Structuring Computations

Contents

Contents

I. Sneak preview
II. Comonads
III. Arrows
IV. Monads, also for Java
V. Java verification
VI. Static checking
VII. Hoare logic for JML
VIII. Conclusions

Structuring Computations

Contents

I. Sneak preview
II. Comonads
III. Arrows
IV. Monads, also for Java
V. Java verification
VI. Static checking
VII. Hoare logic for JML
VIII. Conclusions

No explicit message; some type/object-related topics that I like;
and you too, hopefully!

I. Sneak preview

Purely functional programs

Purely functional programs

Writing X for the type of inputs, Y for outputs ...

Purely functional programs

Writing X for the type of inputs, Y for outputs ...
... a functional program from X to Y is simply a function

Imperative, state-based programs

Imperative, state-based programs

 Writing S for the type of states ...
Imperative, state-based programs

Writing S for the type of states ...
... an imperative program is:

$$
X \times S \longrightarrow Y \times S
$$

Imperative, state-based programs

Writing S for the type of states ...
... an imperative program is:

$$
X \times S \longrightarrow Y \times S
$$

Or, equivalently,

$$
X \longrightarrow(Y \times S)^{S}
$$

Imperative, state-based programs

Writing S for the type of states ...
... an imperative program is:

$$
X \times S \longrightarrow Y \times S
$$

Or, equivalently,

$$
X \longrightarrow(Y \times S)^{S}
$$

Involving the State Monad $Y \longmapsto(Y \times S)^{S}$

Reactive, stream-based programs

Reactive, stream-based programs

A reactive program is:

$$
X^{\mathbb{N}} \longrightarrow Y^{\mathbb{N}}
$$

Reactive, stream-based programs

A reactive program is:

$$
X^{\mathbb{N}} \longrightarrow Y^{\mathbb{N}}
$$

Or, equivalently,

$$
X^{\mathbb{N}} \times \mathbb{N} \longrightarrow Y
$$

Reactive, stream-based programs

A reactive program is:

Or, equivalently,

Involving the Stream Comonad $X \longmapsto X^{\mathbb{N}} \times \mathbb{N}$

Quantum program

Quantum program

A possible quantum program is:

$$
X \times X \longrightarrow[0,1]^{(Y \times Y)}
$$

Structuring Computations

Quantum program

A possible quantum program is:

$$
X \times X \longrightarrow[0,1]^{(Y \times Y)}
$$

It is a "superoperator" on "density matrices" (or quantum states)—after Vizotto, Altenkirch, Sabry

Quantum program

A possible quantum program is:

$$
X \times X \longrightarrow[0,1]^{(Y \times Y)}
$$

It is a "superoperator" on "density matrices" (or quantum states)—after Vizotto, Altenkirch, Sabry

It forms an example of an Arrow: computations with unit and composition.

Overview

Overview

- Functional: $X \longrightarrow Y$

Structuring Computations

Overview

- Functional: $X \longrightarrow Y$
- Imperative: $X \longrightarrow T(Y)$, with T monad (including Java programs)

Overview

- Functional: $X \longrightarrow Y$
- Imperative: $X \longrightarrow T(Y)$, with T monad
(including Java programs)
- Reactive: $G(X) \longrightarrow Y$, with G comonad

Overview

- Functional: $X \longrightarrow Y$
- Imperative: $X \longrightarrow T(Y)$, with T monad (including Java programs)
- Reactive: $G(X) \longrightarrow Y$, with G comonad
- Quantum: $A(X, Y)$, with A "arrow"

II. Comonads

Comonads for computations

Comonads for computations

- Monads are well-established in functional programming \& language semantics

Comonads for computations

- Monads are well-established in functional programming \& language semantics
- But little attention for the dual notion of comonad...

