
A Declarative proof language for the Coq
proof assistant.

Pierre CORBINEAU

Foundations group, ICIS
Radboud Universiteit Nijmegen

The Netherlands

TYPES meeting, Nottingham, 2006



Motivations

I Coq is a proof assistant with a powerful formalism.
I Its formalism is quite far from usual set theory.
I Its tactics language does not help. . .
I Solution : borrow ideas from existing declarative proof

assistants (e.g. Mizar).



Previous work

I Mizar (A. Trybulec, 1973?)
I Isabelle : ISAR (M. Wenzel, 1999)
I Mizar mode for HOL Light (F. Wiedijk & D. Synek, 2001)
I MMode for Coq (M. Giero, 2003)



LCF-style vs. declarative proofs

I Tactics emphasize proof terms rather than intermediate
logical statements.

I Imperative style proofs lack structure.
I Tactics favour backwards proofs.
I Automation does not help enough.



Declarative proofs make automation more tractable

I Automation is mostly use to close a subgoal
I Other uses are very limited

mostly normalisation in equational theories
I Needs to be strengthened to do bigger steps

Instead :

I Make most steps terminal (heavy use of cuts)
I Specify the right hypotheses to use
I Give more intermediate steps



Declarative proofs make automation more tractable

I Automation is mostly use to close a subgoal
I Other uses are very limited

mostly normalisation in equational theories
I Needs to be strengthened to do bigger steps

Instead :

I Make most steps terminal (heavy use of cuts)
I Specify the right hypotheses to use
I Give more intermediate steps



Design choices

A mathematical proof language on top of what exists:
I Keep the same CIC terms.
I Allow switching to/from both modes.
I Enforce strong structure.
I Keep instruction by instruction execution.
I Replace multiple goals by one goal with mutliple

conclusions.



Basic structure

Theorem T:φ.
dem.
instructions

claim T1:ψ.
instructions
done.
escape.
tactics

done.



Basic structure

Theorem T:φ.
dem.
instructions

claim T1:ψ.
instructions
done.

escape.
tactics
done.



Basic structure

Theorem T:φ.
dem.
instructions
claim T1:ψ.
instructions
done.
escape.
tactics
done.



Simple steps

I introduction steps:
assume/let/given hyps.

I cut steps:
have/then statement by justification.
(∼= | =∼) object by justification.
justification := objects/tactic tactic

I elimination steps:
consider hyps from object.
per cases/induction (on object/of statement by justification)
suppose [it is pattern and] hyps.
end cases/induction.

I conclusion steps:
thus/hence statement by justification.



A small example

Lemma double_div2: forall n, div2 (double n) = n.
dem.

assume n:nat.
per induction on n.

suppose it is 0.
thus (0=0).

done.
suppose it is (S m) and Hrec:thesis for m.

have (div2 (double (S m))
= div2 (S (S (double m)))).

˜= (S (div2 (double m))).
thus ˜= (S m) by Hrec.

done.
end induction.

done.
Qed.



Further work and availability

I arbitrary relation composition
I improve default automation
I automated proof skeleton generation

Z http://www.cs.ru.nl/˜corbinea/mmode.html


	Introduction
	Description

