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Modified realisability

I Modified realisability interpretation : constructive
interpretation of logical system into a simple type structure

I Used in Minlog and Coq for extracting programs from proofs.

I Extracted programs are to a large extent free from the
computationally irrelevant parts that might be present in
programs arising from direct interpretations into constructive
type theory (CTT).

I The interpretation requires a separate proof of correctness,
usually left unformalised.
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I We present a completely formalised modified realisability
interpretation carried out in the proof support system
Agda/Alfa.

I We use modified realisability with truth which has the property
that anything realised is also true in CTT. This makes it
possible to use and reason about extracted programs in CTT.

I A difference from interpretations as for Minlog, is that the
logic interpreted goes beyond first order logic: it is a
(constructively) infinitary logic, which arises naturally from
the type-theoretic notion of universe.

I Our extension to infinitary logic seems to be a novel result.
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Method of type universes

Use first two levels of the type hierarchy in Agda

Set ⊆ Type ⊆ · · · .

Define inductively a type SP : Type of Simple Propositions

1. If A : Set, then atom(A) : SP.

2. ⊥ : SP.

3. If P,Q : SP, then P ∧ Q,P ∨ Q,P → Q : SP.

4. If A : Set and P : A → SP, then ∀(A,P),∃(A,P) : SP.

Due to (4) the formulae may be infinitary. Set could also be
replaced by a suitably closed universe.
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SP Tp (type of BHK-proofs) Cr (crude type of realisers)

⊥ ∅ Unit
atom(A) A Unit

P ∧ Q Tp(P)× Tp(Q) Cr(P)× Cr(Q)
P ∨ Q Tp(P) + Tp(Q) Cr(P) + Cr(Q)
P → Q Tp(P) → Tp(Q) Cr(P) → Cr(Q)
∀(A,R) (Πx : A)Tp(R(x)) (Πx : A)Cr(R(x))
∃(A,R) (Σx : A)Tp(R(x)) (Σx : A)Cr(R(x))

For P : SP and s : Cr(P) the predicate MR(P, s) : Type is defined
by recursion on P and expresses that s is a realiser for P.
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Soundness and conservativity

Soundness Theorem: The axioms and rules of infinitary first logic
(with atomic absurdity rule), using sorts in Set, are MR-realised.

Mathematical axioms: N-induction and constructive choice for
types are MR-realised.

Conservativity Theorem: If MR(P, r) holds, then Tp(P) is true.

Remark: The full absurdity rule can be realised with a slight
increase in the complexity of the interpretation.
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Uses of the interpretation

I Eliminate type dependencies in extracted programs by proving
existence in the first order part of the logic. No need to go
outside the proof support system.

I Programs from proofs in the infinitary part still has less type
depedencies than BHK-programs.

I Only toy examples tested so far. Limitation in the
normalisation algorithm for Agda.
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