Internalising modified realisability in constructive type theory

Erik Palmgren Uppsala University Department of Mathematics

TYPES meeting in Nottingham April 19, 2006

Modified realisability

- Modified realisability interpretation : constructive interpretation of logical system into a simple type structure
- ▶ Used in Minlog and Coq for extracting programs from proofs.

Modified realisability

- ► Modified realisability interpretation : constructive interpretation of logical system into a *simple* type structure
- Used in Minlog and Coq for extracting programs from proofs.
- Extracted programs are to a large extent free from the computationally irrelevant parts that might be present in programs arising from direct interpretations into constructive type theory (CTT).

Modified realisability

- Modified realisability interpretation : constructive interpretation of logical system into a simple type structure
- Used in Minlog and Coq for extracting programs from proofs.
- Extracted programs are to a large extent free from the computationally irrelevant parts that might be present in programs arising from direct interpretations into constructive type theory (CTT).
- ► The interpretation requires a separate proof of correctness, usually left unformalised.

▶ We present a completely formalised modified realisability interpretation carried out in the proof support system Agda/Alfa.

- We present a completely formalised modified realisability interpretation carried out in the proof support system Agda/Alfa.
- ▶ We use *modified realisability with truth* which has the property that anything realised is also true in CTT. This makes it possible to use and reason about extracted programs in CTT.

- We present a completely formalised modified realisability interpretation carried out in the proof support system Agda/Alfa.
- We use modified realisability with truth which has the property that anything realised is also true in CTT. This makes it possible to use and reason about extracted programs in CTT.
- ▶ A difference from interpretations as for Minlog, is that the logic interpreted goes beyond first order logic: it is a (constructively) infinitary logic, which arises naturally from the type-theoretic notion of universe.

- We present a completely formalised modified realisability interpretation carried out in the proof support system Agda/Alfa.
- ▶ We use *modified realisability with truth* which has the property that anything realised is also true in CTT. This makes it possible to use and reason about extracted programs in CTT.
- ▶ A difference from interpretations as for Minlog, is that the logic interpreted goes beyond first order logic: it is a (constructively) infinitary logic, which arises naturally from the type-theoretic notion of universe.
- Our extension to infinitary logic seems to be a novel result.

Method of type universes

Use first two levels of the type hierarchy in Agda

$$\mathsf{Set} \subseteq \mathsf{Type} \subseteq \cdots$$
.

Define inductively a type SP: Type of Simple Propositions

- 1. If A : Set, then atom(A) : SP.
- 2. \perp : SP.
- 3. If P, Q : SP, then $P \wedge Q, P \vee Q, P \rightarrow Q : SP$.
- 4. If A : Set and $P : A \to SP$, then $\forall (A, P), \exists (A, P) : SP$.

Method of type universes

Use first two levels of the type hierarchy in Agda

$$\mathsf{Set} \subseteq \mathsf{Type} \subseteq \cdots$$
.

Define inductively a type SP : Type of Simple Propositions

- 1. If A : Set, then atom(A) : SP.
- 2. \perp : SP.
- 3. If P, Q : SP, then $P \wedge Q, P \vee Q, P \rightarrow Q : SP$.
- 4. If A : Set and P : $A \rightarrow SP$, then $\forall (A, P), \exists (A, P) : SP$.

Due to (4) the formulae may be infinitary. Set could also be replaced by a suitably closed universe.

SP	${ m Tp}$ (type of BHK-proofs)	Cr (crude type of realisers)
	Ø	Unit
atom(A)	A	Unit
$P \wedge Q$	$\operatorname{Tp}(P) imes \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) imes \operatorname{Cr}(Q)$
$P \lor Q$	$\operatorname{Tp}(P) + \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) + \operatorname{Cr}(Q)$
P o Q	$\operatorname{Tp}(P) o \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) o \operatorname{Cr}(Q)$
$\forall (A,R)$	$(\Pi x : A) \operatorname{Tp}(R(x))$	$(\Pi x : A)\mathrm{Cr}(R(x))$
$\exists (A,R)$	$(\Sigma x : A) \operatorname{Tp}(R(x))$	$(\Sigma x : A)\mathrm{Cr}(R(x))$

SP	Tp (type of BHK-proofs)	${ m Cr}$ (crude type of realisers)
	Ø	Unit
atom(A)	A	Unit
$P \wedge Q$	$\operatorname{Tp}(P) \times \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) imes \operatorname{Cr}(Q)$
$P \lor Q$	$\operatorname{Tp}(P) + \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) + \operatorname{Cr}(Q)$
P o Q	$\operatorname{Tp}(P) o \operatorname{Tp}(Q)$	$\operatorname{Cr}(P) o \operatorname{Cr}(Q)$
$\forall (A,R)$	$(\Pi x : A) \operatorname{Tp}(R(x))$	$(\Pi x : A)\mathrm{Cr}(R(x))$
$\exists (A,R)$	$(\Sigma x : A) \operatorname{Tp}(R(x))$	$(\Sigma x : A)\mathrm{Cr}(R(x))$

For P : SP and s : Cr(P) the predicate MR(P, s) : Type is defined by recursion on P and expresses that s is a realiser for P.

Soundness Theorem: The axioms and rules of infinitary first logic (with atomic absurdity rule), using sorts in Set, are MR-realised.

Soundness Theorem: The axioms and rules of infinitary first logic (with atomic absurdity rule), using sorts in Set, are MR-realised.

Mathematical axioms: *N*-induction and constructive choice for types are MR-realised.

Soundness Theorem: The axioms and rules of infinitary first logic (with atomic absurdity rule), using sorts in Set, are MR-realised.

Mathematical axioms: *N*-induction and constructive choice for types are MR-realised.

Conservativity Theorem: If MR(P, r) holds, then Tp(P) is true.

Soundness Theorem: The axioms and rules of infinitary first logic (with atomic absurdity rule), using sorts in Set, are MR-realised.

Mathematical axioms: *N*-induction and constructive choice for types are MR-realised.

Conservativity Theorem: If MR(P, r) holds, then Tp(P) is true.

Remark: The full absurdity rule can be realised with a slight increase in the complexity of the interpretation.

Uses of the interpretation

- ▶ Eliminate type dependencies in extracted programs by proving existence in the first order part of the logic. No need to go outside the proof support system.
- Programs from proofs in the infinitary part still has less type depedencies than BHK-programs.
- ▶ Only toy examples tested so far. Limitation in the normalisation algorithm for Agda.

References

U Berger, W Buchholz and H Schwichtenberg. *Refined Program Extraction from Classical Proofs* **Annals of Pure and Applied Logic**, 114(2002), 3 – 25.

E Palmgren. *Internalising modified realisability in constructive type theory.* **Logical Methods in Computer Science.** lss. 2, vol. 1(2005), 1–7. URL: www.lmcs-online.org/