Enhancing Elementary Affine Logic type inference
with implicit coercions

Vincent Atassi — LIPN, Univ. Paris 13

TYPES Workshop, April 2006

Time bounded logics

» Origins: Subsystems of linear logic (Girard 98)

» Complexity properties are Intrinsic to the system (They don't
rely on an analysis independent of type system)

» Complexity bounds are implicit (no bound is demanded to the
user)

» It provides a logical characterisation of complexity classes
= We use (polymorphic) multiplicative fragment as a type system

for A-calculus
= Performs higher-order polymorphic langage complexity analysis

From Linear Logic (LL) to bounded time logics

(ax) TFA AAFB

FAFB (cuT)

AFA

(EA BALC 0 TACB
A—-BFC Y TFASB VT

Figure: Core MLL

= Usual rules of intuitionnistic logic. Except that there is no
contraction: cut-elimination is in a linear number of steps.
= Types linear lambda-calculus

From Linear Logic (LL) to bounded time logics (2)

(AX) Mr=A AAEFB

AFA N (cuT)

rEA B,AFC() MARB
TA—-BFC . TFA—B o’

AT-B VWATEB = TrB
IATFB IATF B TE1B -
A AT+ B -8

TIATEB CONTR . AR WEAR

Figure: MLL + exponentials

= Contraction, controled by modality , allows to recover full
expressive power of intuitionnistic logic: cut-elimination is
non-elementary

= Variants of the rules on modalities will yield intermediary

complexity classes.

Restriction of modality introduction

» Full Linear Logic:

ATHFB — WATEB -8
ATFB ' TATFB ° ' TTF1B
. . rrB8
» Elementary Linear Logic: only W!
> Light Linear Logic (polynomial time): —A =21,

FB v oand _AEB
FIB ° sILIAFIB
= Boxes formed this way have a stratification property which leads
to time bounded normalization
= this stratification also allows for the application of the abstract
part of Lamping's algorithm for Optimal Reduction

§ (additionnal modality)

Some results

» ELL (resp. LLL) proof-nets reduce in elementary (resp.
polynomial) time

» One can encode a Turing machine in LLL if a polynomial
bound is given

» Elementary functions can be encoded in ELL

» It is undecidable whether a A-term will reduce in polynomial
time

» It is undecidable wether an F typed A-term will reduce in
polynomial time

Related works

There is already an abundant litterature in this field:

» Base works:

» Girard, Inf. & Comput. 98: ELL and LLL
» Asperti, LICS 98; Asperti-Roversi 02: Affine variants

» Type inference:

» Coppola-Martini, 2001: first type inference for EAL
Baillot, TCS 04: type inference for propositionnal LAL
Baillot-Terui, TLCA 05: efficient type inference for EAL
Submitted: Atassi-Baillot-Terui 06: efficient type inference for
a polymorphic LAL variant (system F type decoration)

v

v

v

Outline of the talk

We will focus on type inference for Elementary Affine Logic, a
variant of ELL.
Complexity analysis performed isn’t that useful, but the system is
simpler and presented method scales to a polynomial logic.

> Presentation of EAL type system

» Type inference algorithm

» Extension of type system with subtyping to handle ccercions

EAL type system

Natural deduction presentation with associated proof term (affine
variant: unrestricted weakening):

- r'-M:B
XIA}_XIA(VAR) rXAFMB(WEAK)
Mx:AFM:B (ABS) MMM :A—-B |'2|—M2:A(APPL)
FrNEAx.M:A—B M,MaF (M) My : B
Mkt VAL .. Tt 1A, x1: AL, xp: AnEM:B
... .Tok M{t;/x}: !B (PROM)
x1 A LU AATEM B CONTR
Ix AT E M{x/x1,...x/xn} : B

Figure: EAL type system

= Slight restriction of previous Sequent calculus presentation
= (prom) and (contr) rule are not syntax directed — it is no big
problem for (contr) but is for (prom)

PROM rule applications are boxes
)

Figure: Box placement for Church integer 2, resulting type is
I(A— A) = 1A — IA

PROM rule applications are boxes
A

Figure: Box placement (2) for Church integer 2, resulting type is
I(A— A) — (A — A)

PROM rule applications are boxes
A

SN
g

Figure: Box placement for Church integer 2, resulting type is
I(A— A) — (A — A)

Typability rephrased

Constraints on modalities and box placement:

bracketing Boxes must be well-formed:

» Each auxiliary door (“1") matches a main door
» Any variable is at the same level as its binder

typing Modalities consistency:
» Each applied function must be an arrow type
(ie. A—o B and not (A — B))
» Unification is extended to banged types :
((t: (""A— B))t2: (I"A) = m = n)
contraction Any contracted variable must have at least one

= A pseudo-term is EAL-typable iff it has a simple type and
conforms to those conditions

