
FACULTY OF SCIENCE

Bart Jacobs

Structuring Computations



Contents

Structuring Computations

I. Sneak preview

II. Comonads

III. Arrows

IV. Monads, also for
Java

V. Java verification

VI. Static checking

VII. Hoare logic for JML

VIII. Conclusions

No explicit message;
some type/object-related
topics that I like;
and you too, hopefully!

Jacobs – Types’06, 18/4/’06 – p.1/52



Contents

Structuring Computations

I. Sneak preview

II. Comonads

III. Arrows

IV. Monads, also for
Java

V. Java verification

VI. Static checking

VII. Hoare logic for JML

VIII. Conclusions

No explicit message;
some type/object-related
topics that I like;
and you too, hopefully!

Jacobs – Types’06, 18/4/’06 – p.1/52



Contents

Structuring Computations

I. Sneak preview

II. Comonads

III. Arrows

IV. Monads, also for
Java

V. Java verification

VI. Static checking

VII. Hoare logic for JML

VIII. Conclusions

No explicit message;
some type/object-related
topics that I like;
and you too, hopefully!

Jacobs – Types’06, 18/4/’06 – p.1/52



I. Sneak preview

Jacobs – Types’06, 18/4/’06 – p.2/52



Purely functional programs

Structuring Computations

Writing X for the type of inputs, Y for outputs . . .

. . . a functional program from X to Y is simply a
function

X // Y

Jacobs – Types’06, 18/4/’06 – p.3/52



Purely functional programs

Structuring Computations

Writing X for the type of inputs, Y for outputs . . .

. . . a functional program from X to Y is simply a
function

X // Y

Jacobs – Types’06, 18/4/’06 – p.3/52



Purely functional programs

Structuring Computations

Writing X for the type of inputs, Y for outputs . . .

. . . a functional program from X to Y is simply a
function

X // Y

Jacobs – Types’06, 18/4/’06 – p.3/52



Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S

Jacobs – Types’06, 18/4/’06 – p.4/52



Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S

Jacobs – Types’06, 18/4/’06 – p.4/52



Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S

Jacobs – Types’06, 18/4/’06 – p.4/52



Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S

Jacobs – Types’06, 18/4/’06 – p.4/52



Imperative, state-based programs

Structuring Computations

Writing S for the type of states . . .

. . . an imperative program is:

X × S // Y × S

Or, equivalently,

X // (Y × S)
S

Involving the State Monad Y 7−→ (Y × S)S

Jacobs – Types’06, 18/4/’06 – p.4/52



Reactive, stream-based programs

Structuring Computations

A reactive program is:

XN // Y N

Or, equivalently,

XN × N
// Y

Involving the Stream Comonad X 7−→ XN × N

Jacobs – Types’06, 18/4/’06 – p.5/52



Reactive, stream-based programs

Structuring Computations

A reactive program is:

XN // Y N

Or, equivalently,

XN × N
// Y

Involving the Stream Comonad X 7−→ XN × N

Jacobs – Types’06, 18/4/’06 – p.5/52



Reactive, stream-based programs

Structuring Computations

A reactive program is:

XN // Y N

Or, equivalently,

XN × N
// Y

Involving the Stream Comonad X 7−→ XN × N

Jacobs – Types’06, 18/4/’06 – p.5/52



Reactive, stream-based programs

Structuring Computations

A reactive program is:

XN // Y N

Or, equivalently,

XN × N
// Y

Involving the Stream Comonad X 7−→ XN × N

Jacobs – Types’06, 18/4/’06 – p.5/52



Quantum program

Structuring Computations

A possible quantum program is:

X × X // [0, 1](Y ×Y )

It is a “superoperator” on “density matrices” (or
quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow : computations
with unit and composition.

Jacobs – Types’06, 18/4/’06 – p.6/52



Quantum program

Structuring Computations

A possible quantum program is:

X × X // [0, 1](Y ×Y )

It is a “superoperator” on “density matrices” (or
quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow : computations
with unit and composition.

Jacobs – Types’06, 18/4/’06 – p.6/52



Quantum program

Structuring Computations

A possible quantum program is:

X × X // [0, 1](Y ×Y )

It is a “superoperator” on “density matrices” (or
quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow : computations
with unit and composition.

Jacobs – Types’06, 18/4/’06 – p.6/52



Quantum program

Structuring Computations

A possible quantum program is:

X × X // [0, 1](Y ×Y )

It is a “superoperator” on “density matrices” (or
quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow : computations
with unit and composition.

