
Types 2006

Nottingham

Semantic normalisation proofs

Ulrich Berger

Swansea

1

Basic idea

Interpret λ-terms with recursively defined constants in a

domain model such that

[M] 6= ⊥ implies SN(M)

2

Running example

Gödel’s system T

Simply typed λ-calculus with primitive recursion in all types:

R x f 0 7→ x

R x f S(k) 7→ f k (R x f k)

3

Main components of the method

Basic SN: If A is recursion free, then SN(A).

Continuity: [M] =
⊔

n[Mn] where Mn := M [Rn/R] and

Rn+1 x 0 7→ x

Rn+1 x f S(k) 7→ f k (Rn x f k)

Strictness: If [A] 6= ⊥, then R0 6∈ A (note [R0] = ⊥).

[M] 6= ⊥ implies SN(M):

[M] 6= ⊥: M → M ′ → . . .

A recursion free, [A] 6= ⊥: A → A′ → . . .

4

Applications

Gödel’s T: Suffices to show that all terms are total and

hence 6= ⊥.

Note that totality is a semantic analogue to the method of

reducibility candidates.

The method can also be applied to prove normalisation

w.r.t. restriced reduction: Make operators strict only at

argument places where reduction is allowed.

Bar recursion (Spector, Berardi/Bezem/Coquand):

Φ s = if Y ŝ < |s| then Hs else Gs(λx.Φ(s∗x))

Ψ p = Y (λk.if p ↓ k then p[k] else Gk(λx.Ψ(p∗(k, x)))

5

Variant by Coquand and Spiwack

In an algebraic domain we have

[M] =
⊔
{U finite | U v [M]}

The relation

M : U :⇔ U v [M]

has an inductive definition similar to the typing rules for

intersection types. In fact, an adaptation of the usual

candidate method yields:

Theorem (Coquand/Spiwack). If M : U , then SN(M).

Note that no basic SN assumption is made.

6

Comparison

Coquand/Spiwack

• The candidate proof is done once and for all.

• For a specific type system it suffices to prove totality

(technically easier than candidate method; amounts to

embedding the system into intersection types).

• Suitable for formalisation in type theory.

B

• Does not include termination proof for underlying type

system.

• More abstract and hence open to systems other than

typed λ-calculi (→ CSL’05).

7

Conclusion

• Termination proof for a recursion scheme is reduced to a

semantic totality argument, i.e. the intuitive raison

d’être for the scheme.

• Continuity (magically) reduces a complicated recursion

to a simple ω-iteration.

• Further work:

– Relax the syntactic restrictions on rewrite rules,

allowing e.g. (x + y) + z 7→ x + (y + z)

– Corecursion

– Dependent types (→ Coquand/Spiwack)

– Abstract from λ-calculus to more general systems.

8

References

[1] C. Spector. Provably recursive functionals of analysis: a

consistency proof of analysis by an extension of principles in

current intuitionistic mathematics. In F. D. E. Dekker, editor,

Recursive Function Theory: Proc. Symposia in Pure

Mathematics, volume 5, pages 1–27. American Mathematical

Society, Providence, Rhode Island, 1962.

[2] W.W. Tait. Normal form theorem for barrecursive functions of

finite type. In J.E. Fenstad, editor, Proceedings of the Second

Scandinavian Logic Symposium, pages 353–367. North–Holland,

Amsterdam, 1971.

[3] H. Vogel. Ein starker Normalisationssatz für die barrekursiven

Funktionale. Archive for Mathematical Logic, 18:81–84, 1985.

9

[4] G. D. Plotkin. LCF considered as a programming language.

Theoretical Computer Science, 5:223–255, 1977.

[5] M. Bezem. Strong normalization of barrecursive terms without

using infinite terms. Archive for Mathematical Logic, 25:175–181,

1985.

[6] J. van de Pol and H. Schwichtenberg. Strict functionals for

termination proofs. In M. Dezani-Ciancaglini and G. Plotkin,

editors, Typed Lambda Calculi and Applications, volume 902 of

LNCS, pages 350–364. Springer Verlag, Berlin, Heidelberg, New

York, 1995.

[7] F. Blanqui, J-P. Jouannaud, and M. Okada. The calculus of

algebraic constructions. In P. Narendran and M. Rusinowitch,

editors, Proceedings of RTA’99, number 1631 in LNCS, pages

301–316. Springer Verlag, Berlin, Heidelberg, New York, 1999.

10

[8] S. Berardi, M. Bezem, and T. Coquand. On the computational

content of the axiom of choice. Journal of Symbolic Logic,

63(2):600–622, 1998.

[9] T. Coquand and A. Spiwack. Proof of strong normalisation using

domain theory. 2006.

[10] B. A computational interpretation of open induction. In

F. Titsworth, editor, Proceedings of the Ninetenth Annual IEEE

Symposium on Logic in Computer Science, pages 326–334. IEEE

Computer Society, 2004.

[11] B., Strong normalization for applied lambda calculi. Logical

Methods in Computer Science 1(2), 1–14, 2005.

[12] B., An abstract strong normalization theorem. Proceedings of

CSL’05, Oxford, LNCS 3634, 2005.

11