Comonads for computations

- Monads are well-established in functional programming \& language semantics
- But little attention for the dual notion of comonad...
- . . . until Uustalu \& Vene recently used them for structuring reactive/dataflow programming—building on Brookes \& Geva

Comonads for computations

- Monads are well-established in functional programming \& language semantics
- But little attention for the dual notion of comonad...
- ... until Uustalu \& Vene recently used them for structuring reactive/dataflow programming—building on Brookes \& Geva
- Slogan: monads structure output, comonads structure input

Comonad structure

Structuring Computations

Comonad structure

- Categorically: endofunctor $G: \mathbb{C} \rightarrow \mathbb{C}$ with two natural transformations $\varepsilon: G \Rightarrow$ Id and $\delta: G \Rightarrow G^{2}$ satisfying standard equations

Comonad structure

- Categorically: endofunctor $G: \mathbb{C} \rightarrow \mathbb{C}$ with two natural transformations $\varepsilon: G \Rightarrow$ Id and $\delta: G \Rightarrow G^{2}$ satisfying standard equations
- Computationally: Type operator G with
- coreturn: $G X \longrightarrow X$
- cobind: $(G X \rightarrow Y) \longrightarrow(G X \rightarrow G Y)$ satisfying suitable equations

Comonad structure

- Categorically: endofunctor $G: \mathbb{C} \rightarrow \mathbb{C}$ with two natural transformations $\varepsilon: G \Rightarrow$ Id and $\delta: G \Rightarrow G^{2}$ satisfying standard equations
- Computationally: Type operator G with
- coreturn: $G X \longrightarrow X$
- cobind: $(G X \rightarrow Y) \longrightarrow(G X \rightarrow G Y)$ satisfying suitable equations
- Logically: structure for weakening and contraction (like bang! in linear logic)

Comonad example

Comonad example

- Mapping $X \longmapsto X^{\mathbb{N}} \times \mathbb{N}$

Structuring Computations

Comonad example

- Mapping $X \longmapsto X^{\mathbb{N}} \times \mathbb{N}$
- Input streams with past / current / future:

$$
x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}, x_{n+1}, x_{n+2}, \ldots
$$

Structuring Computations

Comonad example

- Mapping $X \longmapsto X^{\mathbb{N}} \times \mathbb{N}$
- Input streams with past / current / future:

$$
x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}, x_{n+1}, x_{n+2}, \ldots
$$

- Counit / coreturn: $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow X$

$$
(\alpha, n) \longmapsto \alpha(n)
$$

Structuring Computations

Comonad example

- Mapping $X \longmapsto X^{\mathbb{N}} \times \mathbb{N}$
- Input streams with past / current / future:

$$
x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}, x_{n+1}, x_{n+2}, \ldots
$$

- Counit / coreturn: $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow X$

$$
(\alpha, n) \longmapsto \alpha(n)
$$

- Delta: $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow\left(X^{\mathbb{N}} \times \mathbb{N}\right)^{\mathbb{N}} \times \mathbb{N}$

$$
(\alpha, n) \longmapsto(\lambda m: \mathbb{N} .(\alpha, m), n)
$$

coKleisli category of computations

coKleisli category of computations

- coKleisli maps $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow Y$ form a category

coKleisli category of computations

- coKleisli maps $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow Y$ form a category
- Identity via coreturn; composition via delta/cobind

coKleisli category of computations

- coKleisli maps $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow Y$ form a category
- Identity via coreturn; composition via delta/cobind
- Gives output in Y for completely given input stream of X 's

coKleisli category of computations

- coKleisli maps $X^{\mathbb{N}} \times \mathbb{N} \longrightarrow Y$ form a category
- Identity via coreturn; composition via delta/cobind
- Gives output in Y for completely given input stream of X 's
- Basis for dataflow calculus by Uustalu \& Vene
(like in Lustre, Lucid)

Discrete time signals

Discrete time signals

Three basic comonads:

Structuring Computations

Discrete time signals

Three basic comonads:

$$
\begin{gathered}
X^{\star} \times X \underset{\text { no future }}{\text { causality }} X^{\mathbb{N}} \times \mathbb{N} \xrightarrow[\text { no past }]{\text { anti-causality }} X^{\mathbb{N}} \\
(\langle\alpha(0), \ldots, \alpha(n-1)\rangle, \alpha(n)) \longleftrightarrow(\alpha, n) \longmapsto \\
\\
\lambda m . \alpha(n+m)
\end{gathered}
$$

Structuring Computations

Discrete time signals

Three basic comonads:

$$
\begin{gathered}
X^{\star} \times X \underset{\text { no future }}{\text { causality }} X^{\mathbb{N}} \times \mathbb{N} \xrightarrow[\text { no past }]{\stackrel{\text { anti-causality }}{\longleftrightarrow}} X^{\mathbb{N}} \\
(\langle\alpha(0), \ldots, \alpha(n-1)\rangle, \alpha(n)) \longleftarrow(\alpha, n) \longmapsto \\
\longleftrightarrow \lambda m \cdot \alpha(n+m)
\end{gathered}
$$

with "comonad homomorphisms" between them

Continuous time signals

Continuous time signals

Analogues fundamental diagram of comonads:

Structuring Computations

Continuous time signals

Analogues fundamental diagram of comonads:

$$
\coprod X^{[0, t)} \times X \rightleftarrows X^{[0, \infty)} \times[0, \infty) \longrightarrow X^{[0, \infty)}
$$

Structuring Computations

Continuous time signals

Analogues fundamental diagram of comonads:

$$
\coprod X^{[0, t)} \times X \longleftarrow X^{[0, \infty)} \times[0, \infty) \longrightarrow X^{[0, \infty)}
$$

where:

$$
\coprod_{t \in[0, \infty)} X^{[0, t)} \times X \cong \coprod_{t \in[0, \infty)} X^{[0, t]} \cong X^{[0,1]} \times[0, \infty)
$$

III. Arrows

Arrow overview

Arrow overview

- Introduced in Haskell by Hughes in 2000, as common interface extending monads (parser as main example)

Arrow overview

- Introduced in Haskell by Hughes in 2000, as common interface extending monads (parser as main example)
- Binary type operation $A(-,+)$ with three operations: arr, >>>, first.

Arrow overview

- Introduced in Haskell by Hughes in 2000, as common interface extending monads (parser as main example)
- Binary type operation $A(-,+)$ with three operations: arr, >>>, first.
- Folklore claim: Arrows are Freyd categories (Power \& Robinson'99)

Arrow overview

- Introduced in Haskell by Hughes in 2000, as common interface extending monads (parser as main example)
- Binary type operation $A(-,+)$ with three operations: arr, >>, first.
- Folklore claim: Arrows are Freyd categories (Power \& Robinson'99)
- Recently substantiated by first describing arrows as monoids in a category of bifunctors $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets

Arrow in Haskell

Arrow in Haskell

Introduced as type class:

Structuring Computations

Arrow in Haskell

Introduced as type class:
class Arrow A where
arr $::(X \rightarrow Y) \rightarrow A X Y$
$(\gg):: A X Y \rightarrow$ A $Y Z \rightarrow$ A $X Z$
first : : A $X Y \rightarrow \mathrm{~A}(X, Z)(Y, Z)$

Arrow in Haskell

Introduced as type class:
class Arrow A where

$$
\begin{aligned}
& \text { arr }::(X \rightarrow Y) \rightarrow \mathrm{A} X Y \\
& (\ggg):: \mathrm{A} X Y \rightarrow \mathrm{~A} Y Z \rightarrow \mathrm{~A} X Z \\
& \text { first }:: \mathrm{A} X Y \rightarrow \mathrm{~A}(X, Z)(Y, Z)
\end{aligned}
$$

Which should satisfy 8 equations, such as:

$$
\begin{aligned}
(a \ggg) \ggg & =a \ggg(b \ggg) \\
a \ggg \operatorname{arr}(1) & =a \\
\text { first }(\operatorname{arr}(f)) & =\operatorname{arr}(f \times 1), \quad \text { etc }
\end{aligned}
$$

Arrow examples

Arrow examples

- $(X, Y) \longmapsto(X \rightarrow T(Y))$, for T monad $(X, Y) \longmapsto(G(X) \rightarrow Y)$, for G comonad

Structuring Computations

Arrow examples

- $(X, Y) \longmapsto(X \rightarrow T(Y))$, for T monad $(X, Y) \longmapsto(G(X) \rightarrow Y)$, for G comonad
- $(X, Y) \longmapsto\left(X \times X \rightarrow[0,1]^{(Y \times Y)}\right)$ for quantum computation

Structuring Computations

Arrow examples

- $(X, Y) \longmapsto(X \rightarrow T(Y))$, for T monad $(X, Y) \longmapsto(G(X) \rightarrow Y)$, for G comonad
- $(X, Y) \longmapsto\left(X \times X \rightarrow[0,1]^{(Y \times Y)}\right)$ for quantum computation
- $(X, Y) \longmapsto\left(X^{\mathbb{N}} \rightarrow \mathcal{P}\left(Y^{\mathbb{N}}\right)\right)$ for "non-deterministic dataflow"

