
Enhancing Elementary Affine Logic type inference
with implicit cœrcions

Vincent Atassi — LIPN, Univ. Paris 13

TYPES Workshop, April 2006

Time bounded logics

I Origins: Subsystems of linear logic (Girard 98)

I Complexity properties are Intrinsic to the system (They don’t
rely on an analysis independent of type system)

I Complexity bounds are implicit (no bound is demanded to the
user)

I It provides a logical characterisation of complexity classes

⇒ We use (polymorphic) multiplicative fragment as a type system
for λ-calculus
⇒ Performs higher-order polymorphic langage complexity analysis

From Linear Logic (ll) to bounded time logics

(ax)
A ` A

Γ ` A A,∆ ` B
(cut)

Γ,∆ ` B

Γ ` A B,∆ ` C
((-l)

Γ,A (B ` C

Γ,A ` B
((-r)

Γ ` A (B

Figure: Core MLL

⇒ Usual rules of intuitionnistic logic. Except that there is no
contraction: cut-elimination is in a linear number of steps.
⇒ Types linear lambda-calculus

From Linear Logic (ll) to bounded time logics (2)

(ax)
A ` A

Γ ` A A,∆ ` B
(cut)

Γ,∆ ` B

Γ ` A B,∆ ` C
((-l)

ΓA (B ` C

Γ,A ` B
((-r)

Γ ` A (B

A, Γ ` B
ε

!A, Γ ` B

!!A, Γ ` B
δ

!A, Γ ` B
Γ ` B

!
!Γ ` !B

!A, !A, Γ ` B
contr

!A, Γ ` B
Γ ` B weak

!A, Γ ` B

Figure: MLL + exponentials

⇒ Contraction, controled by modality “!”, allows to recover full
expressive power of intuitionnistic logic: cut-elimination is
non-elementary
⇒ Variants of the rules on modalities will yield intermediary
complexity classes.

Restriction of modality introduction

I Full Linear Logic:
A, Γ ` B

ε
!A, Γ ` B

,
!!A, Γ ` B

δ
!A, Γ ` B

, Γ ` B
!

!Γ ` !B

I Elementary Linear Logic: only Γ ` B
!

!Γ ` !B

I Light Linear Logic (polynomial time): A ` B
!

!A ` !B
,

` B
! ’` !B

and
Γ,∆ ` B §§Γ, !∆ ` !B

(additionnal modality)

⇒ Boxes formed this way have a stratification property which leads
to time bounded normalization
⇒ this stratification also allows for the application of the abstract
part of Lamping’s algorithm for Optimal Reduction

Some results

I ell (resp. lll) proof-nets reduce in elementary (resp.
polynomial) time

I One can encode a Turing machine in lll if a polynomial
bound is given

I Elementary functions can be encoded in ell

I It is undecidable whether a λ-term will reduce in polynomial
time

I It is undecidable wether an F typed λ-term will reduce in
polynomial time

Related works

There is already an abundant litterature in this field:

I Base works:
I Girard, Inf. & Comput. 98: ell and lll
I Asperti, LICS 98; Asperti-Roversi 02: Affine variants

I Type inference:
I Coppola-Martini, 2001: first type inference for eal
I Baillot, TCS 04: type inference for propositionnal lal
I Baillot-Terui, TLCA 05: efficient type inference for eal
I Submitted: Atassi-Baillot-Terui 06: efficient type inference for

a polymorphic lal variant (system F type decoration)

Outline of the talk

We will focus on type inference for Elementary Affine Logic, a
variant of ell.
Complexity analysis performed isn’t that useful, but the system is
simpler and presented method scales to a polynomial logic.

I Presentation of eal type system

I Type inference algorithm

I Extension of type system with subtyping to handle cœrcions

eal type system
Natural deduction presentation with associated proof term (affine
variant: unrestricted weakening):

(var)
x : A ` x : A

Γ ` M : B (weak)
Γ, x : A ` M : B

Γ, x : A ` M : B
(abs)

Γ ` λx .M : A (B

Γ1 ` M1 : A (B Γ2 ` M2 : A
(appl)

Γ1, Γ2 ` (M1) M2 : B

Γ1 ` t1 : !A1 . . . Γn ` tn : !An x1 : A1, . . . , xn : An ` M : B
(prom)

Γ1, . . . , Γn ` M{ti/xi} : !B

x1 : !A, ..., xn!A, Γ ` M : B
contr

!x : A, Γ ` M{x/x1, ..., x/xn} : B

Figure: eal type system

⇒ Slight restriction of previous Sequent calculus presentation
⇒ (prom) and (contr) rule are not syntax directed — it is no big
problem for (contr) but is for (prom)

prom rule applications are boxes
λ

λ

@

@

Figure: Box placement for Church integer 2, resulting type is
!(A (A) (!A (!A

prom rule applications are boxes
λ

λ

@

@

Figure: Box placement (2) for Church integer 2, resulting type is
!(A (A) (!(A (A)

prom rule applications are boxes
λ

λ

@

@

!

−

−
!

!

Figure: Box placement for Church integer 2, resulting type is
!(A (A) (!(A (A)

Typability rephrased

Constraints on modalities and box placement:

bracketing Boxes must be well-formed:

I Each auxiliary door (“!”) matches a main door
I Any variable is at the same level as its binder

typing Modalities consistency:

I Each applied function must be an arrow type
(ie. A (B and not !(A (B))

I Unification is extended to banged types :
((t : (!nA (B))t2 : (!mA) ⇒ m = n)

contraction Any contracted variable must have at least one “!”

