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Basic idea

Interpret A-terms with recursively defined constants in a
domain model such that

(M| # 1L implies SN(M)



Running example

Godel's system T

Simply typed A-calculus with primitive recursion in all types:

Rxf0 — =«
Rz fSk) — fkRazfk)



Main components of the method

Basic SN: If A is recursion free, then SN(A).
Continuity: |[M| = |,,|M,] where M, := M[R,/R] and
R,jf120 — =«
Roiix fS(k) — fEkRyx fk)
Strictness: If [A] # L, then Ry & A (note [Rg] = 1).
(M| # 1 implies SN(M):

M| #1: M — M —
A recursion free, [A]# 1. A — A —



Applications

Godel's T: Suffices to show that all terms are total and
hence # 1.

Note that totality is a semantic analogue to the method of
reducibility candidates.

The method can also be applied to prove normalisation
w.r.t. restriced reduction: Make operators strict only at
argument places where reduction is allowed.

Bar recursion (Spector, Berardi/Bezem /Coquand):
® s =if Y < |s|then Hs else Gs(Ax.P(sxx))
U p =Y (Ak.if p| kthen plk| else GE(A\x. W (px(k,x)))
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Variant by Coquand and Spiwack

In an algebraic domain we have
M| = |_|{U finite | U C [M]}

The relation
M:U <= U C [M]

has an inductive definition similar to the typing rules for
intersection types. In fact, an adaptation of the usual
candidate method yields:

Theorem (Coquand/Spiwack). If M:U, then SN(M).

Note that no basic SN assumption is made.
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Comparison
Coquand/Spiwack
e [he candidate proof is done once and for all.

e For a specific type system it suffices to prove totality
(technically easier than candidate method; amounts to
embedding the system into intersection types).

e Suitable for formalisation in type theory.

B

e Does not include termination proof for underlying type
system.

e More abstract and hence open to systems other than
typed A-calculi (— CSL'05).
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Conclusion

e Termination proof for a recursion scheme is reduced to a
semantic totality argument, i.e. the intuitive raison
d'étre for the scheme.

e Continuity (magically) reduces a complicated recursion
to a simple w-iteration.
e Further work:

— Relax the syntactic restrictions on rewrite rules,
allowinge.g. (x+y)+z— 2+ (y+ 2)

— Corecursion

— Dependent types (— Coquand/Spiwack)

— Abstract from A-calculus to more general systems.
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