Types 2006
Nottingham

Semantic normalisation proofs

Ulrich Berger

Swansea

Basic idea

Interpret A-terms with recursively defined constants in a
domain model such that

(M| # 1L implies SN(M)

Running example

Godel's system T

Simply typed A-calculus with primitive recursion in all types:

Rxf0 — =«
Rz fSk) — fkRazfk)

Main components of the method

Basic SN: If A is recursion free, then SN(A).
Continuity: |[M| = |,,|M,] where M, := M[R,/R] and
R,jf120 — =«
Roiix fS(k) — fEkRyx fk)
Strictness: If [A] # L, then Ry & A (note [Rg] = 1).
(M| # 1 implies SN(M):

M| #1: M — M —
A recursion free, [A]# 1. A — A —

Applications

Godel's T: Suffices to show that all terms are total and
hence # 1.

Note that totality is a semantic analogue to the method of
reducibility candidates.

The method can also be applied to prove normalisation
w.r.t. restriced reduction: Make operators strict only at
argument places where reduction is allowed.

Bar recursion (Spector, Berardi/Bezem /Coquand):
® s =if Y < |s|then Hs else Gs(Ax.P(sxx))
U p =Y (Ak.if p| kthen plk| else GE(A\x. W (px(k,x)))

5

Variant by Coquand and Spiwack

In an algebraic domain we have
M| = |_|{U finite | U C [M]}

The relation
M:U <= U C [M]

has an inductive definition similar to the typing rules for
intersection types. In fact, an adaptation of the usual
candidate method yields:

Theorem (Coquand/Spiwack). If M:U, then SN(M).

Note that no basic SN assumption is made.

6

Comparison
Coquand/Spiwack
e [he candidate proof is done once and for all.

e For a specific type system it suffices to prove totality
(technically easier than candidate method; amounts to
embedding the system into intersection types).

e Suitable for formalisation in type theory.

B

e Does not include termination proof for underlying type
system.

e More abstract and hence open to systems other than
typed A-calculi (— CSL'05).

7

Conclusion

e Termination proof for a recursion scheme is reduced to a
semantic totality argument, i.e. the intuitive raison
d'étre for the scheme.

e Continuity (magically) reduces a complicated recursion
to a simple w-iteration.
e Further work:

— Relax the syntactic restrictions on rewrite rules,
allowinge.g. (x+y)+z— 2+ (y+ 2)

— Corecursion

— Dependent types (— Coquand/Spiwack)

— Abstract from A-calculus to more general systems.

References

[1] C. Spector. Provably recursive functionals of analysis: a
consistency proof of analysis by an extension of principles in
current intuitionistic mathematics. In F. D. E. Dekker, editor,
Recursive Function Theory: Proc. Symposia in Pure
Mathematics, volume 5, pages 1-27. American Mathematical
Society, Providence, Rhode Island, 1962.

[2] W.W. Tait. Normal form theorem for barrecursive functions of
finite type. In J.E. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, pages 353-367. North—Holland,
Amsterdam, 1971.

[3] H. Vogel. Ein starker Normalisationssatz fiir die barrekursiven
Funktionale. Archive for Mathematical Logic, 18:81-84, 1985.

[4]

[5]

[6]

[7]

G. D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223-255, 1977.

M. Bezem. Strong normalization of barrecursive terms without
using infinite terms. Archive for Mathematical Logic, 25:175-181,
1985.

J. van de Pol and H. Schwichtenberg. Strict functionals for
termination proofs. In M. Dezani-Ciancaglini and G. Plotkin,
editors, Typed Lambda Calculi and Applications, volume 902 of
LNCS, pages 350-364. Springer Verlag, Berlin, Heidelberg, New
York, 1995.

F. Blanqui, J-P. Jouannaud, and M. Okada. The calculus of

algebraic constructions. In P. Narendran and M. Rusinowitch,
editors, Proceedings of RTA'99, number 1631 in LNCS, pages
301-316. Springer Verlag, Berlin, Heidelberg, New York, 1999.

10

8]

9]

[10]

[11]

[12]

S. Berardi, M. Bezem, and T. Coquand. On the computational
content of the axiom of choice. Journal of Symbolic Logic,
63(2):600-622, 1998.

T. Coquand and A. Spiwack. Proof of strong normalisation using
domain theory. 2006.

B. A computational interpretation of open induction. In

F. Titsworth, editor, Proceedings of the Ninetenth Annual IEEE
Symposium on Logic in Computer Science, pages 326—334. |IEEE
Computer Society, 2004.

B., Strong normalization for applied lambda calculi. Logical
Methods in Computer Science 1(2), 1-14, 2005.

B., An abstract strong normalization theorem. Proceedings of
CSL'05, Oxford, LNCS 3634, 2005.

11

