Types for Nominal Terms and Rewrite Rules

Maribel Fernández
Murdoch J. Gabbay

DCS, King's College London
TYPES, April 2006

Motivations

Specifying binding operations - informal presentations:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

Motivations

Specifying binding operations - informal presentations:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)), ~ l
$$

Motivations

Specifying binding operations - informal presentations:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)), ~ l
$$

- π-calculus:

$$
P \mid \nu a . Q \rightarrow \nu a .(P \mid Q) \quad(a \notin \mathrm{fv}(P))
$$

Motivations

Specifying binding operations - informal presentations:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)), ~ l
$$

- π-calculus:

$$
P \mid \nu a . Q \rightarrow \nu a .(P \mid Q) \quad(a \notin \mathrm{fv}(P))
$$

- α-conversion is implicit, but

Motivations

Specifying binding operations - informal presentations:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)), ~ l
$$

- π-calculus:

$$
P \mid \nu \mathrm{a} . Q \rightarrow \nu \mathrm{a} .(P \mid Q) \quad(a \notin \mathrm{fv}(P))
$$

- α-conversion is implicit, but
- (fun $a \rightarrow M) \neq{ }_{\alpha}($ fun $b \rightarrow M)$ since a may occur in M.

Formally:

There are several alternatives.

- First-order rewrite systems.

$$
\begin{array}{ll}
\operatorname{append}(\operatorname{nil}, x) & \rightarrow x \\
\operatorname{append}(\operatorname{cons}(x, z), y) & \rightarrow \operatorname{cons}(x, \text { append }(z, y))
\end{array}
$$

Formally:

There are several alternatives.

- First-order rewrite systems.

$$
\begin{array}{ll}
\operatorname{append}(\operatorname{nil}, x) & \rightarrow x \\
\operatorname{append}(\operatorname{cons}(x, z), y) & \rightarrow \operatorname{cons}(x, \text { append }(z, y))
\end{array}
$$

- No binders. (-)

Formally:

There are several alternatives.

- First-order rewrite systems.

$$
\begin{array}{ll}
\operatorname{append}(\operatorname{nil}, x) & \rightarrow x \\
\operatorname{append}(\operatorname{cons}(x, z), y) & \rightarrow \operatorname{cons}(x, \text { append }(z, y))
\end{array}
$$

- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)

Formally:

There are several alternatives.

- First-order rewrite systems.

$$
\begin{array}{ll}
\operatorname{append}(\operatorname{nil}, x) & \rightarrow x \\
\operatorname{append}(\operatorname{cons}(x, z), y) & \rightarrow \operatorname{cons}(x, \text { append }(z, y))
\end{array}
$$

- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
- Simple notion of substitution. (+)
- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-conversion. (+)
- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-conversion. (+)
- We targeted α but now we have to deal with β too. (-)
- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-conversion. (+)
- We targeted α but now we have to deal with β too. (-)
- Substitution is a meta-operation using β. (-)
- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-conversion. (+)
- We targeted α but now we have to deal with β too. (-)
- Substitution is a meta-operation using β. (-)
- Unification is undecidable in general. (-)

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-conversion. (+)
- We targeted α but now we have to deal with β too. (-)
- Substitution is a meta-operation using β. (-)
- Unification is undecidable in general. (-)
- Leaving name dependencies implicit is convenient (e.g. $\forall x . P$).

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as Nominal Rewriting Systems:

$$
\begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
a \# M \vdash(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

\Rightarrow Terms with binders.

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as Nominal Rewriting Systems:

$$
a \# M \vdash \begin{array}{lll}
\operatorname{app}\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
\Rightarrow Matching modulo α (but terms are not defined as α-equivalence classes)

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as Nominal Rewriting Systems:

$$
a \# M \vdash \begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
- Matching modulo α (but terms are not defined as α-equivalence classes)
\Rightarrow Simple notion of substitution (first order).

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as Nominal Rewriting Systems:

$$
a \# M \vdash \begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
- Matching modulo α (but terms are not defined as α-equivalence classes)
- Simple notion of substitution (first order).
\Rightarrow Dependencies of terms on names are implicit.

