
Outline

Pattern covering by set approximations

Nicolas Oury

Laboratoire de Recherche en Informatique
Université Paris–Sud, France

TYPES, 2006

Nicolas Oury Pattern covering by set approximations

Outline

Outline
1 Introduction

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

2 Elimination of useless cases
Undecidability
Splitting

3 Approximations of inductive sets
Set computations
Examples
Prototype
Refutations reconstruction

4 Conclusions
Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Outline
1 Introduction

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

2 Elimination of useless cases
Undecidability
Splitting

3 Approximations of inductive sets
Set computations
Examples
Prototype
Refutations reconstruction

4 Conclusions
Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

The Calculus of Inductive Constructions

Proof theory used in the Coq proof assistant
Proving is typing a proof term
Dependent inductive data types: list n . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

The Calculus of Inductive Constructions

Proof theory used in the Coq proof assistant
Proving is typing a proof term
Dependent inductive data types: list n . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Inductive data types

Types defined by different constructors :
nat =
O : nat
S : nat → nat

Values are constructed inductively: O, S O, S (S O), . . .

Elements are finite: x = S x is forbidden
Dependent types:
list _ =
nil : list O
cons : A → list n → list (S n)

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Inductive data types

Types defined by different constructors :
nat =
O : nat
S : nat → nat

Values are constructed inductively: O, S O, S (S O), . . .

Elements are finite: x = S x is forbidden
Dependent types:
list _ =
nil : list O
cons : A → list n → list (S n)

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Inductive data types

Types defined by different constructors :
nat =
O : nat
S : nat → nat

Values are constructed inductively: O, S O, S (S O), . . .

Elements are finite: x = S x is forbidden
Dependent types:
list _ =
nil : list O
cons : A → list n → list (S n)

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Pattern matching

Functions can be defined by pattern matching
plus O n = n
plus (S m) n = S (plus m n)

With dependent types
append :: list n → list m → list (n +m)
append nil l = l
append (cons a l’) l = cons a (append l’ l)

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Pattern matching

Functions can be defined by pattern matching
plus O n = n
plus (S m) n = S (plus m n)

With dependent types
append :: list n → list m → list (n +m)
append nil l = l
append (cons a l’) l = cons a (append l’ l)

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

Useless cases

Another example :
head :: list (S n) → A
head (cons a) = a
head nil = ???

What do we want to write here?
A default case?
A proof that the case is impossible?

We want to automaticaly eliminate these cases

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Outline
1 Introduction

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

2 Elimination of useless cases
Undecidability
Splitting

3 Approximations of inductive sets
Set computations
Examples
Prototype
Refutations reconstruction

4 Conclusions
Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?
This problem is undecidable

Encoding words :
Word =

ε : Word
A : Word → Word
B : Word → Word

To each word we asociate a context:

abb[] = A(B(B[]))

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?
This problem is undecidable

Encoding words :
Word =

ε : Word
A : Word → Word
B : Word → Word

To each word we asociate a context:

abb[] = A(B(B[]))

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?

Encoding Post problem in pattern matching covering :
I _ _ =
init : I ε ε
u1v1 : I u v → I u1[u] v1[v]
...
unvn : I u v → I un[u] vn[v]

Is this function total?
f :: I w w → nat
f init = O

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Undecidability

Post problem
(u1, v1) . . . (un, vn) words on {a; b}
ui1 . . . uik = vi1 . . . vik for some non empty (ij)1≤j≤k ?

Encoding Post problem in pattern matching covering :
I _ _ =
init : I ε ε
u1v1 : I u v → I u1[u] v1[v]
...
unvn : I u v → I un[u] vn[v]

Is this function total?
f :: I w w → nat
f init = O

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting

Split inductive types along their constructors.
Unification to eliminate cases.
head :: list (S n) → A
head (cons a) = a
head nil = ???

list (S n) splits into :
cons⇒ n : nat, a : A, l : list n ` cons a l : list (S n)
nil⇒ ` nil : list O

First case generate a new goal : list n

The second case is impossible : S n = O

Epigram, Alf, Twelf . . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Undecidability
Splitting

Splitting does not use finiteness

empty =
useless : empty → empty

empty splits into useless
⇒ we have to show empty is empty
R _ _ =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

We want to show Trans is not accessible.
First goal : { R n p; R p m}
Splits into : { R n p’; R p’ p; R p m}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Outline
1 Introduction

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

2 Elimination of useless cases
Undecidability
Splitting

3 Approximations of inductive sets
Set computations
Examples
Prototype
Refutations reconstruction

4 Conclusions
Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Computing the set of inhabitants

Inductive types are least fixpoints so we iterate
empty =
useless : empty → empty

empty0 = ∅
Applying useless to each elements of empty0 gives :
empty1 = ∅
nat =
O : nat
S : nat → nat

nat0 = ∅, nat1 = {0}, nat2 = {0; 1}
nat3 = {0; 1; 2}, nat4 = {0; 1; 2; 3}, nat5 = {0; 1; 2; 3; 4},
. . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Computing the set of inhabitants

Inductive types are least fixpoints so we iterate
empty =
useless : empty → empty

empty0 = ∅
Applying useless to each elements of empty0 gives :
empty1 = ∅
nat =
O : nat
S : nat → nat

nat0 = ∅, nat1 = {0}, nat2 = {0; 1}
nat3 = {0; 1; 2}, nat4 = {0; 1; 2; 3}, nat5 = {0; 1; 2; 3; 4},
. . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Computing the set of inhabitants

