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Motivations

Specifying binding operations — informal presentations:

• Operational semantics:

let a = N in M −→ (fun a → M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• α-conversion is implicit, but

• (fun a → M) 6=α (fun b → M) since a may occur in M.
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Formally:

There are several alternatives.

• First-order rewrite systems.

append(nil , x) → x
append(cons(x , z), y) → cons(x , append(z , y))

• No binders. (-)
• First-order matching: we need to ’specify’ α-conversion. (-)
• Simple notion of substitution. (+)
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Higher-order frameworks

• Higher-order rewrite systems (CRS, HRS, etc.)
β-rule:

app(lam([a]Z (a)),Z ′) → Z (Z ′)

Then app(lam([a]f (a, g(a)), b) → f (b, g(b))
using higher-order matching.

• Higher-Order Abstract Syntax:

let a = N in M(a) −→ (fun a → M(a))N

• Terms with binders. (+)
• Implicit α-conversion. (+)
• We targeted α but now we have to deal with β too. (-)
• Substitution is a meta-operation using β. (-)
• Unification is undecidable in general. (-)
• Leaving name dependencies implicit is convenient (e.g. ∀x .P).
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Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions a#t, name swapping (ab)t.
Example: β and η rules as Nominal Rewriting Systems:

app(lam([a]Z ),Z ′) → subst([a]Z ,Z ′)
a#M ` (λ([a]app(M, a)) → M

⇒ Terms with binders.

• Matching modulo α (but terms are not defined as
α-equivalence classes)

• Simple notion of substitution (first order).

• Dependencies of terms on names are implicit.

• Easy to express constraints such as a 6∈ fv(M).

• Can be easily generalised to express more general constraints.
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Nominal Syntax (Untyped) [ Urban,Pitts,Gabbay: TCS’04]

• Function symbols: f , g . . .
Variables: M,N,X ,Y , . . .
Atoms: a, b, . . .
Swappings: (a b)

Def. (a b)a = b, (a b)b = a, (a b)c = c
Permutations: lists of swappings, denoted π (Id empty).

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f ]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec fa = t in t ′, t[a 7→ t ′]
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Types for Nominal Terms

Types built from

• a set of base data sorts δ (e.g. Nat, Bool, Exp, . . . )

• type variables α, and

• type constructors tf (e.g. ×, →, List, . . . )

τ ::= δ | α | (τ1 × . . .× τn | tf τ | [τ ]τ ′ σ ::= ∀ατ

Type declarations (arity):

ρ ::= (τ ′)τ

Instantiation relation: σ ≤ τ
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Typing Rules

σ ≤ τ

Γ, a : σ ` a : τ

σ ≤ τ

Γ,X : σ ` π · X : τ

Γ ` t : τ ′ f : ρ ≤ (τ ′)τ

Γ ` f t : τ

Γ, a : τ ` t : τ ′

Γ ` [a]t : [τ ]τ ′

Γ ` ti : τi

Γ ` (t1, . . . , tn) : (τ1 × . . .× τn)

Example:
X : τ, b : β ` [a]((a b) · X , b) : [α](τ × β)
Remark:
- Permutations are ignored in the typing rules (but will be taken
into account when instantiating terms).
- Generalisation of Hindley-Milner’s type system: atoms (can be
abstracted or unabstracted), variables (cannot be abstracted but
can be instantiated, with non-capture-avoiding substitutions),
suspended permutations.
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Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Principal Types

• Every term has a principal type, obtained using the function
pt(Γ ` s).
pt is sound and complete.

• Type inference is decidable.

• Types are preserved by α-equivalence.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



α-equivalence (Freshness)

We use freshness to avoid name capture.
a#X means a 6∈ fv(X ) when X is instantiated.

a#b a#[a]s

π−1(a)#X

a#π · X
a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s
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α-equivalence

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X
s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
• α-equivalence respects types:

∆ ` s ≈α t and Γ ` s : τ ⇒ Γ ` t : τ .
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Nominal Unification and Matching

• l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ

• Nominal unification (and matching) is decidable [Urban, Pitts,
Gabbay 2003, TCS 04]

• and polynomial [TERMGRAPH 06].
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Nominal Rewriting

Rules:
∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Examples:

(λ[a]X )Y → X [a 7→Y ]
(XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]

a#Y ` Y [a 7→X ] → Y
b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X ) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X ) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X ) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X ) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Typed Nominal Rewriting

Typed Rules:

Φ;∇ ` l → r : τ

where:

• Φ types only variables and has no type-schemes,

• pt(Φ ` l) = (Id , τ) and Φ ` r : τ .