Jacobs – Types’06, 18/4/’06 – p.6/52



Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52



Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52



Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52



Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52



Overview

Structuring Computations

• Functional: X −→ Y

• Imperative: X −→ T (Y ), with T monad
(including Java programs)

• Reactive: G(X) −→ Y , with G comonad

• Quantum: A(X, Y ), with A “arrow”

Jacobs – Types’06, 18/4/’06 – p.7/52



II. Comonads

Jacobs – Types’06, 18/4/’06 – p.8/52



Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input

Jacobs – Types’06, 18/4/’06 – p.9/52



Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input

Jacobs – Types’06, 18/4/’06 – p.9/52



Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input

Jacobs – Types’06, 18/4/’06 – p.9/52



Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input

Jacobs – Types’06, 18/4/’06 – p.9/52



Comonads for computations

Structuring Computations

• Monads are well-established in functional
programming & language semantics

• But little attention for the dual notion of
comonad . . .

• . . . until Uustalu & Vene recently used them
for structuring reactive/dataflow
programming—building on Brookes & Geva

• Slogan: monads structure output,
comonads structure input

Jacobs – Types’06, 18/4/’06 – p.9/52



Comonad structure

Structuring Computations

• Categorically: endofunctor G: C → C with
two natural transformations ε: G ⇒ Id and
δ: G ⇒ G2 satisfying standard equations

• Computationally: Type operator G with
• coreturn : GX −→ X

• cobind : (GX → Y ) −→ (GX → GY )

satisfying suitable equations

• Logically: structure for weakening and
contraction (like bang ! in linear logic)

Jacobs – Types’06, 18/4/’06 – p.10/52



Comonad structure

Structuring Computations

• Categorically: endofunctor G: C → C with
two natural transformations ε: G ⇒ Id and
δ: G ⇒ G2 satisfying standard equations

• Computationally: Type operator G with
• coreturn : GX −→ X

• cobind : (GX → Y ) −→ (GX → GY )

satisfying suitable equations

• Logically: structure for weakening and
contraction (like bang ! in linear logic)

Jacobs – Types’06, 18/4/’06 – p.10/52



Comonad structure

Structuring Computations

• Categorically: endofunctor G: C → C with
two natural transformations ε: G ⇒ Id and
δ: G ⇒ G2 satisfying standard equations

• Computationally: Type operator G with
• coreturn : GX −→ X

• cobind : (GX → Y ) −→ (GX → GY )

satisfying suitable equations

• Logically: structure for weakening and
contraction (like bang ! in linear logic)

Jacobs – Types’06, 18/4/’06 – p.10/52



Comonad structure

Structuring Computations

• Categorically: endofunctor G: C → C with
two natural transformations ε: G ⇒ Id and
δ: G ⇒ G2 satisfying standard equations

• Computationally: Type operator G with
• coreturn : GX −→ X

• cobind : (GX → Y ) −→ (GX → GY )

satisfying suitable equations

• Logically: structure for weakening and
contraction (like bang ! in linear logic)

Jacobs – Types’06, 18/4/’06 – p.10/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)

Jacobs – Types’06, 18/4/’06 – p.11/52



Comonad example

Structuring Computations

• Mapping X 7−→ XN × N

• Input streams with past / current / future:

x0, x1, . . . , xn−1, xn , xn+1, xn+2, . . .

• Counit / coreturn: XN × N −→ X

(α, n) 7−→ α(n)

• Delta: XN × N −→ (XN × N)
N
× N

(α, n) 7−→ (λm: N. (α, m), n)
Jacobs – Types’06, 18/4/’06 – p.11/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)

Jacobs – Types’06, 18/4/’06 – p.12/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)

Jacobs – Types’06, 18/4/’06 – p.12/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)

Jacobs – Types’06, 18/4/’06 – p.12/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)

Jacobs – Types’06, 18/4/’06 – p.12/52



coKleisli category of computations

Structuring Computations

• coKleisli maps XN × N −→ Y form a
category

• Identity via coreturn; composition via
delta/cobind

• Gives output in Y for completely given input
stream of X ’s

• Basis for dataflow calculus by Uustalu &
Vene
(like in Lustre, Lucid)

Jacobs – Types’06, 18/4/’06 – p.12/52



Discrete time signals

Structuring Computations

Three basic comonads:

X? × X XN × N
causality
no future

oo
anti-causality

no past
// XN

(〈α(0),...,α(n−1)〉,α(n)) (α,n)
�oo � // λm. α(n+m)

with “comonad homomorphisms” between them

Jacobs – Types’06, 18/4/’06 – p.13/52



Discrete time signals

Structuring Computations

Three basic comonads:

X? × X XN × N
causality
no future

oo
anti-causality

no past
// XN

(〈α(0),...,α(n−1)〉,α(n)) (α,n)
�oo � // λm. α(n+m)

with “comonad homomorphisms” between them

Jacobs – Types’06, 18/4/’06 – p.13/52



Discrete time signals

Structuring Computations

Three basic comonads:

X? × X XN × N
causality
no future

oo
anti-causality

no past
// XN

(〈α(0),...,α(n−1)〉,α(n)) (α,n)
�oo � // λm. α(n+m)

with “comonad homomorphisms” between them

Jacobs – Types’06, 18/4/’06 – p.13/52



Discrete time signals

Structuring Computations

Three basic comonads:

X? × X XN × N
causality
no future

oo
anti-causality

no past
// XN

(〈α(0),...,α(n−1)〉,α(n)) (α,n)
�oo � // λm. α(n+m)

with “comonad homomorphisms” between them

Jacobs – Types’06, 18/4/’06 – p.13/52



Continuous time signals

Structuring Computations

Analogues fundamental diagram of comonads:

∐

t∈[0,∞)

X [0,t) × X
X [0,∞) × [0,∞)oo // X [0,∞)

where:
∐

t∈[0,∞)

X [0,t) × X ∼=
∐

t∈[0,∞)

X [0,t] ∼= X [0,1] × [0,∞)

Jacobs – Types’06, 18/4/’06 – p.14/52



Continuous time signals

Structuring Computations

Analogues fundamental diagram of comonads:

∐

t∈[0,∞)

X [0,t) × X
X [0,∞) × [0,∞)oo // X [0,∞)

where:
∐

t∈[0,∞)

X [0,t) × X ∼=
∐

t∈[0,∞)

X [0,t] ∼= X [0,1] × [0,∞)

Jacobs – Types’06, 18/4/’06 – p.14/52



Continuous time signals

Structuring Computations

Analogues fundamental diagram of comonads:

∐

t∈[0,∞)

X [0,t) × X
X [0,∞) × [0,∞)oo // X [0,∞)

where:
∐

t∈[0,∞)

X [0,t) × X ∼=
∐

t∈[0,∞)

X [0,t] ∼= X [0,1] × [0,∞)

Jacobs – Types’06, 18/4/’06 – p.14/52



Continuous time signals

Structuring Computations

Analogues fundamental diagram of comonads:

∐

t∈[0,∞)

X [0,t) × X
X [0,∞) × [0,∞)oo // X [0,∞)

where:
∐

t∈[0,∞)

X [0,t) × X ∼=
∐

t∈[0,∞)

X [0,t] ∼= X [0,1] × [0,∞)

Jacobs – Types’06, 18/4/’06 – p.14/52



III. Arrows

Jacobs – Types’06, 18/4/’06 – p.15/52



Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets

Jacobs – Types’06, 18/4/’06 – p.16/52



Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets

Jacobs – Types’06, 18/4/’06 – p.16/52



Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets

Jacobs – Types’06, 18/4/’06 – p.16/52



Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets

Jacobs – Types’06, 18/4/’06 – p.16/52



Arrow overview

Structuring Computations

• Introduced in Haskell by Hughes in 2000, as
common interface extending monads (parser
as main example)

• Binary type operation A(−, +) with three
operations: arr, >>>, first.

• Folklore claim: Arrows are Freyd categories
(Power & Robinson’99)

• Recently substantiated by first describing
arrows as monoids in a category of
bifunctors C

op × C → Sets
Jacobs – Types’06, 18/4/’06 – p.16/52



Arrow in Haskell

Structuring Computations

Introduced as type class:
class Arrow A where

arr :: (X → Y ) → AX Y

(>>>) :: AX Y → AY Z → AX Z

first :: AX Y → A (X, Z) (Y, Z)

Which should satisfy 8 equations, such as:

(a >>> b) >>> c = a >>> (b >>> c)

a >>> arr(1) = a

first(arr(f)) = arr(f × 1), etc

Jacobs – Types’06, 18/4/’06 – p.17/52



Arrow in Haskell

Structuring Computations

Introduced as type class:

class Arrow A where

arr :: (X → Y ) → AX Y

(>>>) :: AX Y → AY Z → AX Z

first :: AX Y → A (X, Z) (Y, Z)

Which should satisfy 8 equations, such as:

(a >>> b) >>> c = a >>> (b >>> c)

a >>> arr(1) = a

first(arr(f)) = arr(f × 1), etc

Jacobs – Types’06, 18/4/’06 – p.17/52



Arrow in Haskell

Structuring Computations

Introduced as type class:
class Arrow A where

arr :: (X → Y ) → AX Y

(>>>) :: AX Y → AY Z → AX Z

first :: AX Y → A (X, Z) (Y, Z)

Which should satisfy 8 equations, such as:

(a >>> b) >>> c = a >>> (b >>> c)

a >>> arr(1) = a

first(arr(f)) = arr(f × 1), etc

Jacobs – Types’06, 18/4/’06 – p.17/52



Arrow in Haskell

Structuring Computations

Introduced as type class:
class Arrow A where

arr :: (X → Y ) → AX Y

(>>>) :: AX Y → AY Z → AX Z

first :: AX Y → A (X, Z) (Y, Z)

Which should satisfy 8 equations, such as:

(a >>> b) >>> c = a >>> (b >>> c)

a >>> arr(1) = a

first(arr(f)) = arr(f × 1), etc
Jacobs – Types’06, 18/4/’06 – p.17/52



Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes

Jacobs – Types’06, 18/4/’06 – p.18/52



Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes

Jacobs – Types’06, 18/4/’06 – p.18/52



Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes

Jacobs – Types’06, 18/4/’06 – p.18/52



Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes

Jacobs – Types’06, 18/4/’06 – p.18/52



Arrow examples

Structuring Computations

• (X, Y ) 7−→ (X → T (Y )), for T monad
(X, Y ) 7−→ (G(X) → Y ), for G comonad

• (X, Y ) 7−→ (X × X → [0, 1](Y ×Y )) for
quantum computation

• (X, Y ) 7−→ (XN → P(Y N)) for
“non-deterministic dataflow”

• (X, Y ) 7−→ (2 × S?)×

((S? × X) → (1 + (S? × Y )))

for Swierstra-Duponcheel parser that
motivated Hughes

Jacobs – Types’06, 18/4/’06 – p.18/52



Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”

Jacobs – Types’06, 18/4/’06 – p.19/52



Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”

Jacobs – Types’06, 18/4/’06 – p.19/52



Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”

Jacobs – Types’06, 18/4/’06 – p.19/52



Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”

Jacobs – Types’06, 18/4/’06 – p.19/52



Arrows, categorically

Structuring Computations

• A is functorial: for f : X ′ → X and g: Y → Y ′,

A(X, Y )
A(f, g)

// A(X ′, Y ′)

a � // arr(f) >>> a >>> arr(g)

• arr: (+)(−) → A(−, +) is natural
transformation (natro, for short)

• >>> is natro A ⊗ A → A, for tensor product of
distributors / profunctors

• first corresponds to “internal strength”
Jacobs – Types’06, 18/4/’06 – p.19/52



Excurs: monoid in a category

Structuring Computations

• Standardly, a monoid is a set M with
associative m: M × M → M and two-sided
unit e: 1 → M

• Can be formulated in category with finite
products (1,×): equations become diagrams

• No projections/diagonals needed: also in
monoidal category with (I,⊗). Eg.

M ⊗ M

m
��

M ⊗ I
1 ⊗ e
oo M

hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

∼=oo
∼= // I ⊗ M

e ⊗ 1
// M ⊗ M

m
��

M M

Jacobs – Types’06, 18/4/’06 – p.20/52



Excurs: monoid in a category

Structuring Computations

• Standardly, a monoid is a set M with
associative m: M × M → M and two-sided
unit e: 1 → M

• Can be formulated in category with finite
products (1,×): equations become diagrams

• No projections/diagonals needed: also in
monoidal category with (I,⊗). Eg.

M ⊗ M

m
��

M ⊗ I
1 ⊗ e
oo M

hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

∼=oo
∼= // I ⊗ M

e ⊗ 1
// M ⊗ M

m
��

M M

Jacobs – Types’06, 18/4/’06 – p.20/52



Excurs: monoid in a category

Structuring Computations

• Standardly, a monoid is a set M with
associative m: M × M → M and two-sided
unit e: 1 → M

• Can be formulated in category with finite
products (1,×): equations become diagrams

• No projections/diagonals needed: also in
monoidal category with (I,⊗). Eg.

M ⊗ M

m
��

M ⊗ I
1 ⊗ e
oo M

hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

∼=oo
∼= // I ⊗ M

e ⊗ 1
// M ⊗ M

m
��

M M

Jacobs – Types’06, 18/4/’06 – p.20/52



Excurs: monoid in a category

Structuring Computations

• Standardly, a monoid is a set M with
associative m: M × M → M and two-sided
unit e: 1 → M

• Can be formulated in category with finite
products (1,×): equations become diagrams

• No projections/diagonals needed: also in
monoidal category with (I,⊗). Eg.

M ⊗ M

m
��

M ⊗ I
1 ⊗ e
oo M

hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

∼=oo
∼= // I ⊗ M

e ⊗ 1
// M ⊗ M

m
��

M M
Jacobs – Types’06, 18/4/’06 – p.20/52



Excurs: monads are monoids

Structuring Computations

• The functor category C
C is monoidal:

F ⊗ G = F ◦ G I = Id

• A monoid in C
C is a functor M : C → C with

natros:

M ⊗ M
µ

// M Id
η

oo

M ◦ M

satisfying the monoid equations

• A monoid in C
C is precisely a monad!

Jacobs – Types’06, 18/4/’06 – p.21/52



Excurs: monads are monoids

Structuring Computations

• The functor category C
C is monoidal:

F ⊗ G = F ◦ G I = Id

• A monoid in C
C is a functor M : C → C with

natros:

M ⊗ M
µ

// M Id
η

oo

M ◦ M

satisfying the monoid equations

• A monoid in C
C is precisely a monad!

Jacobs – Types’06, 18/4/’06 – p.21/52



Excurs: monads are monoids

Structuring Computations

• The functor category C
C is monoidal:

F ⊗ G = F ◦ G I = Id

• A monoid in C
C is a functor M : C → C with

natros:

M ⊗ M
µ

// M Id
η

oo

M ◦ M

satisfying the monoid equations

• A monoid in C
C is precisely a monad!