⇒ A pseudo-term is eal-typable iff it has a simple type and
conforms to those conditions
⇒ A λ-term t is eal-typable iff there exists a pseudo term p
conforming to those conditions s.t. (p)− = t

Typability to type inference

Determining wether a λ-term is eal-typable:

I Simple type inference

I Term and types free decoration: fresh parameters at all term
nodes, fresh parameters for each subtype of occuring types

I Term and type derivation explorations for linear contraints
generation on those parameters, which will correspond to the
previous criterions

I Solvability of the generated constraints ⇒ typability, and a
solution to the constraints yields a type assignation

Example

λ

λ

@

@

Figure: Abtract syntax tree for Church integer 2

Example

λ

λ

@

@

n1

n2

n3

n4

n6
n7

n5

Figure: Parametrized abtract syntax tree for Church integer 2

Example

λ

λ

@

@

n1

n2

n3

n4

n6

n5

[p3]A

[p1]([p2]A −> [p3]A) −> [p4]A −> [p3]A

[p4]A −> [p3]A

[p4]A

n7

[p3]A

[p1]([p2]A −> [p3]A)

Figure: Simply typed parametrized abtract syntax tree

Example (2)

I Bracketing constraints:

n1 ≥ 0 n2 + n3 + n5 ≥ 0

n2 + n3 + n5 + n6 = 0 n3 + n5 + n7 = 0

n3 + n5 ≥ 0 n3 ≥ 0

n2 + n3 + n4 = 0 n2 + n3 ≥ 0

n2 ≥ 0

I Contraction constraints: p1 ≥ 1

I Type consistency constraints:

p1 + n6 = 0 p1 + n4 = 0

p2 = p3 + n5 p2 = p4 + n7

I Plus some bookkeeping ones..

Type inference algorihtm

I Runs in polynomial time w.r.t. typed term size

I Has been implemented (in CAML) except for the resolution
part (external LP solver)

I Gives an elementary bound: that is to say the height of an

exponential tower 22..
.2

n

I But scales well to a polynomial logic and polymorphic types

I And characterises a large set of terms reducible by Lamping’s
abstract algorithm

ell and cœrcions

⇒ In our framework a cœrcion will be any function of type
A (!A, with A a datatype.

Example

In eal the square function λn.(mult) n n is not typable, only
λn.(mult) n (coercN) n is.

⇒ One faces the same difficulty in lll or lal.
⇒ Now, in the context of type inference, we automatized boxes
placement. A further step is to automatize cœrcions placement.
⇒ The same way we enriched the input terms with boxes, we will
enrich them with cœrcive subterms.

Typing with cœrcions

We have terms such that x : B ` t : !B is derivable, for any base
type (integers, binary words, booleans).
Placing cœrcions is adding cuts in proofs: sounds problematic for
type inference.
But those cuts have no computational value: their only effect is to
add modalities on positive sides of arrows, and to remove some on
the negative side.
Hence the idea of a subtyping relation on types for expressing
cœrcions: N ≤ !N and !N (N ≤ N (!N.

A subtyping relation for cœrcions

We define first the subtyping relation for base types which admit
cœrcions.

Definition
� is defined by:

∀n,m st 0 ≤ n ≤ m, !nN � !mN and !nB � !mB

Proposition

� is reflexive and transitive.

Lemma (Correction of �)

If A � B, then ∃t such that x : A ` t : B is derivable and t −→∗
β x.

Subtyping relation

(base) A � B
A ≤ B

(var)
α ≤ α

A ≤ B
(prom)

!A ≤!B
A1 ≥ A2 B1 ≤ B2(arrow)
A1 (B1 ≤ A2 (B2

Figure: Subtyping system.

Lemma
≤ is reflexive and transitive.

Proposition (≤’s correction)

If A ≤ B, then exists t such that x : A ` t : B is derivable in eal
and t −→∗

βη x.

A cœrcions enriched type system

You add the two following rules to eal to obtain `≤:

Γ, x : B ` t : C A ≤ B

Γ, x : A ` t : C
coerc − L

Γ ` t : A A ≤ B
Γ ` t : B

coerc − R

The correction is given by:

Theorem
If Γ `≤ t : A then ∃t ′ such that Γ `eal t ′ : A is derivable and
t ′ −→∗

βη t.

Proof.
Left side or right side cut with the term built from the subtyping
derivation.

Type inference with cœrcions

A ≤ B
(var)

x : A ` x : B
Γ ` M : B (weak)

Γ, x : A ` M : B
Γ, x : A ` M : B

(abs)
Γ ` λx .M : A (B

Γ1 ` M1 : B (C Γ2 ` M2 : A A ≤ B C ≤ D
(appl)

Γ1, Γ2 ` (M1 M2) : D

x1 : !C , . . . , xn : !C ,∆ ` M : B A ≤ !C
(contr)

x : A,∆ ` M{x/x1, . . . , x/xn} : B

Γ1 ` M1 : !A1 . . . Γn ` Mn : !An x1 : A1, . . . , xn : An ` M : B
(prom)

Γ1, . . . , Γn ` !M{!Mi/xi} : !B

Figure: eal≤ inference-driven type system

Conclusion & perspectives

To sum up:

I Subsystems of ll provide original characterisations of
complexity classes

I We can use those systems for typed λ-calculus static analysis,
extending typing properties to complexity bounds certificate

I We presented an efficient type inference algorithm, and an
extension to subtyping, which allows for more intensionality

⇒ Programming in those systems remains very tedious.
Some directions:

I Presented methods extend to a polynomial logic and
polymorphic types (system F type decoration)

I Relations between complexity and Optimal Reduction

I Extending typing system (recursive types)

	Introduction
	eal
	Type inference
	Subtyping cœrcions
	Conclusion & perspectives