Arrow examples

- $(X, Y) \longmapsto(X \rightarrow T(Y))$, for T monad $(X, Y) \longmapsto(G(X) \rightarrow Y)$, for G comonad
- $(X, Y) \longmapsto\left(X \times X \rightarrow[0,1]^{(Y \times Y)}\right)$ for quantum computation
- $(X, Y) \longmapsto\left(X^{\mathbb{N}} \rightarrow \mathcal{P}\left(Y^{\mathbb{N}}\right)\right)$ for "non-deterministic dataflow"
- $(X, Y) \longmapsto\left(2 \times S^{\star}\right) \times$

$$
\left(\left(S^{\star} \times X\right) \rightarrow\left(1+\left(S^{\star} \times Y\right)\right)\right)
$$

for Swierstra-Duponcheel parser that motivated Hughes

Structuring Computations

Arrows, categorically

- A is functorial: for $f: X^{\prime} \rightarrow X$ and $g: Y \rightarrow Y^{\prime}$,

$$
\begin{aligned}
& A(X, Y) \xrightarrow{A(f, g)} A\left(X^{\prime}, Y^{\prime}\right) \\
& a \longmapsto \operatorname{arr}(f) \ggg \ggg \gg \operatorname{arr}(g)
\end{aligned}
$$

Structuring Computations

Arrows, categorically

- A is functorial: for $f: X^{\prime} \rightarrow X$ and $g: Y \rightarrow Y^{\prime}$,

$$
\begin{aligned}
A(X, Y) \xrightarrow{A(f, g)} & A\left(X^{\prime}, Y^{\prime}\right) \\
a \longmapsto \operatorname{arr}(f) & \ggg \ggg>\operatorname{arr}(g)
\end{aligned}
$$

- arr: $(+)^{(-)} \rightarrow A(-,+)$ is natural transformation (natro, for short)

Structuring Computations

Arrows, categorically

- A is functorial: for $f: X^{\prime} \rightarrow X$ and $g: Y \rightarrow Y^{\prime}$,

$$
\begin{aligned}
A(X, Y) \xrightarrow{A(f, g)} & A\left(X^{\prime}, Y^{\prime}\right) \\
a \longmapsto \operatorname{arr}(f) & \ggg a \gg \operatorname{arr}(g)
\end{aligned}
$$

- arr: $(+)^{(-)} \rightarrow A(-,+)$ is natural transformation (natro, for short)
- \ggg is natro $A \otimes A \rightarrow A$, for tensor product of distributors / profunctors

Structuring Computations

Arrows, categorically

- A is functorial: for $f: X^{\prime} \rightarrow X$ and $g: Y \rightarrow Y^{\prime}$,

$$
\begin{aligned}
A(X, Y) \xrightarrow{A(f, g)} & A\left(X^{\prime}, Y^{\prime}\right) \\
a \longmapsto \operatorname{arr}(f) & \ggg{ }^{2} \gg \operatorname{arr}(g)
\end{aligned}
$$

- arr: $(+)^{(-)} \rightarrow A(-,+)$ is natural transformation (natro, for short)
- \ggg is natro $A \otimes A \rightarrow A$, for tensor product of distributors / profunctors
- first corresponds to "internal strength"

Excurs: monoid in a category

Structuring Computations

Excurs: monoid in a category

- Standardly, a monoid is a set M with associative $m: M \times M \rightarrow M$ and two-sided unit $e: 1 \rightarrow M$

Excurs: monoid in a category

- Standardly, a monoid is a set M with associative $m: M \times M \rightarrow M$ and two-sided unit $e: 1 \rightarrow M$
- Can be formulated in category with finite products $(1, \times)$: equations become diagrams

Excurs: monoid in a category

- Standardly, a monoid is a set M with associative $m: M \times M \rightarrow M$ and two-sided unit $e: 1 \rightarrow M$
- Can be formulated in category with finite products $(1, \times)$: equations become diagrams
- No projections/diagonals needed: also in monoidal category with (I, \otimes). Eg.