Inductive types are least fixpoints so we iterate
empty =
useless : empty → empty

empty0 = ∅
Applying useless to each elements of empty0 gives :
empty1 = ∅
nat =
O : nat
S : nat → nat

nat0 = ∅, nat1 = {0}, nat2 = {0; 1}
nat3 = {0; 1; 2}, nat4 = {0; 1; 2; 3}, nat5 = {0; 1; 2; 3; 4},
. . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Computing the set of inhabitants

Inductive types are least fixpoints so we iterate
empty =
useless : empty → empty

empty0 = ∅
Applying useless to each elements of empty0 gives :
empty1 = ∅
nat =
O : nat
S : nat → nat

nat0 = ∅, nat1 = {0}, nat2 = {0; 1}
nat3 = {0; 1; 2}, nat4 = {0; 1; 2; 3}, nat5 = {0; 1; 2; 3; 4},
. . .

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Approximations of sets

We work on over–approximations in domains where
fixpoints converge.
For example, nat∞ = {⊥}
We test if the over–approximation is empty.
Each construction must be reflected on the approximated
sets.
We only consider to monomorph first order inductives.
We approximate dependent inductives by the set of terms
with dependencies.

R∞ = {(0, 1,R1); (0, 2,R2)}

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Example of approximation

R n m =
R1 : R 0 1
R2 : R 0 2
Trans : R n p → R p m → R n m

R1 = {(0, 1, R1); (0, 2, R2)}
We approximate the context of Trans
n, m ,p : nat n, m, p ∈ nat_∞
t1 : R n p (t1,n,p)∈{(R1,O,1); (R2,O,2)}
t2 : R p m (t2,p,m)∈{(R1,O,1); (R2,O,2)}
p is in both {0} and {1; 2} ⇒ Trans can’t be applyied.
R∞ = R1

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Another example of approximation

le n m =
eq : le n n
trans : le n m -> le n (S m)

Counting the number of occurences of constructors
leo = ∅,le1 = [|n|O = 1; |m|O = 1; |n|S = |m|S]

We approximate the context of trans
t : le n m [|n|_O=1;|m|_O=1;|n|_S=|m|_S]

le2 = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + 1 ≥ |m|S] . . .
lek = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S; |n|S + k ≥ |m|S]

And with acceleration.
le∞ = [|n|O = 1; |m|O = 1; |n|S ≤ |m|S]

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Prototype implantation

An implantation parametric in the approximation used for
inductive sets
Two instances:

Trees with limited size
Counting the number of occurences of a constructors with a
library of convex set Polka

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Prototype implantation

An implantation parametric in the approximation used for
inductive sets
Two instances:

Trees with limited size
Counting the number of occurences of a constructors with a
library of convex set Polka

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Prototype implantation

An implantation parametric in the approximation used for
inductive sets
Two instances:

Trees with limited size
Counting the number of occurences of a constructors with a
library of convex set Polka

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Prototype implantation

An implantation parametric in the approximation used for
inductive sets
Two instances:

Trees with limited size
Counting the number of occurences of a constructors with a
library of convex set Polka

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Refutations reconstruction

Importance of reconstructing proof : safety of case
elimination
Two methods :

Prove every approximations is correct :
Proof of the correction of the operation on approximated
sets
Prove each approximation is correct :
Use of automatic tactics in Coq, like omega

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Refutations reconstruction

Importance of reconstructing proof : safety of case
elimination
Two methods :

Prove every approximations is correct :
Proof of the correction of the operation on approximated
sets
Prove each approximation is correct :
Use of automatic tactics in Coq, like omega

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Set computations
Examples
Prototype
Refutations reconstruction

Refutations reconstruction

Importance of reconstructing proof : safety of case
elimination
Two methods :

Prove every approximations is correct :
Proof of the correction of the operation on approximated
sets
Prove each approximation is correct :
Use of automatic tactics in Coq, like omega

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Outline
1 Introduction

The Calculus of Inductive Constructions
Inductive data types
Definitions by pattern matching
Useless cases in a pattern matching

2 Elimination of useless cases
Undecidability
Splitting

3 Approximations of inductive sets
Set computations
Examples
Prototype
Refutations reconstruction

4 Conclusions
Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Conclusions

This method allows to eliminate case with some simple
inductive analysis.
Need to extend the method with polymorphic and higher
order types.
Need of other data structures to approximate set of
inductives.

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Conclusions

This method allows to eliminate case with some simple
inductive analysis.
Need to extend the method with polymorphic and higher
order types.
Need of other data structures to approximate set of
inductives.

Nicolas Oury Pattern covering by set approximations

Introduction
Elimination of useless cases

Approximations of inductive sets
Conclusions

Conclusions

This method allows to eliminate case with some simple
inductive analysis.
Need to extend the method with polymorphic and higher
order types.
Need of other data structures to approximate set of
inductives.

Nicolas Oury Pattern covering by set approximations

	Outline
	Main Talk
	Introduction
	The Calculus of Inductive Constructions
	Inductive data types
	Definitions by pattern matching
	Useless cases in a pattern matching

	Elimination of useless cases
	Undecidability
	Splitting

	Approximations of inductive sets
	Set computations
	Examples
	Prototype
	Refutations reconstruction

	Conclusions

