Truth values algebras and normalization

Gilles Dowek

Models for constructive logic

[0, 1]-models: in a given model the continuum hypothesis is either valid or not, excluded middle valid

Replace $\{0,1\}$ by an arbitrary boolean algebra, e.g. $\mathcal{P}(\{\pi,e\})$

Better: the continuum hypothesis may have an intermediate truth value but excluded middle still valid

Replace $\{0,1\}$ it by a Heyting algebra: Completeness

What is a Heyting algebra?

Like a boolean algebra: an ordered set

with
$$lub$$
 (for \vee , \exists and \top) and glb (for \wedge , \forall and \bot)

But no complement
$$(a \cap \overline{a} = Min, a \cup \overline{a} = Max)$$

nstead a weak complement

$$a \leq \overline{b} \text{ iff } a \cap b = Min$$

verifies $a \cap \overline{a} = Min$ but not always $a \cup \overline{a} = Max$

Relative weak complement:
$$a \leq \overline{b}^c$$
 iff $a \cap b \leq c$

What are the key features of Heyting algebras?

Order? Not really

Soundness:

Definition of $\tilde{\wedge}, \tilde{\Rightarrow}, \dots$

 $a \tilde{\wedge} b) \stackrel{\sim}{\Rightarrow} a \text{ always in } \{Max\}$

.. (closure by deduction rules)

Thus provable formulae valid (induction over proof structure)

Completeness:

A theory Γ , can build a model that validates exactly $Thm(\Gamma)$

Truth values algebras

$$\mathcal{B}, \mathcal{B}^+, \tilde{\wedge}, \tilde{\Rightarrow}, ... \rangle$$

$$a \tilde{\wedge} b) \tilde{\Rightarrow} a \text{ always in } \mathcal{B}^+, \dots$$

Generalizes Heyting algebras

Completeness for free

Soundness: the closure conditions on \mathcal{B}^+ are (the weakest) sufficient conditions

An alternative presentation (suggested by Thierry Coquand)

From a truth value algebra, we can define a relation

$$a \leq b \text{ iff } a \stackrel{\sim}{\Rightarrow} b \in \mathcal{B}^+$$

Verifies all the properties of Heyting algebras except one: antisymmetry

A simple remark: antisymmetry is useless in the definition of Heyting algebras, it can be dropped

Only antisymmetry can: otherwise no closure by deduction rule

A drawback of Heyting algebras

Oue to antisymmetry, in a Heyting algebra

$$A \Leftrightarrow B$$
 valid

iff

$$[A] = [B]$$

Truth values are denotations not meanings

n deduction modulo and in type theories: no semantic difference

between $A \Leftrightarrow B$ and $A \equiv B$

Not in truth values algebras

Complete truth values algebras

Add an order \sqsubseteq (need not be $a \stackrel{\sim}{\Rightarrow} b \in \mathcal{B}^+$)

3⁺ is upward closed,

Connectors and quantifiers are (anti)-monotonous

Every subset of \mathcal{B} has a least upper bound

Soundness: for free

Completeness: complete Heyting algebras

Soundness

$$\mathcal{B}$$
-model $\mathcal{M} = \langle \mathcal{M}, \mathcal{B}, \hat{f}_i, \hat{P}_j \rangle$

f $\mathcal T$ has a $\mathcal B$ -model for some $\mathcal B$ then $\mathcal T$ consistent

Extends to deduction modulo:

$$A \longrightarrow B$$
 valid in \mathcal{M} iff $[A] = [B]$

Super-consistency

f \mathcal{R} has a \mathcal{B} -model for some \mathcal{B} then it is consistent

f \mathcal{R} has a \mathcal{B} -model for all \mathcal{B} then it is called super-consistent

Examples

Arithmetic, simple type theory, ... are super-consistent

an $\frac{\text{arbitrary}}{\text{truth}}$ truth values algebra \mathcal{B}

$$\mathcal{M}_{\iota} = \{0\}$$

$$\mathcal{M}_{o} = \mathcal{B}$$

$$\mathcal{M}_{T \to U} = \mathcal{M}_{U}^{\mathcal{M}_{T}}$$

$$\llbracket \alpha \rrbracket (a, b) = a(b) \quad \llbracket \varepsilon \rrbracket (a) = a$$

$$\llbracket S \rrbracket_{T,U,V} = a \mapsto (b \mapsto (c \mapsto a(c)(b(c)))) \quad \llbracket K \rrbracket_{T,U} = a \mapsto (b \mapsto a)$$

$$\llbracket \dot{\top} \rrbracket = \tilde{\top} \quad \llbracket \dot{\bot} \rrbracket = \tilde{\bot} \quad \llbracket \dot{\Rightarrow} \rrbracket = \tilde{\Rightarrow} \quad \llbracket \dot{\wedge} \rrbracket = \tilde{\wedge} \quad \llbracket \dot{\vee} \rrbracket = \tilde{\vee}$$

$$\llbracket \dot{\forall}_{T} \rrbracket = a \mapsto \tilde{\forall}_{T}(Range(a)) \quad \llbracket \dot{\exists}_{T} \rrbracket = a \mapsto \tilde{\exists}_{T}(Range(a))$$

The theorem

f \mathcal{T} , \mathcal{R} super-consistent theory in deduction modulo hen all proofs in \mathcal{T} , \mathcal{R} strongly normalize

The truth values algebra \mathcal{C} of reducibility candidates

Reducibility candidates are sets of proofs (with some conditions)

- $a \stackrel{\sim}{\Rightarrow} b$: set of terminating proof-terms π s.t. if π reduces to $\lambda \alpha \pi_1$ hen for every π' in a, $(\pi'/\alpha)\pi_1$ in b
- A: set of terminating proof-terms π s.t. if π reduces to $\lambda x \pi_1$ hen for every term t and every element a of A, $(t/x)\pi_1$ in a

2+: set of candidates containing a closed proof-term

 $a \leq b$ if $a \stackrel{\sim}{\Rightarrow} b$ contains a closed term

 $a \sqsubseteq b \text{ if } a \text{ subset of } b$

Not a Heyting algebra

 $a \leq b$ if $a \stackrel{\sim}{\Rightarrow} b$ contains a closed term

Not antisymmetric

$$\tilde{\Gamma} \leq (\tilde{T} \tilde{\Rightarrow} \tilde{T})$$

$$\tilde{\top} \tilde{\Rightarrow} \tilde{\top}) \leq \tilde{\top}$$

 $\tilde{\top} \tilde{\Rightarrow} (\tilde{\top} \tilde{\Rightarrow} \tilde{\top})$ contains a closed term

 $(\tilde{\top} \tilde{\Rightarrow} \tilde{\top}) \tilde{\Rightarrow} \tilde{\top}$ contains a closed term

$$\operatorname{But}(\tilde{\top} \tilde{\Rightarrow} \tilde{\top}) \neq \tilde{\top}$$

Prove normalization without knowing what a reducibility candidate is

To prove normalization: prove super-consistency

No need to understand the notion of reducibility candidates

Candidates hidden in the proof that super-consistency implies

normalization

Explains why the the flavor of candidates does not matter

Candidates can be abstracted away