Jacobs – Types’06, 18/4/’06 – p.21/52



Excurs: monads are monoids

Structuring Computations

• The functor category C
C is monoidal:

F ⊗ G = F ◦ G I = Id

• A monoid in C
C is a functor M : C → C with

natros:

M ⊗ M
µ

// M Id
η

oo

M ◦ M

satisfying the monoid equations

• A monoid in C
C is precisely a monad!

Jacobs – Types’06, 18/4/’06 – p.21/52



Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.

Jacobs – Types’06, 18/4/’06 – p.22/52



Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.

Jacobs – Types’06, 18/4/’06 – p.22/52



Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.

Jacobs – Types’06, 18/4/’06 – p.22/52



Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.

Jacobs – Types’06, 18/4/’06 – p.22/52



Arrows are also monoids

Structuring Computations

• Arrows are monoids in category of bifunctors
C

op × C → Sets

• Tensor ⊗ more complicated, with
exponentiation/hom as unit

• Allows for precise comparison with Freyd
categories
(bijective correspondence)

• Details in Heunen & Jacobs, MFPS’06.

Jacobs – Types’06, 18/4/’06 – p.22/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



Arrows, intuitively

Structuring Computations

• Most fundamental mathematical structure in
computing?

• Monoid (A, ; , skip) of programs/actions
A ∈ Sets with sequential composition

• Adding input and output makes A(−, +)
binary operator

• Hence carrier A becomes bifunctor
C

op × C → Sets

• Keeping the monoid structure leads to
Hughes’ Arrow

Jacobs – Types’06, 18/4/’06 – p.23/52



IV. Monads

Jacobs – Types’06, 18/4/’06 – p.24/52



Monad overview

Structuring Computations

• Introduced by Moggi (1991), popularised in
functional programming by Wadler

• for structuring outputs / computational effects

• Standard examples:
• lift / maybe 1 + (−)

• exception E + (−)

• list (−)?

• state (−× S)S

• non-determinism P (powerset)
• probability D (distribution)

Jacobs – Types’06, 18/4/’06 – p.25/52



Monad overview

Structuring Computations

• Introduced by Moggi (1991), popularised in
functional programming by Wadler

• for structuring outputs / computational effects

• Standard examples:
• lift / maybe 1 + (−)

• exception E + (−)

• list (−)?

• state (−× S)S

• non-determinism P (powerset)
• probability D (distribution)

Jacobs – Types’06, 18/4/’06 – p.25/52



Monad overview

Structuring Computations

• Introduced by Moggi (1991), popularised in
functional programming by Wadler

• for structuring outputs / computational effects

• Standard examples:
• lift / maybe 1 + (−)

• exception E + (−)

• list (−)?

• state (−× S)S

• non-determinism P (powerset)
• probability D (distribution)

Jacobs – Types’06, 18/4/’06 – p.25/52



Monad overview

Structuring Computations

• Introduced by Moggi (1991), popularised in
functional programming by Wadler

• for structuring outputs / computational effects

• Standard examples:
• lift / maybe 1 + (−)

• exception E + (−)

• list (−)?

• state (−× S)S

• non-determinism P (powerset)
• probability D (distribution)Jacobs – Types’06, 18/4/’06 – p.25/52



Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]

Jacobs – Types’06, 18/4/’06 – p.26/52



Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]

Jacobs – Types’06, 18/4/’06 – p.26/52



Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]

Jacobs – Types’06, 18/4/’06 – p.26/52



Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]

Jacobs – Types’06, 18/4/’06 – p.26/52



Java monad

Structuring Computations

• Definition [Jacobs & Poll’03]:

J(X) = (1 + S × X + S × E)S

• Combination of state, lift, exception monad

• Actual “abnormal” termination in Java more
complicated: exceptions, return, break,
continue

• Exception mechanism (plus logic)
axiomatised as equaliser by [Schröder &
Mossakowski]

Jacobs – Types’06, 18/4/’06 – p.26/52



Kleisli composition for Java monad

Structuring Computations

• Kleisli composition for J is “argument
evaluation, before use”
(and not sequential composition ; )

• For a: X → J(Y ), and p: Y → J(Z),

p • a = λx: X. λs: S.

CASES a x s OF
∗ 7−→ ∗ // non-termination

(s′, y) 7−→ p y s′ // normal termination

(s′, e) 7−→ (s′, e) // except. termination

Jacobs – Types’06, 18/4/’06 – p.27/52



Kleisli composition for Java monad

Structuring Computations

• Kleisli composition for J is “argument
evaluation, before use”
(and not sequential composition ; )

• For a: X → J(Y ), and p: Y → J(Z),

p • a = λx: X. λs: S.

CASES a x s OF
∗ 7−→ ∗ // non-termination

(s′, y) 7−→ p y s′ // normal termination

(s′, e) 7−→ (s′, e) // except. termination

Jacobs – Types’06, 18/4/’06 – p.27/52



Kleisli composition for Java monad

Structuring Computations

• Kleisli composition for J is “argument
evaluation, before use”
(and not sequential composition ; )

• For a: X → J(Y ), and p: Y → J(Z),

p • a = λx: X. λs: S.

CASES a x s OF
∗ 7−→ ∗ // non-termination

(s′, y) 7−→ p y s′ // normal termination

(s′, e) 7−→ (s′, e) // except. termination

Jacobs – Types’06, 18/4/’06 – p.27/52



V. Java program verification
(at Nijmegen)

Jacobs – Types’06, 18/4/’06 – p.28/52



Developments

Structuring Computations

• Original focus: theorem proving for small
Java programs (for smart cards)

• Outcome:
• No scaling beyond couple of pages
• Practical experience, formalisations &

deeper theory

• Shift of focus:
• Extension to security properties (esp.

confidentiality)
• Static checking primary, theorem proving

secondary

Jacobs – Types’06, 18/4/’06 – p.29/52



Developments

Structuring Computations

• Original focus: theorem proving for small
Java programs (for smart cards)

• Outcome:
• No scaling beyond couple of pages
• Practical experience, formalisations &

deeper theory

• Shift of focus:
• Extension to security properties (esp.

confidentiality)
• Static checking primary, theorem proving

secondary

Jacobs – Types’06, 18/4/’06 – p.29/52



Developments

Structuring Computations

• Original focus: theorem proving for small
Java programs (for smart cards)

• Outcome:
• No scaling beyond couple of pages
• Practical experience, formalisations &

deeper theory

• Shift of focus:
• Extension to security properties (esp.

confidentiality)
• Static checking primary, theorem proving

secondary

Jacobs – Types’06, 18/4/’06 – p.29/52



Developments

Structuring Computations

• Original focus: theorem proving for small
Java programs (for smart cards)

• Outcome:
• No scaling beyond couple of pages
• Practical experience, formalisations &

deeper theory

• Shift of focus:
• Extension to security properties (esp.

confidentiality)
• Static checking primary, theorem proving

secondary Jacobs – Types’06, 18/4/’06 – p.29/52



JML: Java Modeling Language

Structuring Computations

JML [Leavens et al.] adds specifications as
special comments in Java code, mainly for:

• Class invariants and constraints

• Method specifications:
/*@ behavior

@ requires <precondition>
@ assignable <items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@ termination>
@*/

void method() { ... }

Jacobs – Types’06, 18/4/’06 – p.30/52



JML: Java Modeling Language

Structuring Computations

JML [Leavens et al.] adds specifications as
special comments in Java code, mainly for:

• Class invariants and constraints

• Method specifications:
/*@ behavior

@ requires <precondition>
@ assignable <items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@ termination>
@*/

void method() { ... }

Jacobs – Types’06, 18/4/’06 – p.30/52



JML: Java Modeling Language

Structuring Computations

JML [Leavens et al.] adds specifications as
special comments in Java code, mainly for:

• Class invariants and constraints

• Method specifications:
/*@ behavior

@ requires <precondition>
@ assignable <items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@ termination>
@*/

void method() { ... }

Jacobs – Types’06, 18/4/’06 – p.30/52



JML: Java Modeling Language

Structuring Computations

JML [Leavens et al.] adds specifications as
special comments in Java code, mainly for:

• Class invariants and constraints

• Method specifications:
/*@ behavior

@ requires <precondition>
@ assignable <items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@ termination>
@*/

void method() { ... }
Jacobs – Types’06, 18/4/’06 – p.30/52



JML: example

Structuring Computations

JML method specifications may clarify the
behaviour of Java methods:
/*@ normal_behavior

@ requires x >= 0;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@*/

int f(int x) {
int count = 0, sum = 1;
while (sum <= x) {
count++;
sum += 2 * count + 1;

}
return count;

}

Jacobs – Types’06, 18/4/’06 – p.31/52



JML: example

Structuring Computations

JML method specifications may clarify the
behaviour of Java methods:

/*@ normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@*/

int f(int x) {
int count = 0, sum = 1;
while (sum <= x) {
count++;
sum += 2 * count + 1;

}
return count;

}

Jacobs – Types’06, 18/4/’06 – p.31/52



JML: example

Structuring Computations

JML method specifications may clarify the
behaviour of Java methods:

/*@ normal_behavior
@ requires x >= 0;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@*/

int f(int x) {
int count = 0, sum = 1;
while (sum <= x) {

count++;
sum += 2 * count + 1;

}
return count;

} Jacobs – Types’06, 18/4/’06 – p.31/52



JML: example

Structuring Computations

JML method specifications may clarify the
behaviour of Java methods:
/*@ normal_behavior

@ requires x >= 0;
@ assignable \nothing;
@ ensures \result * \result <= x &&
@ x < (\result+1) * (\result+1);
@*/

int f(int x) {
int count = 0, sum = 1;
while (sum <= x) {

count++;
sum += 2 * count + 1;

}
return count;

} Jacobs – Types’06, 18/4/’06 – p.31/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



LOOP project

Structuring Computations

• LOOP tool: compiles Java+JML to PVS

• Based on formalised semantics of Java+JML
in PVS

• Including Hoare logic (see later) &
WP-reasoner
(all with provably sound rules)

• Used for several non-trivial case studies, but
now in “sleep mode”

• Static checking is simply more effective;
theorem proving best for difficult left-overs.

Jacobs – Types’06, 18/4/’06 – p.32/52



VI. Static Checking for Java

Jacobs – Types’06, 18/4/’06 – p.33/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).

Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).

Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).

Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).

Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses).

Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java and ESC/Java2

Structuring Computations

Extended static checker: original ESC/Java by
Leino et. al at Compaq, but no longer supported.

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound, not complete, but finds lots of
potential bugs quickly

• Original ESC/Java only supports a (not fully
compatible) subset of full JML

• New ESC/Java2 is open source, compatible
and handles more (eg. assignable
clauses). Jacobs – Types’06, 18/4/’06 – p.34/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a;
int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Jacobs – Types’06, 18/4/’06 – p.35/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a;
int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: possible null deference. Plus other warnings

Jacobs – Types’06, 18/4/’06 – p.36/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Jacobs – Types’06, 18/4/’06 – p.37/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: Array index possibly too large

Jacobs – Types’06, 18/4/’06 – p.38/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Jacobs – Types’06, 18/4/’06 – p.39/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 1; i <= n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: Array index possibly too large

Jacobs – Types’06, 18/4/’06 – p.40/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Jacobs – Types’06, 18/4/’06 – p.41/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Warning: Possible negative array index

Jacobs – Types’06, 18/4/’06 – p.42/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

Jacobs – Types’06, 18/4/’06 – p.43/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

No more warnings about this code

Jacobs – Types’06, 18/4/’06 – p.44/52



ESC/Java “demo”

Structuring Computations

class Bag {
int[] a; //@ invariant a != null;
int n; //@ invariant 0 <= n && n <= a.length;
//@ requires n > 0;
int extractMin() {
int m = Integer.MAX_VALUE;
int mindex = 0;
for (int i = 0; i < n; i++) {

if (a[i] < m) { mindex = i; m = a[i]; } }
n--;
a[mindex] = a[n];
return m;

}

. . . but warnings about calls to extractMin() that do not
ensure precondition : design by contract

Jacobs – Types’06, 18/4/’06 – p.45/52



VII. Hoare logic for JML

Jacobs – Types’06, 18/4/’06 – p.46/52



Hoare logic issues for Java & JML

Structuring Computations

• Complications in Hoare logic for Java:
• exceptions and other abrupt control flow
• expressions may have side effects

• Thus:
• not Hoare triples but Hoare n-tuples,
• both for statements & expressions

Jacobs – Types’06, 18/4/’06 – p.47/52



Hoare logic issues for Java & JML

Structuring Computations

• Complications in Hoare logic for Java:
• exceptions and other abrupt control flow
• expressions may have side effects

• Thus:
• not Hoare triples but Hoare n-tuples,
• both for statements & expressions

Jacobs – Types’06, 18/4/’06 – p.47/52



Hoare logic issues for Java & JML

Structuring Computations

• Complications in Hoare logic for Java:
• exceptions and other abrupt control flow
• expressions may have side effects

• Thus:
• not Hoare triples but Hoare n-tuples,
• both for statements & expressions

Jacobs – Types’06, 18/4/’06 – p.47/52



Hoare Logic assertions

Structuring Computations

For {Pre }m {Post } write
(

requires = Pre
statement = m

ensures = Post

)

For JML one needs:











diverges = D
requires = Pre

statement = m
ensures = Post
signals = S











Jacobs – Types’06, 18/4/’06 – p.48/52



Hoare Logic assertions

Structuring Computations

For {Pre }m {Post } write
(

requires = Pre
statement = m

ensures = Post

)

For JML one needs:











diverges = D
requires = Pre

statement = m
ensures = Post
signals = S











Jacobs – Types’06, 18/4/’06 – p.48/52



Hoare Logic assertions

Structuring Computations

For {Pre }m {Post } write
(

requires = Pre
statement = m

ensures = Post

)

For JML one needs:











diverges = D
requires = Pre

statement = m
ensures = Post
signals = S











Jacobs – Types’06, 18/4/’06 – p.48/52



Hoare composition Rule

Structuring Computations











diverges = λx. b
requires = Pre

statement = s1

ensures = Q
signals = S





















diverges = λx. b
requires = Q

statement = s2

ensures = Post
signals = S





















diverges = λx. b
requires = Pre

statement = s1 ; s2

ensures = Post
signals = S











Intermediate
predicate
provided by
the user
in JML

Jacobs – Types’06, 18/4/’06 – p.49/52



Hoare composition Rule

Structuring Computations











diverges = λx. b
requires = Pre

statement = s1

ensures = Q
signals = S





















diverges = λx. b
requires = Q

statement = s2

ensures = Post
signals = S





















diverges = λx. b
requires = Pre

statement = s1 ; s2

ensures = Post
signals = S











Intermediate
predicate
provided by
the user
in JML

Jacobs – Types’06, 18/4/’06 – p.49/52



Hoare composition Rule

Structuring Computations











diverges = λx. b
requires = Pre

statement = s1

ensures = Q
signals = S





















diverges = λx. b
requires = Q

statement = s2

ensures = Post
signals = S





















diverges = λx. b
requires = Pre

statement = s1 ; s2

ensures = Post
signals = S











Intermediate
predicate
provided by
the user
in JML

Jacobs – Types’06, 18/4/’06 – p.49/52



Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



Use of the Hoare logic

Structuring Computations

• Actual use seems clumsy, but PVS takes
care of the bookkeeping

• This logic forms basis for semantics of JML

Jacobs – Types’06, 18/4/’06 – p.50/52



VIII. Conclusions

Jacobs – Types’06, 18/4/’06 – p.51/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!

Jacobs – Types’06, 18/4/’06 – p.52/52



Main points

Structuring Computations

• There is mathematical uniformity & elegance
in the structure of computation

• Main notions: monad / comonad / arrow

• This elegance is not completely lost in
concrete languages / systems

• For our Java work: practice preceded theory

• Theorem proving cannot beat static checking
in program verification

Thanks for your attention!
Jacobs – Types’06, 18/4/’06 – p.52/52


	Titlepage
	Contents
	Contents
	Contents

	Purely functional programs
	Purely functional programs
	Purely functional programs

	Imperative, state-based programs
	Imperative, state-based programs
	Imperative, state-based programs
	Imperative, state-based programs
	Imperative, state-based programs

	Reactive, stream-based programs
	Reactive, stream-based programs
	Reactive, stream-based programs
	Reactive, stream-based programs

	Quantum program
	Quantum program
	Quantum program
	Quantum program

	Overview
	Overview
	Overview
	Overview
	Overview

	Comonads for computations
	Comonads for computations
	Comonads for computations
	Comonads for computations
	Comonads for computations

	Comonad structure
	Comonad structure
	Comonad structure
	Comonad structure

	Comonad example
	Comonad example
	Comonad example
	Comonad example
	Comonad example

	coKleisli category of computations
	coKleisli category of computations
	coKleisli category of computations
	coKleisli category of computations
	coKleisli category of computations

	Discrete time signals
	Discrete time signals
	Discrete time signals
	Discrete time signals

	Continuous time signals
	Continuous time signals
	Continuous time signals
	Continuous time signals

	Arrow overview
	Arrow overview
	Arrow overview
	Arrow overview
	Arrow overview

	Arrow in Haskell
	Arrow in Haskell
	Arrow in Haskell
	Arrow in Haskell

	Arrow examples
	Arrow examples
	Arrow examples
	Arrow examples
	Arrow examples

	Arrows, categorically
	Arrows, categorically
	Arrows, categorically
	Arrows, categorically
	Arrows, categorically

	Excurs: monoid in a category
	Excurs: monoid in a category
	Excurs: monoid in a category
	Excurs: monoid in a category

	Excurs: monads are monoids
	Excurs: monads are monoids
	Excurs: monads are monoids
	Excurs: monads are monoids

	Arrows are also monoids
	Arrows are also monoids
	Arrows are also monoids
	Arrows are also monoids
	Arrows are also monoids

	Arrows, intuitively
	Arrows, intuitively
	Arrows, intuitively
	Arrows, intuitively
	Arrows, intuitively
	Arrows, intuitively

	Monad overview
	Monad overview
	Monad overview
	Monad overview

	Java monad
	Java monad
	Java monad
	Java monad
	Java monad

	Kleisli composition for Java monad
	Kleisli composition for Java monad
	Kleisli composition for Java monad

	Developments
	Developments
	Developments
	Developments

	JML: Java Modeling Language
	JML: Java Modeling Language
	JML: Java Modeling Language
	JML: Java Modeling Language

	JML: example
	JML: example
	JML: example
	JML: example

	LOOP project
	LOOP project
	LOOP project
	LOOP project
	LOOP project
	LOOP project

	ESC/Java and ESC/Java2
	ESC/Java and ESC/Java2
	ESC/Java and ESC/Java2
	ESC/Java and ESC/Java2
	ESC/Java and ESC/Java2
	ESC/Java and ESC/Java2

	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	ESC/Java ``demo''
	Hoare logic issues for Java & JML
	Hoare logic issues for Java & JML
	Hoare logic issues for Java & JML

	Hoare Logic assertions
	Hoare Logic assertions
	Hoare Logic assertions

	Hoare composition Rule
	Hoare composition Rule
	Hoare composition Rule

	Use of the Hoare logic
	Use of the Hoare logic
	Use of the Hoare logic

	Main points
	Main points
	Main points
	Main points
	Main points
	Main points
	Main points


