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Basic idea

Interpret λ-terms with recursively defined constants in a

domain model such that

[M ] 6= ⊥ implies SN(M)
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Running example

Gödel’s system T

Simply typed λ-calculus with primitive recursion in all types:

R x f 0 7→ x

R x f S(k) 7→ f k (R x f k)
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Main components of the method

Basic SN: If A is recursion free, then SN(A).

Continuity: [M ] =
⊔

n[Mn] where Mn := M [Rn/R] and

Rn+1 x 0 7→ x

Rn+1 x f S(k) 7→ f k (Rn x f k)

Strictness: If [A] 6= ⊥, then R0 6∈ A (note [R0] = ⊥).

[M ] 6= ⊥ implies SN(M):

[M ] 6= ⊥: M → M ′ → . . .

A recursion free, [A] 6= ⊥: A → A′ → . . .
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Applications

Gödel’s T: Suffices to show that all terms are total and

hence 6= ⊥.

Note that totality is a semantic analogue to the method of

reducibility candidates.

The method can also be applied to prove normalisation

w.r.t. restriced reduction: Make operators strict only at

argument places where reduction is allowed.

Bar recursion (Spector, Berardi/Bezem/Coquand):

Φ s = if Y ŝ < |s| then Hs else Gs(λx.Φ(s∗x))

Ψ p = Y (λk.if p ↓ k then p[k] else Gk(λx.Ψ(p∗(k, x)))
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Variant by Coquand and Spiwack

In an algebraic domain we have

[M ] =
⊔
{U finite | U v [M ]}

The relation

M : U :⇔ U v [M ]

has an inductive definition similar to the typing rules for

intersection types. In fact, an adaptation of the usual

candidate method yields:

Theorem (Coquand/Spiwack). If M : U , then SN(M).

Note that no basic SN assumption is made.
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Comparison

Coquand/Spiwack

• The candidate proof is done once and for all.

• For a specific type system it suffices to prove totality

(technically easier than candidate method; amounts to

embedding the system into intersection types).

• Suitable for formalisation in type theory.

B

• Does not include termination proof for underlying type

system.

• More abstract and hence open to systems other than

typed λ-calculi (→ CSL’05).
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Conclusion

• Termination proof for a recursion scheme is reduced to a

semantic totality argument, i.e. the intuitive raison

d’être for the scheme.

• Continuity (magically) reduces a complicated recursion

to a simple ω-iteration.

• Further work:

– Relax the syntactic restrictions on rewrite rules,

allowing e.g. (x + y) + z 7→ x + (y + z)

– Corecursion

– Dependent types (→ Coquand/Spiwack)

– Abstract from λ-calculus to more general systems.
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