Excurs: monads are monoids

Excurs: monads are monoids

- The functor category $\mathbb{C}^{\mathbb{C}}$ is monoidal:

$$
F \otimes G=F \circ G \quad I=\mathrm{Id}
$$

Excurs: monads are monoids

- The functor category $\mathbb{C}^{\mathbb{C}}$ is monoidal:

$$
F \otimes G=F \circ G \quad I=\mathrm{Id}
$$

- A monoid in $\mathbb{C}^{\mathbb{C}}$ is a functor $M: \mathbb{C} \rightarrow \mathbb{C}$ with natros:

$$
\begin{aligned}
& M \otimes M \xrightarrow{M} M \lessdot \quad \eta \\
& M \circ M \\
& M \circ M
\end{aligned}
$$

satisfying the monoid equations

Excurs: monads are monoids

- The functor category $\mathbb{C}^{\mathbb{C}}$ is monoidal:

$$
F \otimes G=F \circ G \quad I=\mathrm{Id}
$$

- A monoid in $\mathbb{C}^{\mathbb{C}}$ is a functor $M: \mathbb{C} \rightarrow \mathbb{C}$ with natros:

$$
\begin{aligned}
& M \otimes M \xrightarrow{M} M \stackrel{\mu}{\longrightarrow} \mathrm{Id} \\
& M \circ M
\end{aligned}
$$

satisfying the monoid equations

- A monoid in $\mathbb{C}^{\mathbb{C}}$ is precisely a monad!

Arrows are also monoids

Arrows are also monoids

- Arrows are monoids in category of bifunctors $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets

Arrows are also monoids

- Arrows are monoids in category of bifunctors $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets
- Tensor \otimes more complicated, with exponentiation/hom as unit

Arrows are also monoids

- Arrows are monoids in category of bifunctors $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets
- Tensor \otimes more complicated, with exponentiation/hom as unit
- Allows for precise comparison with Freyd categories
(bijective correspondence)

Arrows are also monoids

- Arrows are monoids in category of bifunctors $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets
- Tensor \otimes more complicated, with exponentiation/hom as unit
- Allows for precise comparison with Freyd categories
(bijective correspondence)
- Details in Heunen \& Jacobs, MFPS'06. Arrows, intuitively

Arrows, intuitively

- Most fundamental mathematical structure in computing?

Arrows, intuitively

- Most fundamental mathematical structure in computing?
- Monoid ($A, ;$, skip) of programs/actions $A \in$ Sets with sequential composition

Structuring Computations

Arrows, intuitively

- Most fundamental mathematical structure in computing?
- Monoid ($A, ;$, skip) of programs/actions $A \in$ Sets with sequential composition
- Adding input and output makes $A(-,+)$ binary operator

Structuring Computations

Arrows, intuitively

- Most fundamental mathematical structure in computing?
- Monoid ($A, ;$, skip) of programs/actions $A \in$ Sets with sequential composition
- Adding input and output makes $A(-,+)$ binary operator
- Hence carrier A becomes bifunctor $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets

Arrows, intuitively

- Most fundamental mathematical structure in computing?
- Monoid ($A, ;$, skip) of programs/actions $A \in$ Sets with sequential composition
- Adding input and output makes $A(-,+)$ binary operator
- Hence carrier A becomes bifunctor $\mathbb{C}^{\mathrm{Op}} \times \mathbb{C} \rightarrow$ Sets
- Keeping the monoid structure leads to Hughes' Arrow

IV. Monads

Monad overview

Structuring Computations

Monad overview

- Introduced by Moggi (1991), popularised in functional programming by Wadler

Structuring Computations

Monad overview

- Introduced by Moggi (1991), popularised in functional programming by Wadler
- for structuring outputs / computational effects

Monad overview

- Introduced by Moggi (1991), popularised in functional programming by Wadler
- for structuring outputs / computational effects
- Standard examples:
- lift / maybe $1+(-)$
- exception $E+(-)$
- list $(-)^{\star}$
- state $(-\times S)^{S}$
- non-determinism \mathcal{P} (powerset)
- probability \mathcal{D} (distribution) ${ }_{\text {cocoss }- \text { Types } 06,1844006-p .25 / 52}$

Java monad

Java monad

- Definition [Jacobs \& Poll’03]:

$$
J(X)=(1+S \times X+S \times E)^{S}
$$

Structuring Computations

Java monad

- Definition [Jacobs \& Poll’03]:

$$
J(X)=(1+S \times X+S \times E)^{S}
$$

- Combination of state, lift, exception monad

Java monad

- Definition [Jacobs \& Poll'03]:

$$
J(X)=(1+S \times X+S \times E)^{S}
$$

- Combination of state, lift, exception monad
- Actual "abnormal" termination in Java more complicated: exceptions, return, break, continue