= A A-term t is EAL-typable iff there exists a pseudo term p
conforming to those conditions s.t. (p)~ =t

Typability to type inference

Determining wether a A-term is EAL-typable:

» Simple type inference
» Term and types free decoration: fresh parameters at all term
nodes, fresh parameters for each subtype of occuring types

» Term and type derivation explorations for linear contraints
generation on those parameters, which will correspond to the
previous criterions

» Solvability of the generated constraints = typability, and a
solution to the constraints yields a type assignation

Example

Figure: Abtract syntax tree for Church integer 2

Example

n7

Figure: Parametrized abtract syntax tree for Church integer 2

Example

nl
A [p1I([p2]A —> [p3]A) —> [p4]A —> [p3]A

n2
A [P4A —>[p3]A

[p11([p2]A —> [p3]A)
[p3

Figure: Simply typed parametrized abtract syntax tree

Example (2)

» Bracketing constraints:

nl>0 n24+n3+n52>0
n24+n3+n5+n6=0 n3+n5+4+n7=0
n3+n5>0 n3>0
n2+n3+n=0 n2+n3>0
n2>0

» Contraction constraints: pl > 1

» Type consistency constraints:

pl+n6=0 pl4+nd=0
p2=p3+4+n5 p2=pd+n7

» Plus some bookkeeping ones..

Type inference algorihtm

» Runs in polynomial time w.r.t. typed term size
» Has been implemented (in CAML) except for the resolution
part (external LP solver)

» Gives an elementary bound: that is to say the height of an
2!1

exponential tower 22
» But scales well to a polynomial logic and polymorphic types

» And characterises a large set of terms reducible by Lamping's
abstract algorithm

ELL and ccercions

= In our framework a ccercion will be any function of type
A — A, with A a datatype.

Example

In EAL the square function An.(mult) n n is not typable, only
An.(mult) n (coercy) n is.

= One faces the same difficulty in LLL or LAL.

= Now, in the context of type inference, we automatized boxes
placement. A further step is to automatize coercions placement.
= The same way we enriched the input terms with boxes, we will
enrich them with coercive subterms.

Typing with ccercions

We have terms such that x : B+t : !B is derivable, for any base
type (integers, binary words, booleans).

Placing ccercions is adding cuts in proofs: sounds problematic for
type inference.

But those cuts have no computational value: their only effect is to
add modalities on positive sides of arrows, and to remove some on
the negative side.

Hence the idea of a subtyping relation on types for expressing
ccercions: N <IN and IN —o N <N — IN.

A subtyping relation for ccercions

We define first the subtyping relation for base types which admit
ceercions.

Definition
= is defined by:

Vnmst0<n<m!"N=<1"Nand!"B<1"B

Proposition

=< is reflexive and transitive.

Lemma (Correction of <)
If A < B, then 3t such that x : A+ t : B is derivable and t %Z) X.

Subtyping relation

(BASE) A<B A=<B (VAR) a<a
<B AL > A B; < B
(PROM) A<IB (ARROW) A, B <A B,
Figure: Subtyping system.
Lemma

< js reflexive and transitive.

Proposition (<'s correction)

If A< B, then exists t such that x : A+ t : B is derivable in EAL
and t —%7 X.

A ccercions enriched type system

You add the two following rules to EAL to obtain -<:

MNx:BFt:C A<B ! N-t:A A<B R
Fx:AFt:C coerc — F-t:B coerc =

The correction is given by:

Theorem

IfT < t: A then 3t' such that T bys, t': A is derivable and
t' —ph, t.

Proof.

Left side or right side cut with the term built from the subtyping
derivation. O

Type inference with ccercions

A<B
x:AFx:B

r’-=mM:B

Mx:AFM:B
x:AFM:B

(VAR) FFox M A5 B

(WEAK)

MM :B—C Mo My: A A<B C<D
M,Mo - (My Mp): D

(appL)

x:1C ... xp 1WC,AFM:B A<IC

x:AAFE M{x/x1,...,x/xp} : B

(CONTR)

MMM 1A .. T, M, 1A, x1: AL, Xn ApEFM:B
Fl,...,FnF!M{TM;/x;} 1B

(PrOM)

Figure: EAL< inference-driven type system

Conclusion & perspectives

To sum up:
» Subsystems of LL provide original characterisations of
complexity classes

» We can use those systems for typed A-calculus static analysis,
extending typing properties to complexity bounds certificate

» We presented an efficient type inference algorithm, and an
extension to subtyping, which allows for more intensionality

= Programming in those systems remains very tedious.
Some directions:

» Presented methods extend to a polynomial logic and
polymorphic types (system F type decoration)
» Relations between complexity and Optimal Reduction

» Extending typing system (recursive types)

	Introduction
	eal
	Type inference
	Subtyping cœrcions
	Conclusion & perspectives

