Isomorphisms for context-free types

Wouter Swierstra

April 19, 2006

The University of

Nottingham

) g

What are context-free types?

Context-free types over an index set | are built from:

0,0 +7 coproducts
1,0 x 7 products

iel parameters
X,Y,... recursive variables
uX.o least fixed point

For instance:
» Lists: uX.1+Ax X
» Binary trees: uX.1+X x Ax X

Context-free types resemble context-free grammars.

What is an isomorphism?

» We can interpret a context-free type o as a functor
[o] : C' — C.
» Two types o and 7 are isomorphic iff [o] and [7] are

naturally isomorphic.

» |s there structured fashion to decide whether or not two
context-free types are isomorphic?

When are two types different?

» We can show two data types are distinct by counting the
number of inhabitants.

» Are the following types isomorphic?

> Lists: uX.14+Ax X
> Binary trees: uX.1+ X x Ax X

When are two types different?

» We can show two data types are distinct by counting the
number of inhabitants.

» Are the following types isomorphic?

> Lists: uX.14+Ax X
> Binary trees: uX.1+ X x Ax X

[e—O o—0O0—O

DA

How can we count the number of inhabitants of a type?

» Parsers tell us if a string is in a language or not:
I*—2
» Parser combinators are more general and compose nicely:
I* — Prin (1)

» Can we port this technology?

Monadic parser combinators

If Ais a set, Pfin(A) and A* are monoids.
Prin(—) and —* are both monads.

We can define parser combinators using only these properties.

vV v v VY

We can count the number of inhabitants of a type by shifting
to multisets:

M(I) = N

v

By writing combinators of the following type:

M(1) = M(M(1))

v

We change the underlying structure, but use the same idea.

Powerseries

» The multiset parsers give us a new interpretation of our types.

» We consider a type o over a singleton index set [as:

Za,,xX"

neN

where a, is the result of running the o parser on n.

» Lemma There is a full and faithful functor taking powerseries
to functors C! — C.

» Lemma Two types are isomorphic iff their powerseries are
equal.

Powerseries

» The multiset parsers give us a new interpretation of our types.

» We consider a type o over a singleton index set [as:

Za,,xX"

neN

where a, is the result of running the o parser on n.

» Lemma There is a full and faithful functor taking powerseries
to functors C! — C.

» Lemma Two types are isomorphic iff their powerseries are
equal.

Types up to isomorphism are powerseries.

Conclusions

» We have a semi-algorithm for deciding whether or not two
types are isomorphic.

» Is the problem decidable?

> |s there a subset of types for which isomorphism is decidable?

