
Types for Nominal Terms and Rewrite Rules

Maribel Fernández Murdoch J. Gabbay

DCS, King’s College London

TYPES, April 2006

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Formally:

There are several alternatives.

• First-order rewrite systems.

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Formally:

There are several alternatives.

• First-order rewrite systems.

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

• No binders. (-)

• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Formally:

There are several alternatives.

• First-order rewrite systems.

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)

• Simple notion of substitution. (+)

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Formally:

There are several alternatives.

• First-order rewrite systems.

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)

• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)

• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)

• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)

• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)

• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

⇒ Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

• Terms with binders.

⇒ Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

• Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

⇒ Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

• Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

⇒ Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

• Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

⇒ Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

• Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

⇒ Can be easily generalised to express more general constraints.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Syntax (Untyped) [Urban,Pitts,Gabbay: TCS’04]

• Function symbols: f , g . . .
Variables: M,N,X ,Y , . . .
Atoms: a, b, . . .
Swappings: (a b)

Def. (a b)a = b, (a b)b = a, (a b)c = c
Permutations: lists of swappings, denoted π (Id empty).

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec fa = t in t ′, t[a 7→ t ′]

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Types for Nominal Terms

Types built from

• a set of base data sorts δ (e.g. Nat, Bool, Exp, . . .)

• type variables α, and

• type constructors tf (e.g. ×, →, List, . . .)

τ ::= δ | α | (τ1 × . . .× τn | tf τ | [τ]τ ′ σ ::= ∀ατ

Type declarations (arity):

ρ ::= (τ ′)τ

Instantiation relation: σ ≤ τ

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typing Rules

σ ≤ τ

Γ, a : σ ` a : τ

σ ≤ τ

Γ,X : σ ` π · X : τ

Γ ` t : τ ′ f : ρ ≤ (τ ′)τ

Γ ` f t : τ

Γ, a : τ ` t : τ ′

Γ ` [a]t : [τ]τ ′

Γ ` ti : τi

Γ ` (t1, . . . , tn) : (τ1 × . . .× τn)

Example:
X : τ, b : β ` [a]((a b) · X , b) : [α](τ × β)
Remark:
- Permutations are ignored in the typing rules (but will be taken
into account when instantiating terms).
- Generalisation of Hindley-Milner’s type system: atoms (can be
abstracted or unabstracted), variables (cannot be abstracted but
can be instantiated, with non-capture-avoiding substitutions),
suspended permutations.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

α-equivalence (Freshness)

We use freshness to avoid name capture.
a#X means a 6∈ fv(X) when X is instantiated.

a#b a#[a]s

π−1(a)#X

a#π · X
a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

α-equivalence

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X
s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
• α-equivalence respects types:

∆ ` s ≈α t and Γ ` s : τ ⇒ Γ ` t : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

α-equivalence

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X
s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X

• α-equivalence respects types:
∆ ` s ≈α t and Γ ` s : τ ⇒ Γ ` t : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

α-equivalence

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X
s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
• α-equivalence respects types:

∆ ` s ≈α t and Γ ` s : τ ⇒ Γ ` t : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Unification and Matching

• l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ

• Nominal unification (and matching) is decidable [Urban, Pitts,
Gabbay 2003, TCS 04]

• and polynomial [TERMGRAPH 06].

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Unification and Matching

• l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ

• Nominal unification (and matching) is decidable [Urban, Pitts,
Gabbay 2003, TCS 04]

• and polynomial [TERMGRAPH 06].

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Unification and Matching

• l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ

• Nominal unification (and matching) is decidable [Urban, Pitts,
Gabbay 2003, TCS 04]

• and polynomial [TERMGRAPH 06].

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting

Rules:
∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Examples:

(λ[a]X)Y → X [a 7→Y]
(XX ′)[a 7→Y] → X [a 7→Y]X ′[a 7→Y]

a#Y ` Y [a 7→X] → Y
b#Y ` (λ[b]X)[a 7→Y] → λ[b](X [a 7→Y])

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Matching

A (typed) matching problem (Φ;∇ ` l) ?≈ (Γ;∆ ` s) is a
pair of tuples (Φ, Γ are typing contexts, ∇, ∆ are freshness
contexts, l , s are terms) such that the atoms, variables and
type-variables mentioned on the left-hand side are disjoint from
those mentioned in Γ, s.
A solution is the least pair (S , θ) of a type- and term-substitution
such that:

1 Xθ ≡ X for X 6∈ V (Φ,∇, l) and αS ≡ α for α 6∈ TV (Φ).

2 ∆ ` lθ ≈α s and ∆ ` ∇θ are derivable.

3 pt(Φ ` l) = (Id , τ) and pt(Γ ` s) = (Id , τS);

4 For each Φ,Φ′ ` X : φ′ an essential typing of Φ ` l : τ , it
is the case that Γ, (Φ′S) ` Xθ : φ′S .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]

2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in
a derivation for Γ ` s ′′[s ′] : µ;

3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution
(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;

3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution
(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Applications

A (typed!) implementation of the untyped λ-calculus:
Consider a type Λ and term-constructors lam : ([Λ]Λ)Λ,
app : (Λ× Λ)Λ, and sub : ([Λ]Λ× Λ)Λ. We sugar these to λ[a]s,
st, and s[a 7→t] respectively.
Rewrite rules:

X ,Y :Λ ` (λ[a]X)Y → X [a 7→Y] : Λ
X ,Y :Λ; a#X ` X [a 7→Y] → X : Λ

Y :Λ ` a[a 7→Y] → Y : Λ
X ,Y :Λ; b#Y ` (λ[b]X)[a 7→Y] → λ[b](X [a 7→Y]) : Λ

X ,Y ,Z :Λ ` (XY)[a 7→Z] → X [a 7→Z] Y [a 7→Z] : Λ

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Applications

Surjective pairing:
Consider fst : (α× β)α and snd : (α× β)β.
We can define typable rewrite rules for projections and surjective
pairing as follows:

X : α, Y : β ` fst(X ,Y) → X : α

X : α, Y : β ` snd(X ,Y) → Y : β

X : α× β ` (fst(X), snd(X)) → X : α× β

Note that this rewrite system cannot be analysed as sugar in the
λ-calculus [Barendregt 74].

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

Conclusion

• Nominal Rewriting Systems: first-order systems with matching
modulo α (decidable, polynomial).
Higher-order rewriting systems can be encoded.

• α-equivalence preserves types.

• Typing is decidable and there are principal types.

• Typing rules ignore permutations but typed-matching and
typed-rewriting take them into account.
Rewriting with typed rewrite rules preserves types.

• Future work: denotational semantics for nominal terms;
normalisation properties of nominal terms (intersection types);
type systems for nominal programming languages.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

That’s all!

Questions ?

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules

