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Purely functional programs

Structuring Computations

Writing X for the type of inputs, Y for outputs . . .

. . . a functional program from X to Y is simply a
function

X // Y
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Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S
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Reactive, stream-based programs

Structuring Computations

A reactive program is:

XN // Y N

Or, equivalently,

XN × N
// Y

Involving the Stream Comonad X 7−→ XN × N
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Quantum program

Structuring Computations

A possible quantum program is:

X × X // [0, 1](Y ×Y )

It is a “superoperator” on “density matrices” (or
quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow : computations
with unit and composition.
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Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52
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II. Comonads
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Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input
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Comonad structure

Structuring Computations

• Categorically: endofunctor G: C → C with
two natural transformations ε: G ⇒ Id and
δ: G ⇒ G2 satisfying standard equations

• Computationally: Type operator G with
• coreturn : GX −→ X

• cobind : (GX → Y ) −→ (GX → GY )

satisfying suitable equations

• Logically: structure for weakening and
contraction (like bang ! in linear logic)
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Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)
Jacobs – Types’06, 18/4/’06 – p.11/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)
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Discrete time signals

Structuring Computations

Three basic comonads:

X? × X XN × N
causality
no future

oo
anti-causality

no past
// XN

(〈α(0),...,α(n−1)〉,α(n)) (α,n)
�oo � // λm. α(n+m)

with “comonad homomorphisms” between them
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Continuous time signals

Structuring Computations

Analogues fundamental diagram of comonads:

∐

t∈[0,∞)

X [0,t) × X
X [0,∞) × [0,∞)oo // X [0,∞)

where:
∐

t∈[0,∞)

X [0,t) × X ∼=
∐

t∈[0,∞)

X [0,t] ∼= X [0,1] × [0,∞)
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III. Arrows
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Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets
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Arrow in Haskell

Structuring Computations

Introduced as type class:
class Arrow A where

arr :: (X → Y ) → AX Y

(>>>) :: AX Y → AY Z → AX Z

first :: AX Y → A (X, Z) (Y, Z)

Which should satisfy 8 equations, such as:

(a >>> b) >>> c = a >>> (b >>> c)

a >>> arr(1) = a

first(arr(f)) = arr(f × 1), etc
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Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes
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Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”
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Excurs: monoid in a category

Structuring Computations

• Standardly, a monoid is a set M with
associative m: M × M → M and two-sided
unit e: 1 → M

• Can be formulated in category with finite
products (1,×): equations become diagrams

• No projections/diagonals needed: also in
monoidal category with (I,⊗). Eg.

M ⊗ M

m
��

M ⊗ I
1 ⊗ e
oo M

hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

∼=oo
∼= // I ⊗ M

e ⊗ 1
// M ⊗ M

m
��

M M
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Excurs: monads are monoids

Structuring Computations

• The functor category C
C is monoidal:

F ⊗ G = F ◦ G I = Id

• A monoid in C
C is a functor M : C → C with

natros:

M ⊗ M
µ

// M Id
η

oo

M ◦ M

satisfying the monoid equations

• A monoid in C
C is precisely a monad!
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Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.
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Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow
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IV. Monads
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Monad overview

Structuring Computations

• Introduced by Moggi (1991), popularised in
functional programming by Wadler

• for structuring outputs / computational effects

• Standard examples:
• lift / maybe 1 + (−)

• exception E + (−)

• list (−)?

• state (−× S)S

• non-determinism P (powerset)
• probability D (distribution)
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Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]
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Kleisli composition for Java monad

Structuring Computations

• Kleisli composition for J is “argument
evaluation, before use”
(and not sequential composition ; )

• For a: X → J(Y ), and p: Y → J(Z),

p • a = λx: X. λs: S.

CASES a x s OF
∗ 7−→ ∗ // non-termination

(s′, y) 7−→ p y s′ // normal termination

(s′, e) 7−→ (s′, e) // except. termination
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V. Java program verification
(at Nijmegen)
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Developments

Structuring Computations

• Original focus: theorem proving for small
Java programs (for smart cards)

• Outcome:
• No scaling beyond couple of pages
• Practical experience, formalisations &

deeper theory

• Shift of focus:
• Extension to security properties (esp.

confidentiality)
• Static checking primary, theorem proving

secondary
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JML: Java Modeling Language

Structuring Computations

JML [Leavens et al.] adds specifications as
special comments in Java code, mainly for:

• Class invariants and constraints

• Method specifications:
/*@ behavior

@ requires <precondition>
@ assignable <items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@ termination>
@*/

void method() { ... }
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JML: example

Structuring Computations

JML method specifications may clarify the
behaviour of Java methods:
/*@ normal_behavior

@ requires x >= 0;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@*/

int f(int x) {
int count = 0, sum = 1;
while (sum <= x) {
count++;
sum += 2 * count + 1;

}
return count;

}
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LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.
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in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.
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VI. Static Checking for Java
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ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).
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Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
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ESC/Java “demo”

Structuring Computations

class Bag {
int[] a;
int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}
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class Bag {
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int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: possible null deference. Plus other warnings
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Structuring Computations
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Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {
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ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: Possible negative array index
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ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}
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ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

No more warnings about this code
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ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

. . . but warnings about calls to extractMin() that do not
ensure precondition : design by contract
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VII. Hoare logic for JML
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Hoare logic issues for Java & JML

Structuring Computations

• Complications in Hoare logic for Java:
• exceptions and other abrupt control flow
• expressions may have side effects

• Thus:
• not Hoare triples but Hoare n-tuples,
• both for statements & expressions
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Hoare Logic assertions

Structuring Computations

For {Pre }m {Post } write
(

requires = Pre
statement = m

ensures = Post

)

For JML one needs:











diverges = D
requires = Pre

statement = m
ensures = Post
signals = S
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Hoare composition Rule

Structuring Computations











diverges = λx. b
requires = Pre

statement = s1

ensures = Q
signals = S





















diverges = λx. b
requires = Q

statement = s2

ensures = Post
signals = S





















diverges = λx. b
requires = Pre

statement = s1 ; s2

ensures = Post
signals = S











Intermediate
predicate
provided by
the user
in JML
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Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



VIII. Conclusions
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Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!
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