Java monad

- Definition [Jacobs \& Poll'03]:

$$
J(X)=(1+S \times X+S \times E)^{S}
$$

- Combination of state, lift, exception monad
- Actual "abnormal" termination in Java more complicated: exceptions, return, break, continue
- Exception mechanism (plus logic) axiomatised as equaliser by [Schröder \& Mossakowski]

Kleisli composition for Java monad

Kleisli composition for Java monad

- Kleisli composition for J is "argument evaluation, before use" (and not sequential composition ;)

Kleisli composition for Java monad

- Kleisli composition for J is "argument evaluation, before use" (and not sequential composition ;)
- For $a: X \rightarrow J(Y)$, and $p: Y \rightarrow J(Z)$,
$p \bullet a=\lambda x: X . \lambda s: S$.
CASES axs OF

V. Java program verification (at Nijmegen)

Developments

Structuring Computations

Developments

- Original focus: theorem proving for small Java programs (for smart cards)

Structuring Computations

Developments

- Original focus: theorem proving for small Java programs (for smart cards)
- Outcome:
- No scaling beyond couple of pages
- Practical experience, formalisations \& deeper theory

Developments

- Original focus: theorem proving for small Java programs (for smart cards)
- Outcome:
- No scaling beyond couple of pages
- Practical experience, formalisations \& deeper theory
- Shift of focus:
- Extension to security properties (esp. confidentiality)
- Static checking primary, theorem proving secondary

JML: Java Modeling Language

JML: Java Modeling Language

$J M L$ [Leavens et al.] adds specifications as special comments in Java code, mainly for:

JML: Java Modeling Language

$J M L$ [Leavens et al.] adds specifications as special comments in Java code, mainly for:

- Class invariants and constraints

Structuring Computations

JML: Java Modeling Language

$J M L$ [Leavens et al.] adds specifications as special comments in Java code, mainly for:

- Class invariants and constraints
- Method specifications:
/*@ behavior
@ requires <precondition>
@ assignable<items that may be modified>
@ diverges <precondition for non-termination>
@ ensures <postcond for normal termination>
@ signals <postcond for exceptional
@
termination>
void method() \{ ... \}

JML: example

JML: example

JML method specifications may clarify the behaviour of Java methods:

JML: example

JML method specifications may clarify the behaviour of Java methods:

```
int f(int x) {
    int count = 0, sum = 1;
    while (sum <= x) {
        count++;
        sum += 2 * count + 1;
    }
    return count;
}
```


Structuring Computations

JML: example

JML method specifications may clarify the behaviour of Java methods:

```
/*@ normal_behavior
```

 @ requires \(\quad\) x \(>=0\);
 @ assignable \nothing;
 @ ensures \(\backslash\) result * result <= x \&\&
 @ \(\quad\) < (\(\backslash\) result+1) * (\(\backslash\) result+1)
 @*/
 int f (int x) $\{$
int count $=0$, sum $=1$;
while (sum <= x) \{
count++;
sum += 2 * count + 1;
\}
return count;
\}

LOOP project

LOOP project

- LOOP tool: compiles Java+JML to PVS

Structuring Computations

LOOP project

- LOOP tool: compiles Java+JML to PVS
- Based on formalised semantics of Java+JML in PVS

Structuring Computations

LOOP project

- LOOP tool: compiles Java+JML to PVS
- Based on formalised semantics of Java+JML in PVS
- Including Hoare logic (see later) \& WP-reasoner
(all with provably sound rules)

LOOP project

- LOOP tool: compiles Java+JML to PVS
- Based on formalised semantics of Java+JML in PVS
- Including Hoare logic (see later) \& WP-reasoner
(all with provably sound rules)
- Used for several non-trivial case studies, but now in "sleep mode"

LOOP project

- LOOP tool: compiles Java+JML to PVS
- Based on formalised semantics of Java+JML in PVS
- Including Hoare logic (see later) \& WP-reasoner
(all with provably sound rules)
- Used for several non-trivial case studies, but now in "sleep mode"
- Static checking is simply more effective; theorem proving best for difficult left-overs.

