
Isomorphisms for context-free types

Wouter Swierstra

April 19, 2006



What are context-free types?

Context-free types over an index set I are built from:

0, σ + τ coproducts
1, σ × τ products
i ∈ I parameters
X ,Y , . . . recursive variables
µX .σ least fixed point

For instance:

I Lists: µX .1 + A× X

I Binary trees: µX .1 + X × A× X

Context-free types resemble context-free grammars.



What is an isomorphism?

I We can interpret a context-free type σ as a functor
JσK : CI → C.

I Two types σ and τ are isomorphic iff JσK and JτK are
naturally isomorphic.

I Is there structured fashion to decide whether or not two
context-free types are isomorphic?



When are two types different?

I We can show two data types are distinct by counting the
number of inhabitants.

I Are the following types isomorphic?

I Lists: µX .1 + A× X
I Binary trees: µX .1 + X × A× X

n = 1n = 0 n = 2



When are two types different?

I We can show two data types are distinct by counting the
number of inhabitants.

I Are the following types isomorphic?

I Lists: µX .1 + A× X
I Binary trees: µX .1 + X × A× X

n = 1n = 0 n = 2



How can we count the number of inhabitants of a type?

I Parsers tell us if a string is in a language or not:

I ∗ → 2

I Parser combinators are more general and compose nicely:

I ∗ → Pfin(I
∗)

I Can we port this technology?



Monadic parser combinators

I If A is a set, Pfin(A) and A∗ are monoids.

I Pfin(−) and −∗ are both monads.

I We can define parser combinators using only these properties.

I We can count the number of inhabitants of a type by shifting
to multisets:

M(I )→ N

I By writing combinators of the following type:

M(I )→M(M(I ))

I We change the underlying structure, but use the same idea.



Powerseries

I The multiset parsers give us a new interpretation of our types.

I We consider a type σ over a singleton index set I as:∑
n∈N

an × X n

where an is the result of running the σ parser on n.

I Lemma There is a full and faithful functor taking powerseries
to functors CI → C.

I Lemma Two types are isomorphic iff their powerseries are
equal.

Types up to isomorphism are powerseries.



Powerseries

I The multiset parsers give us a new interpretation of our types.

I We consider a type σ over a singleton index set I as:∑
n∈N

an × X n

where an is the result of running the σ parser on n.

I Lemma There is a full and faithful functor taking powerseries
to functors CI → C.

I Lemma Two types are isomorphic iff their powerseries are
equal.

Types up to isomorphism are powerseries.



Conclusions

I We have a semi-algorithm for deciding whether or not two
types are isomorphic.

I Is the problem decidable?

I Is there a subset of types for which isomorphism is decidable?


