Types 2006 Nottingham

Semantic normalisation proofs

Ulrich Berger Swansea

Basic idea

Interpret $\lambda\text{-terms}$ with recursively defined constants in a domain model such that

 $[M] \neq \bot$ implies SN(M)

Running example

Gödel's system T

Simply typed λ -calculus with primitive recursion in all types:

Main components of the method

Basic SN: If A is recursion free, then SN(A).

Continuity: $[M] = \bigsqcup_n [M_n]$ where $M_n := M[R_n/R]$ and $R_{n+1} \ x \ 0 \mapsto x$ $R_{n+1} \ x \ f \ S(k) \mapsto f \ k \ (R_n \ x \ f \ k)$

Strictness: If $[A] \neq \bot$, then $\mathbb{R}_0 \notin A$ (note $[\mathbb{R}_0] = \bot$).

 $[M] \neq \bot$ implies SN(M):

$$[M] \neq \bot : M \rightarrow M' \rightarrow \dots$$

A recursion free, $[A] \neq \bot : A \rightarrow A' \rightarrow \dots$

Applications

Gödel's T: Suffices to show that all terms are total and hence $\neq \perp$.

Note that totality is a semantic analogue to the method of reducibility candidates.

The method can also be applied to prove normalisation w.r.t. restriced reduction: Make operators strict only at argument places where reduction is allowed.

Bar recursion (Spector, Berardi/Bezem/Coquand): $\Phi s = \text{if } Y\hat{s} < |s| \text{ then } Hs \text{ else } Gs(\lambda x.\Phi(s*x))$ $\Psi p = Y(\lambda k.\text{if } p \downarrow k \text{ then } p[k] \text{ else } Gk(\lambda x.\Psi(p*(k,x)))$ Variant by Coquand and Spiwack

In an algebraic domain we have

 $[M] = \bigsqcup \{ U \text{ finite } | U \sqsubseteq [M] \}$

The relation

$$M: U :\Leftrightarrow U \sqsubseteq [M]$$

has an inductive definition similar to the typing rules for intersection types. In fact, an adaptation of the usual candidate method yields:

Theorem (Coquand/Spiwack). If M: U, then SN(M).

Note that no basic SN assumption is made.

Comparison

${\sf Coquand}/{\sf Spiwack}$

- The candidate proof is done once and for all.
- For a specific type system it suffices to prove totality (technically easier than candidate method; amounts to embedding the system into intersection types).
- Suitable for formalisation in type theory.

В

- Does not include termination proof for underlying type system.
- More abstract and hence open to systems other than typed λ -calculi (\rightarrow CSL'05).

Conclusion

- Termination proof for a recursion scheme is reduced to a semantic totality argument, i.e. the intuitive raison d'être for the scheme.
- Continuity (magically) reduces a complicated recursion to a simple ω -iteration.
- Further work:
 - Relax the syntactic restrictions on rewrite rules, allowing e.g. $(x+y) + z \mapsto x + (y+z)$
 - Corecursion
 - Dependent types (\rightarrow Coquand/Spiwack)
 - Abstract from λ -calculus to more general systems.

References

- [1] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor, *Recursive Function Theory: Proc. Symposia in Pure Mathematics*, volume 5, pages 1–27. American Mathematical Society, Providence, Rhode Island, 1962.
- [2] W.W. Tait. Normal form theorem for barrecursive functions of finite type. In J.E. Fenstad, editor, *Proceedings of the Second Scandinavian Logic Symposium*, pages 353–367. North–Holland, Amsterdam, 1971.
- [3] H. Vogel. Ein starker Normalisationssatz für die barrekursiven Funktionale. *Archive for Mathematical Logic*, 18:81–84, 1985.

- [4] G. D. Plotkin. LCF considered as a programming language. *Theoretical Computer Science*, 5:223–255, 1977.
- [5] M. Bezem. Strong normalization of barrecursive terms without using infinite terms. *Archive for Mathematical Logic*, 25:175–181, 1985.
- [6] J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs. In M. Dezani-Ciancaglini and G. Plotkin, editors, *Typed Lambda Calculi and Applications*, volume 902 of *LNCS*, pages 350–364. Springer Verlag, Berlin, Heidelberg, New York, 1995.
- [7] F. Blanqui, J-P. Jouannaud, and M. Okada. The calculus of algebraic constructions. In P. Narendran and M. Rusinowitch, editors, *Proceedings of RTA'99*, number 1631 in LNCS, pages 301–316. Springer Verlag, Berlin, Heidelberg, New York, 1999.

- [8] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice. *Journal of Symbolic Logic*, 63(2):600–622, 1998.
- [9] T. Coquand and A. Spiwack. Proof of strong normalisation using domain theory. 2006.
- B. A computational interpretation of open induction. In
 F. Titsworth, editor, *Proceedings of the Ninetenth Annual IEEE* Symposium on Logic in Computer Science, pages 326–334. IEEE Computer Society, 2004.
- [11] B., Strong normalization for applied lambda calculi. Logical Methods in Computer Science 1(2), 1–14, 2005.
- [12] B., An abstract strong normalization theorem. Proceedings of CSL'05, Oxford, LNCS 3634, 2005.