• The essential typings of Φ ` r : τ are a subset of the
essential typings of Φ ` l : τ , up to weakening and
strengthening of atoms not affected by permutations.

• Essential typings of Φ ` r : τ are the typings associated to
π · X during pt(Φ ` r), where we apply π in the typing
context.

• Example: The essential typings of
a : α, X : τ ` ((a b) · X , [a]X ) : τ × [α′]τ are
b : α, X : τ ` X : τ and a : α′,X : τ ` X : τ .
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Nominal Rewriting — Matching

A (typed) matching problem (Φ;∇ ` l) ?≈ (Γ;∆ ` s) is a
pair of tuples (Φ, Γ are typing contexts, ∇, ∆ are freshness
contexts, l , s are terms) such that the atoms, variables and
type-variables mentioned on the left-hand side are disjoint from
those mentioned in Γ, s.
A solution is the least pair (S , θ) of a type- and term-substitution
such that:

1 Xθ ≡ X for X 6∈ V (Φ,∇, l) and αS ≡ α for α 6∈ TV (Φ).

2 ∆ ` lθ ≈α s and ∆ ` ∇θ are derivable.

3 pt(Φ ` l) = (Id , τ) and pt(Γ ` s) = (Id , τS);

4 For each Φ,Φ′ ` X : φ′ an essential typing of Φ ` l : τ , it
is the case that Γ, (Φ′S) ` Xθ : φ′S .
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Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]

2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in
a derivation for Γ ` s ′′[s ′] : µ;

3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution
(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;

3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution
(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).

4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context ∆ ` s.

• Take ∆ ` s, ∆ ` t such that pt(Γ ` s) = (Id , µ); and
R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅,
A(R) ∩ A(Γ,∆, s, t) = ∅ and TV (R) ∩ TV (Γ) = ∅ (renaming
variables and atoms in R if necessary).

• s rewrites with R to t in the context Γ;∆, written

Γ;∆ ` s
R→ t, when:

1 s = s ′′[s ′]
2 Γ′ ` s ′ : µ′ is the typing of s ′ at the corresponding position in

a derivation for Γ ` s ′′[s ′] : µ;
3 (Φ;∇ ` l) ?≈ (Γ′;∆,A(∇, l)#V (∆, s ′) ` s ′) has solution

(S , θ).
4 ∆ ` s ′′[rθ] ≈α t.

• Subject Reduction:

Let R ≡ Φ;∇ ` l → r : τ . If Γ ` s : µ and Γ;∆ ` s
R→ t

then Γ ` t : µ.

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Applications

A (typed!) implementation of the untyped λ-calculus:
Consider a type Λ and term-constructors lam : ([Λ]Λ)Λ,
app : (Λ× Λ)Λ, and sub : ([Λ]Λ× Λ)Λ. We sugar these to λ[a]s,
st, and s[a 7→t] respectively.
Rewrite rules:

X ,Y :Λ ` (λ[a]X )Y → X [a 7→Y ] : Λ
X ,Y :Λ; a#X ` X [a 7→Y ] → X : Λ

Y :Λ ` a[a 7→Y ] → Y : Λ
X ,Y :Λ; b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ]) : Λ

X ,Y ,Z :Λ ` (XY )[a 7→Z ] → X [a 7→Z ] Y [a 7→Z ] : Λ
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Applications

Surjective pairing:
Consider fst : (α× β)α and snd : (α× β)β.
We can define typable rewrite rules for projections and surjective
pairing as follows:

X : α, Y : β ` fst(X ,Y ) → X : α

X : α, Y : β ` snd(X ,Y ) → Y : β

X : α× β ` (fst(X ), snd(X )) → X : α× β

Note that this rewrite system cannot be analysed as sugar in the
λ-calculus [Barendregt 74].

M. Fernández, M.J. Gabbay Types for Nominal Terms and Rewrite Rules



Conclusion

• Nominal Rewriting Systems: first-order systems with matching
modulo α (decidable, polynomial).
Higher-order rewriting systems can be encoded.

• α-equivalence preserves types.

• Typing is decidable and there are principal types.

• Typing rules ignore permutations but typed-matching and
typed-rewriting take them into account.
Rewriting with typed rewrite rules preserves types.

• Future work: denotational semantics for nominal terms;
normalisation properties of nominal terms (intersection types);
type systems for nominal programming languages.
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That’s all!

Questions ?
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