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$)t.
Example: β and η rules as Nominal Rewriting Systems:

$$
\begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
a \# M \vdash(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
- Matching modulo α (but terms are not defined as α-equivalence classes)
- Simple notion of substitution (first order).
- Dependencies of terms on names are implicit.
\Rightarrow Easy to express constraints such as a $\notin \mathrm{fv}(M)$.

Nominal Terms, Unification, Rewriting

Inspired by the work on Nominal Logic and Fresh ML.
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$)t.
Example: β and η rules as Nominal Rewriting Systems:

$$
a \# M \vdash \begin{array}{ll}
\operatorname{app}\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow \\
(\lambda([a] a p p(M, a)) & \rightarrow M
\end{array}
$$

- Terms with binders.
- Matching modulo α (but terms are not defined as α-equivalence classes)
- Simple notion of substitution (first order).
- Dependencies of terms on names are implicit.
- Easy to express constraints such as $a \notin \mathrm{fv}(M)$.
\Rightarrow Can be easily generalised to express more general constraints.
- Function symbols: $f, g \ldots$

Variables: M, N, X, Y, \ldots
Atoms: a, b, \ldots
Swappings: $(a b)$

$$
\text { Def. }(a b) a=b,(a b) b=a,(a b) c=c
$$

Permutations: lists of swappings, denoted π (Id empty).

- Nominal Terms:

$$
s, t::=a|\pi \cdot X|[a] t|f t|\left(t_{1}, \ldots, t_{n}\right)
$$

Id $\cdot X$ written as X.

- Example (ML): $\operatorname{var}(a), \operatorname{app}\left(t, t^{\prime}\right), \operatorname{lam}([a] t), \operatorname{let}\left(t,[a] t^{\prime}\right)$, letrec $[f]\left([a] t, t^{\prime}\right), \operatorname{subst}\left([a] t, t^{\prime}\right)$
Syntactic sugar:
$a,\left(t t^{\prime}\right)$, 入a.t, let $a=t$ in t^{\prime}, letrec $f a=t$ in $t^{\prime}, t\left[a \mapsto t^{\prime}\right]$

Types built from

- a set of base data sorts δ (e.g. Nat, Bool, Exp, ...)
- type variables α, and
- type constructors $t f$ (e.g. \times, \rightarrow, List, ...)

$$
\tau::=\delta|\alpha|\left(\tau_{1} \times \ldots \times \tau_{n}|t f \tau|[\tau] \tau^{\prime} \quad \sigma::=\forall \bar{\alpha} \tau\right.
$$

Type declarations (arity):

$$
\rho::=\left(\tau^{\prime}\right) \tau
$$

Instantiation relation: $\sigma \leq \tau$

$$
\begin{aligned}
& \frac{\sigma \leq \tau}{: \sigma \vdash a: \tau} \quad \frac{\sigma \leq \tau}{\Gamma, X: \sigma \vdash \pi \cdot X: \tau} \quad \frac{\Gamma \vdash t: \tau^{\prime} f: \rho \leq\left(\tau^{\prime}\right) \tau}{\Gamma \vdash f t: \tau} \\
& \frac{\Gamma, a: \tau \vdash t: \tau^{\prime}}{\Gamma \vdash[a] t:[\tau] \tau^{\prime}} \quad \frac{\Gamma \vdash t_{i}: \tau_{i}}{\Gamma \vdash\left(t_{1}, \ldots, t_{n}\right):\left(\tau_{1} \times \ldots \times \tau_{n}\right)}
\end{aligned}
$$

Example:
$X: \tau, b: \beta \vdash[a]((a b) \cdot X, b):[\alpha](\tau \times \beta)$
Remark:

- Permutations are ignored in the typing rules (but will be taken into account when instantiating terms).
- Generalisation of Hindley-Milner's type system: atoms (can be abstracted or unabstracted), variables (cannot be abstracted but can be instantiated, with non-capture-avoiding substitutions), suspended permutations.

Principal Types

- Every term has a principal type, obtained using the function $p t(\Gamma \vdash s)$. $p t$ is sound and complete.

Principal Types

- Every term has a principal type, obtained using the function $p t(\Gamma \vdash s)$.
$p t$ is sound and complete.
- Type inference is decidable.

Principal Types

- Every term has a principal type, obtained using the function $p t(\Gamma \vdash s)$.
$p t$ is sound and complete.
- Type inference is decidable.
- Types are preserved by α-equivalence.

We use freshness to avoid name capture. $a \# X$ means $a \notin \operatorname{fv}(X)$ when X is instantiated.

$$
\begin{gathered}
\overline{a \# b} \quad \overline{a \#[a] s} \quad \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X} \\
\frac{a \# s_{1} \cdots a \# s_{n}}{a \#\left(s_{1}, \ldots, s_{n}\right)}
\end{gathered} \frac{\frac{a \# s}{a \# s_{s}} \quad \frac{a \# s}{a \#[b] s}}{l}
$$

$$
\begin{gathered}
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X} \\
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}\left(t_{1}, \ldots, t_{n}\right)} \quad \frac{s \approx_{\alpha} t}{f_{s} \approx_{\alpha} f t} \\
\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}
\end{gathered}
$$

where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$

$$
\begin{gathered}
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X} \\
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}\left(t_{1}, \ldots, t_{n}\right)} \quad \frac{s \approx_{\alpha} t}{f_{s} \approx_{\alpha} f t} \\
\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}
\end{gathered}
$$

where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$
- $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a b) \cdot X$

$$
\begin{gathered}
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X} \\
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}\left(t_{1}, \ldots, t_{n}\right)} \quad \frac{s \approx_{\alpha} t}{f s \approx_{\alpha} f t} \\
\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}
\end{gathered}
$$

where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$
- $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a b) \cdot X$
- α-equivalence respects types:
$\Delta \vdash s \approx_{\alpha} t$ and $\Gamma \vdash s: \tau \Rightarrow \Gamma \vdash t: \tau$.

Nominal Unification and Matching

- I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash \operatorname{Pr} \theta$

Nominal Unification and Matching

- I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash \operatorname{Pr} \theta$

- Nominal unification (and matching) is decidable [Urban, Pitts, Gabbay 2003, TCS 04]

Nominal Unification and Matching

- I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash \operatorname{Pr} \theta$

- Nominal unification (and matching) is decidable [Urban, Pitts, Gabbay 2003, TCS 04]
- and polynomial [TERMGRAPH 06].

Rules:

$$
\Delta \vdash I \rightarrow r \quad V(r) \cup V(\Delta) \subseteq V(I)
$$

Examples:

$$
\begin{aligned}
& (\lambda[a] X) Y \quad \rightarrow \quad X[a \mapsto Y] \\
& \left(X X^{\prime}\right)[a \mapsto Y] \quad \rightarrow \quad X[a \mapsto Y] X^{\prime}[a \mapsto Y] \\
& a \# Y \vdash Y[a \mapsto X] \quad \rightarrow \quad Y \\
& b \# Y \vdash \quad(\lambda[b] X)[a \mapsto Y] \quad \rightarrow \quad \lambda[b](X[a \mapsto Y])
\end{aligned}
$$

Typed Nominal Rewriting
Typed Rules:

$$
\Phi ; \nabla \vdash I \rightarrow r: \tau
$$

where:

- Φ types only variables and has no type-schemes,

Typed Nominal Rewriting

Typed Rules:

$$
\Phi ; \nabla \vdash I \rightarrow r: \tau
$$

where:

- Φ types only variables and has no type-schemes,
- $p t(\Phi \vdash I)=(I d, \tau)$ and $\Phi \vdash r: \tau$.

Typed Nominal Rewriting

Typed Rules:

$$
\Phi ; \nabla \vdash I \rightarrow r: \tau
$$

where:

- Φ types only variables and has no type-schemes,
- $p t(\Phi \vdash I)=(I d, \tau)$ and $\Phi \vdash r: \tau$.
- The essential typings of $\Phi \vdash r: \tau$ are a subset of the essential typings of $\Phi \vdash l: \tau$, up to weakening and strengthening of atoms not affected by permutations.

Typed Nominal Rewriting

Typed Rules:

$$
\Phi ; \nabla \vdash I \rightarrow r: \tau
$$

where:

- Φ types only variables and has no type-schemes,
- $p t(\Phi \vdash I)=(I d, \tau)$ and $\Phi \vdash r: \tau$.
- The essential typings of $\Phi \vdash r: \tau$ are a subset of the essential typings of $\Phi \vdash I: \tau$, up to weakening and strengthening of atoms not affected by permutations.
- Essential typings of $\Phi \vdash r: \tau$ are the typings associated to $\pi \cdot X$ during $p t(\Phi \vdash r)$, where we apply π in the typing context.

Typed Nominal Rewriting

Typed Rules:

$$
\Phi ; \nabla \vdash I \rightarrow r: \tau
$$

where:

- Φ types only variables and has no type-schemes,
- $p t(\Phi \vdash I)=(I d, \tau)$ and $\Phi \vdash r: \tau$.
- The essential typings of $\Phi \vdash r: \tau$ are a subset of the essential typings of $\Phi \vdash I: \tau$, up to weakening and strengthening of atoms not affected by permutations.
- Essential typings of $\Phi \vdash r: \tau$ are the typings associated to $\pi \cdot X$ during $p t(\Phi \vdash r)$, where we apply π in the typing context.
- Example: The essential typings of
$a: \alpha, X: \tau \vdash((a b) \cdot X,[a] X): \tau \times\left[\alpha^{\prime}\right] \tau$ are
$b: \alpha, X: \tau \vdash X: \tau$ and $a: \alpha^{\prime}, X: \tau \vdash X: \tau$.

A (typed) matching problem $(\Phi ; \nabla \vdash I) ? \approx(\Gamma ; \Delta \vdash s)$ is a pair of tuples (Φ, Γ are typing contexts, ∇, Δ are freshness contexts, l, s are terms) such that the atoms, variables and type-variables mentioned on the left-hand side are disjoint from those mentioned in Γ, s.
A solution is the least pair (S, θ) of a type- and term-substitution such that:
(1) $X \theta \equiv X$ for $X \notin V(\Phi, \nabla, I)$ and $\alpha S \equiv \alpha$ for $\alpha \notin T V(\Phi)$.
(2) $\Delta \vdash I \theta \approx_{\alpha} s$ and $\Delta \vdash \nabla \theta$ are derivable.
(3) $p t(\Phi \vdash I)=(I d, \tau)$ and $p t(\Gamma \vdash s)=(I d, \tau S)$;
(0) For each $\Phi, \Phi^{\prime} \vdash X: \phi^{\prime}$ an essential typing of $\Phi \vdash I: \tau$, it is the case that $\Gamma,\left(\Phi^{\prime} S\right) \vdash X \theta: \phi^{\prime} S$.

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:
(1) $s=s^{\prime \prime}\left[s^{\prime}\right]$

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:
(1) $s=s^{\prime \prime}\left[s^{\prime}\right]$
(2) $\Gamma^{\prime} \vdash s^{\prime}: \mu^{\prime}$ is the typing of s^{\prime} at the corresponding position in a derivation for $\Gamma \vdash s^{\prime \prime}\left[s^{\prime}\right]: \mu$;

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:
(1) $s=s^{\prime \prime}\left[s^{\prime}\right]$
(2) $\Gamma^{\prime} \vdash s^{\prime}: \mu^{\prime}$ is the typing of s^{\prime} at the corresponding position in a derivation for $\Gamma \vdash s^{\prime \prime}\left[s^{\prime}\right]: \mu$;
(3) $(\Phi ; \nabla \vdash I)$? $\approx\left(\Gamma^{\prime} ; \Delta, A(\nabla, I) \# V\left(\Delta, s^{\prime}\right) \vdash s^{\prime}\right)$ has solution (S, θ).

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:
(1) $s=s^{\prime \prime}\left[s^{\prime}\right]$
(2) $\Gamma^{\prime} \vdash s^{\prime}: \mu^{\prime}$ is the typing of s^{\prime} at the corresponding position in a derivation for $\Gamma \vdash s^{\prime \prime}\left[s^{\prime}\right]: \mu$;
(3) $(\Phi ; \nabla \vdash I)$? $\approx\left(\Gamma^{\prime} ; \Delta, A(\nabla, I) \# V\left(\Delta, s^{\prime}\right) \vdash s^{\prime}\right)$ has solution (S, θ).
(9) $\Delta \vdash s^{\prime \prime}[r \theta] \approx_{\alpha} t$.

Nominal Rewriting — Closed Rewriting

We rewrite terms-in-context $\Delta \vdash s$.

- Take $\Delta \vdash s, \Delta \vdash t$ such that $p t(\Gamma \vdash s)=(I d, \mu)$; and $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$, such that $V(R) \cap V(\Gamma, \Delta, s, t)=\emptyset$, $A(R) \cap A(\Gamma, \Delta, s, t)=\emptyset$ and $T V(R) \cap T V(\Gamma)=\emptyset$ (renaming variables and atoms in R if necessary).
- s rewrites with R to t in the context $\Gamma ; \Delta$, written $\Gamma ; \Delta \vdash s \xrightarrow{R} t$, when:
(1) $s=s^{\prime \prime}\left[s^{\prime}\right]$
(2) $\Gamma^{\prime} \vdash s^{\prime}: \mu^{\prime}$ is the typing of s^{\prime} at the corresponding position in a derivation for $\Gamma \vdash s^{\prime \prime}\left[s^{\prime}\right]: \mu$;
(3) $(\Phi ; \nabla \vdash I)$? $\approx\left(\Gamma^{\prime} ; \Delta, A(\nabla, I) \# V\left(\Delta, s^{\prime}\right) \vdash s^{\prime}\right)$ has solution (S, θ).
(9) $\Delta \vdash s^{\prime \prime}[r \theta] \approx_{\alpha} t$.
- Subject Reduction:

Let $R \equiv \Phi ; \nabla \vdash I \rightarrow r: \tau$. If $\Gamma \vdash s: \mu$ and $\Gamma ; \Delta \vdash s \xrightarrow{R} t$ then $\Gamma \vdash t: \mu$.

A (typed!) implementation of the untyped λ-calculus:
Consider a type Λ and term-constructors lam : $([\Lambda] \Lambda) \wedge$, app : $(\Lambda \times \Lambda) \wedge$, and sub : $([\Lambda] \Lambda \times \Lambda) \wedge$. We sugar these to $\lambda[a] s$, $s t$, and $s[a \mapsto t]$ respectively.
Rewrite rules:

$$
\begin{array}{rll}
X, Y: \Lambda & \vdash & (\lambda[a] X) Y \rightarrow X[a \mapsto Y]: \Lambda \\
X, Y: \Lambda ; a \# X & \vdash & X[a \mapsto Y] \rightarrow X: \Lambda \\
Y: \Lambda & \vdash & a[a \mapsto Y] \rightarrow Y: \Lambda \\
X, Y: \Lambda ; b \# Y & \vdash & (\lambda[b] X)[a \mapsto Y] \rightarrow \lambda[b](X[a \mapsto Y]): \Lambda \\
X, Y, Z: \Lambda & \vdash & (X Y)[a \mapsto Z] \rightarrow X[a \mapsto Z] Y[a \mapsto Z]: \Lambda
\end{array}
$$

Applications

Surjective pairing:
Consider fst : $(\alpha \times \beta) \alpha$ and snd : $(\alpha \times \beta) \beta$.
We can define typable rewrite rules for projections and surjective pairing as follows:

$$
\begin{aligned}
& X: \alpha, Y: \beta \vdash \operatorname{fst}(X, Y) \rightarrow X: \alpha \\
& X: \alpha, Y: \beta \vdash \operatorname{snd}(X, Y) \rightarrow Y: \beta \\
& \quad X: \alpha \times \beta \vdash(\operatorname{fst}(X), \text { snd }(X)) \rightarrow X: \alpha \times \beta
\end{aligned}
$$

Note that this rewrite system cannot be analysed as sugar in the λ-calculus [Barendregt 74].

Conclusion

- Nominal Rewriting Systems: first-order systems with matching modulo α (decidable, polynomial).
Higher-order rewriting systems can be encoded.
- α-equivalence preserves types.
- Typing is decidable and there are principal types.
- Typing rules ignore permutations but typed-matching and typed-rewriting take them into account. Rewriting with typed rewrite rules preserves types.
- Future work: denotational semantics for nominal terms; normalisation properties of nominal terms (intersection types); type systems for nominal programming languages.

Questions ?

