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Inductive data types

Types defined by different constructors :
nat =
O : nat
S : nat → nat

Values are constructed inductively: O, S O, S (S O), . . .

Elements are finite: x = S x is forbidden
Dependent types:
list _ =
nil : list O
cons : A → list n → list (S n)
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Pattern matching

Functions can be defined by pattern matching
plus O n = n
plus (S m) n = S (plus m n)

With dependent types
append :: list n → list m → list (n +m)
append nil l = l
append (cons a l’) l = cons a (append l’ l)
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Useless cases

Another example :
head :: list (S n) → A
head (cons a ) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases
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Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?
This problem is undecidable

Encoding words :
Word =

ε : Word
A : Word → Word
B : Word → Word

To each word we asociate a context:

abb[] = A(B(B[]))
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Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?

Encoding Post problem in pattern matching covering :
I _ _ =
init : I ε ε
u1v1 : I u v → I u1[u] v1[v]
...
unvn : I u v → I un[u] vn[v]

Is this function total?
f :: I w w → nat
f init = O
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Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a ) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .
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Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}
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Computing the set of inhabitants

Inductive types are least fixpoints so we iterate
empty =
useless : empty → empty

empty0 = ∅
Applying useless to each elements of empty0 gives :
empty1 = ∅
nat =
O : nat
S : nat → nat

nat0 = ∅, nat1 = {0}, nat2 = {0; 1}
nat3 = {0; 1; 2}, nat4 = {0; 1; 2; 3}, nat5 = {0; 1; 2; 3; 4},
. . .
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Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}
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Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1
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Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations
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Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]
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Prototype implantation

An implantation parametric in the approximation used for
inductive sets
Two instances:

Trees with limited size
Counting the number of occurences of a constructors with a
library of convex set Polka
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Refutations reconstruction

Importance of reconstructing proof : safety of case
elimination
Two methods :

Prove every approximations is correct :
Proof of the correction of the operation on approximated
sets
Prove each approximation is correct :
Use of automatic tactics in Coq, like omega
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Conclusions

This method allows to eliminate case with some simple
inductive analysis.
Need to extend the method with polymorphic and higher
order types.
Need of other data structures to approximate set of
inductives.
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