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Rewriting in the calculus of constructions

(conv)
Γ ` a : b Γ ` b′ : ?/�

Γ ` a : b′
(b =β b′)

Example:

R =


+ : nat→ nat→ nat

x + 0 −→ x
x + (S y) −→ S (x + y)
x + (y + z) −→ (x + y) + z


R, A : P (2) → Q, B : P (2 + 0) ` A B : Q

Motivation � Coq with rewriting

easy and comfortable way for de�ning functions

larger conversion results in simpler proofs
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Necessary metatheoretical properties of CC+Rew

termination

con�uence

subject reduction

completeness

logical consistency

Our result

Completness checking algorithm and proof of consistency.
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Logical consistency

CC:

no proof of ∀x : Prop, x in the empty environment

CIC:

no proof of ∀x : Prop, x in any closed environment (only inductive

de�nitions)

CC+Rew:

no proof of ∀x : Prop, x in any closed environment (only inductive

and complete rewrite de�nitions)

Canonicity lemma

If E ` t : T in a closed environment E then t reduces to a canonical form
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Completness checking algorithm

starts with ∆ ` f x1 . . . xi . . . xn,

performs successive splittings {∆1 ` f . . . (c1 ~y) . . . ,
∆2 ` f . . . (c2 ~y) . . . ,

. . . . . . . . .
∆n ` f . . . (cn ~y) . . . }

until all goals are reducible by rewrite rules

Guttag, Hornig 1978, Thiel 1984, Kounalis 1985,

Coquand 1992, McBride 1999, Schürmann, Pfenning 2003
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Example

Example accepted by the algorithm:

list : nat → Set

nil : list 0

cons : ∀ a:A, ∀ n:nat, list n → list (S n)

head : ∀ n:nat, list (S n) → A

R = { head n (cons a n l) −→ a

head ? nil
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More examples

K : ∀ A:Set, ∀ a b:A, ∀ p q:eq A a b, eq (eq A a b) p q

K A a a (refl A a) (refl A a) −→ refl (eq A a a) (refl A a)

+ : nat → nat → nat

x + 0 −→ x
x + (S y) −→ S (x + y)
x + (y + z) −→ (x + y) + z

id : ord → ord

id o −→ o

id (s x) −→ s (id x)

id (lim f) −→ lim (λn:nat. id (f n))

id (id x) −→ id x
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Consistency and completeness of rewriting in CC

Rewriting

not limited to pattern-matching

�rst-order matching

Interesting question

What are the rules not used during completeness check ?

(inductive consequences?)

Paper

available at http://www.mimuw.edu.pl/~chrzaszc/papers/
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