VI. Static Checking for Java

ESC/Java and ESC/Java2

ESC/Java and ESC/Java2

Extended static checker: original ESC/Java by Leino et. al at Compaq, but no longer supported.

ESC/Java and ESC/Java2

Extended static checker: original ESC/Java by Leino et. al at Compaq, but no longer supported.

- tries to prove correctness of specifications, at compile-time, fully automatically

ESC/Java and ESC/Java2

Extended static checker: original ESC/Java by Leino et. al at Compaq, but no longer supported.

- tries to prove correctness of specifications, at compile-time, fully automatically
- not sound, not complete, but finds lots of potential bugs quickly

ESC/Java and ESC/Java2

Extended static checker: original ESC/Java by Leino et. al at Compaq, but no longer supported.

- tries to prove correctness of specifications, at compile-time, fully automatically
- not sound, not complete, but finds lots of potential bugs quickly
- Original ESC/Java only supports a (not fully compatible) subset of full JML

ESC/Java and ESC/Java2

Extended static checker: original ESC/Java by Leino et. al at Compaq, but no longer supported.

- tries to prove correctness of specifications, at compile-time, fully automatically
- not sound, not complete, but finds lots of potential bugs quickly
- Original ESC/Java only supports a (not fully compatible) subset of full JML
- New ESC/Java2 is open source, compatible and handles more (eg. assignable clauses).

Structuring Computations

ESC/Java "demo"

```
class Bag {
    int[] a;
    int n;
    int extractMin() {
    int m = Integer.MAX_VALUE;
    int mindex = 0;
    for (int i = 1; i <= n; i++) {
    if (a[i] < m) { mindex = i; m = a[i]; } }
    n--;
    a[mindex] = a[n];
    return m;
}
```


Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a;
 int n;

int extractMin() \{ int m = Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=1 ; i<=n ; i++$) $\{$ if (a[i] < m) \{mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$
return m;
\}
Warning: possible null deference. Plus other warnings

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n;
int extractMin() \{
int $m=$ Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=1 ; i<=n ; i++$) $\{$
if (a[i] < m) \{ mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$ return m;
\}

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n;
int extractMin() \{
int m = Integer.MAX_VALUE;
int mindex $=0$;
for (int $i=1 ; i<=n ; i++)\{$ if (a[i] < m) \{ mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$ return m;
\}
Warning: Array index possibly too large

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n; / @ invariant $0<=n \& \& n<=a . l e n g t h ;$ int extractMin() \{
int $m=$ Integer. MAX_VALUE;
int windex $=0$;
for (int $i=1 ; i<=n ; i++$) $\{$
if (ali] < m) \{ mindex = i; m = ali]; \} ~ \ $~ }$
n--;
a[mindex] $=a[n] ;$ return m;
\}

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n; / @ invariant $0<=n \& \& n<=a . l e n g t h ;$ int extractMin() \{ int $m=$ Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=1 ; i<=n ; i++$) $\{$
if (a[i] < m) \{ mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$
return m;
\}
Warning: Array index possibly too large

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n; / @ invariant $0<=n \& \& n<=a . l e n g t h ;$ int extractMin() \{
int $m=$ Integer. MAX_VALUE;
int windex $=0$;
for (int $i=0 ; i<n ; i++$) $\{$
if (ali] < m) \{mindex = i; m = ali]; \} ~ \ $~ }$
n--;
a[mindex] $=a[n] ;$ return m;
\}

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n ; //@ invariant $0<=\mathrm{n} \& \& \mathrm{n}<=$ a.length; int extractMin() \{ int m = Integer.MAX_VALUE; int mindex $=0$; for (int $i=0 ; i<n ; i++$) \{ if (a[i] < m) \{ mindex = i; m = a[i]; \} \} n--; a[mindex] $=a[n] ;$ return m;
\}
Warning: Possible negative array index

Structuring Computations

ESC/Java "demo"

class Bag \{ int[] a; //@ invariant a != null;
int n ; / @ invariant $0<=\mathrm{n} \& \& \mathrm{n}<=$ a.length;
//@ requires $n>0$;
int extractMin() \{
int m = Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=0 ; i<n ; i++$) $\{$
if (a[i] < m) \{ mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$
return m;
\}

Structuring Computations

ESC/Java "demo"

