrightarrow{B_1 \leq A_2} \xrightarrow{B_2}$$
Figure: Subtyping system.

Lemma

 \leq is reflexive and transitive.

Proposition (\leq 's correction)

If $A \leq B$, then exists t such that $x : A \vdash t : B$ is derivable in EAL and $t \longrightarrow_{\beta\eta}^* x$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A coercions enriched type system

You add the two following rules to EAL to obtain $\vdash_{<:}$

$$\frac{\Gamma, x: B \vdash t: C \quad A \leq B}{\Gamma, x: A \vdash t: C} \ coerc - L \quad \frac{\Gamma \vdash t: A \quad A \leq B}{\Gamma \vdash t: B} \ coerc - R$$

The correction is given by:

Theorem If $\Gamma \vdash_{\leq} t$: A then $\exists t'$ such that $\Gamma \vdash_{EAL} t'$: A is derivable and $t' \longrightarrow_{\beta\eta}^{*} t$.

Proof.

Left side or right side cut with the term built from the subtyping derivation.

Type inference with cœrcions

$$\frac{A \leq B}{x : A \vdash x : B} (\text{VAR}) = \frac{\Gamma \vdash M : B}{\Gamma, x : A \vdash M : B} (\text{WEAK}) = \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \multimap B} (\text{ABS})$$

$$\frac{\Gamma_1 \vdash M_1 : B \multimap C}{\Gamma_1, \Gamma_2 \vdash (M_1 M_2) : D} (APPL)$$

$$\frac{x_1 : !C, \dots, x_n : !C, \Delta \vdash M : B}{x : A, \Delta \vdash M\{x/x_1, \dots, x/x_n\} : B} (CONTR)$$

$$\frac{\Gamma_1 \vdash M_1 : !A_1 \dots \Gamma_n \vdash M_n : !A_n = x_1 : A_1, \dots, x_n : A_n \vdash M : B}{\Gamma_1, \dots, \Gamma_n \vdash !M\{\overline{!}M_i/x_i\} : !B} (PROM)$$

Figure: $EAL \leq$ inference-driven type system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion & perspectives

To sum up:

- Subsystems of LL provide original characterisations of complexity classes
- We can use those systems for typed λ-calculus static analysis, extending typing properties to complexity bounds certificate
- We presented an efficient type inference algorithm, and an extension to subtyping, which allows for more intensionality

 \Rightarrow Programming in those systems remains very tedious. Some directions:

- Presented methods extend to a polynomial logic and polymorphic types (system F type decoration)
- Relations between complexity and Optimal Reduction
- Extending typing system (recursive types)