Class Bag \{
int[] a; //@ invariant a != null;
int n ; / @ invariant $0<=\mathrm{n} \& \& \mathrm{n}<=$ a.length;
//@ requires $n>0$;
int extractMin() \{
int m = Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=0 ; i<n ; i++)$ \{
if (a[i] < m) \{mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$
return m;
No more warnings about this code

Structuring Computations

ESC/Java "demo"

Class Bag \{

int[] a; //@ invariant a != null;
int n ; //@ invariant $0<=\mathrm{n} \& \& \mathrm{n}<=$ a.length;
//@ requires $n>0$;
int extractMin() \{
int m = Integer. MAX_VALUE;
int mindex $=0$;
for (int $i=0 ; i<n ; i++$) $\{$
if (a[i] < m) \{ mindex = i; m = a[i]; \} \}
n--;
a[mindex] $=a[n] ;$
return m;
... but warnings about calls to extractmin() that do not ensure precondition : design by contract

VII. Hoare logic for JML

Hoare logic issues for Java \& JML

Hoare logic issues for Java \& JML

- Complications in Hoare logic for Java:
- exceptions and other abrupt control flow
- expressions may have side effects

Hoare logic issues for Java \& JML

- Complications in Hoare logic for Java:
- exceptions and other abrupt control flow
- expressions may have side effects
- Thus:
- not Hoare triples but Hoare n-tuples,
- both for statements \& expressions

Hoare Logic assertions

Hoare Logic assertions

For $\{$ Pre $\} m\{$ Post $\}$ write requires $=$ Pre statement $=m$ ensures $=$ Post

Hoare Logic assertions

For $\{$ Pre $\} m\{$ Post $\}$ write
(requires $=$ Pre statement $=m$
ensures $=$ Post

For JML one needs:
$\begin{aligned} \text { diverges } & =D \\ \text { requires } & =P r e \\ \text { tatement } & =m \\ \text { ensures } & =\text { Post } \\ \text { signals } & =S\end{aligned}$

Hoare composition Rule

Structuring Computations

Hoare composition Rule

$\left(\begin{array}{rll}\text { diverges } & = & \lambda x . b \\ \text { requires } & = & \text { Pre } \\ \text { statement } & =s_{1} \\ \text { ensures } & =Q \\ \text { signals } & =S\end{array}\right) \quad\left(\begin{array}{rll}\text { diverges } & = & \lambda x . b \\ \text { requires } & = & Q \\ \text { statement } & = & s_{2} \\ \text { ensures } & = & P o s t \\ \text { signals } & =S\end{array}\right)$

$$
\left(\begin{array}{rl}
\text { diverges } & =\lambda x . b \\
\text { requires } & =P r e \\
\text { statement } & =s_{1} ; s_{2} \\
\text { ensures } & =P o s t \\
\text { signals } & =S
\end{array}\right)
$$

Structuring Computations

Hoare composition Rule

Use of the Hoare logic

Structuring Computations

Use of the Hoare logic

- Actual use seems clumsy, but PVS takes care of the bookkeeping

Structuring Computations

Use of the Hoare logic

- Actual use seems clumsy, but PVS takes care of the bookkeeping
- This logic forms basis for semantics of JML

VIII. Conclusions

Main points

Main points

- There is mathematical uniformity \& elegance in the structure of computation

Main points

- There is mathematical uniformity \& elegance in the structure of computation
- Main notions: monad / comonad / arrow

Structuring Computations

Main points

- There is mathematical uniformity \& elegance in the structure of computation
- Main notions: monad / comonad / arrow
- This elegance is not completely lost in concrete languages / systems

Main points

- There is mathematical uniformity \& elegance in the structure of computation
- Main notions: monad / comonad / arrow
- This elegance is not completely lost in concrete languages / systems
- For our Java work: practice preceded theory

Main points

- There is mathematical uniformity \& elegance in the structure of computation
- Main notions: monad / comonad / arrow
- This elegance is not completely lost in concrete languages / systems
- For our Java work: practice preceded theory
- Theorem proving cannot beat static checking in program verification

Main points

- There is mathematical uniformity \& elegance in the structure of computation
- Main notions: monad / comonad / arrow
- This elegance is not completely lost in concrete languages / systems
- For our Java work: practice preceded theory
- Theorem proving cannot beat static checking in program verification

Thanks for your attention!

