
Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Constraint based Termination

Frédéric Blanqui1 Colin Riba2

1INRIA & LORIA

2INPL & LORIA

TYPES 2006 University of Nottingham

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Simply typed λ-calculus with let (λlet ).

Constants defined via rewrite rules

f~l → r with ~l algebraic

Rewrite relation
f~lσ → rσ

Sufficient condition for strong normalization of well-typed
terms.
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Example

minus, div : N ⇒ N ⇒ N
s : N ⇒ N

div (sx) y → s(div (minus x y) y)

s x
?
> minus x y
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Example

N(α) : terms headed by less than n constructor symbols s.

minus, div : N(α) ⇒ N ⇒ N(α)
s : N(α) ⇒ N(α + 1)

div (sx) y → s(div (minus x y) y)

x : N(α) ` sx : N(α + 1) , minus x y : N(α)

α + 1 > α
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qsort l → qsapp l [ ]

qsapp [ ] l ′ → l ′

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

qsort : L(α) ⇒ L(α)
qsapp : L(α) ⇒ L(β) ⇒ L(α + β)

pivot : N ⇒ L(?) ⇒ L(?)× L(?)
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Termination of recursive definitions
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qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

If pivot : N ⇒ L(α) ⇒ L(α)× L(α)
then qsort : L(α) ⇒ L(∞)

We would like
pivot : N ⇒ L(α) ⇒ L(γ)× L(δ)

with α = γ + δ

Constrained types
L(α) : lists of length α

pivot : N ⇒ ∀α L(α) ⇒ ∃γ∃δ (α = γ + δ) L(γ)× L(δ)
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Xi’s Dependent ML 1998 - 2002 (MLΠ,Σ).

Types constructors : product types and sum types.
Reflected at the term level: λα.t , 〈α, t〉 (with appropriate
destructors)

Two-level approach : ML, MLΠ,Σ

Elaboration process : ML −→ MLΠ,Σ.

Normalization proved in MLΠ,Σ.

Erasure : MLΠ,Σ −→ ML that preserves normalization.
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Contributions

We present a type system λC with constrained simple
types.
We use it in a criterion for Strong Normalization of rewriting
(plus β-reduction).

An alternative to Xi’s type system: intersection and union
instead of type constructors (product, sum)

The systems λlet and λC use the same terms.

If rules are typable in λC with some constrains on the type
of constants symbols, then every term typable in λlet is
SN .
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Constraints

First order language with logical connectives ∧, ⊃, ∀, ∃.

Notations
V : variables
P, Q : constraints
C : conjunction of constraints

Satisfiability in N,

C ` P iff for all µ : V −→ N,

µ |= C ⊃ P .
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Types

T , U ∈ T ::= B(α) | T ⇒ U | T ×U | (∀αP)T | (∃αP)T

B =def ∃αB(α).

Inductive types: B with comes constructors

c : ~T ⇒ ~B(~α) ⇒ B(max(~α) + 1)

where B /∈ ~T

Blanqui, Riba Constraint based Termination
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Terms

t , u ∈ Λ ::= x | f | c | λx .t | t u | let x = t in u

Rewrite rules

f~l → r with ~l algebraic constructor terms

Reductions

Rewriting f~lσ → rσ
β-reduction (λx .t)u → t [u/x ]
let -reduction let x = t in u → u[t/x ]
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Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Subtyping

Subtyping relation C ` T ≤ U defined via constraints (|T ≤ U|):

C ` T ≤ U iff C ⊃ (|T ≤ U|)
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(|T ≤ U|)

(|B(a) ≤ B(b)|) =def (a = b)

(|T ≤ (∃αP)U|) =def ∃α [ P ∧ (|T ≤ U|) ]

(|(∃αP)T ≤ U|) =def ∃αP ∧ ∀α [ P ⊃ (|T ≤ U|) ]

(|T ≤ (∀αP)U|) =def ∃αP ∧ ∀α [ P ⊃ (|T ≤ U|) ]

(|(∀αP)T ≤ U|) =def ∃α [ P ∧ (|T ≤ U|) ]
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Types and Terms
Some typing rules
Subtyping relation
Type checking

No type annotation under abstractions. (Because we want
terms of λC be terms of λ).

Incomplete bidirectional type checking algorithm.

Constraints generation

C ; Γ ` t ↑ T
given Γ and t , generates C and T such that C ; Γ `λC t : T .

C ; Γ ` t ↓ T
given Γ, t and T , generates C such that C ; Γ `λC t : T .

Constraints in Presburger arithmetic.
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Interpretation of Types
Normalization

Types interpreted as candidates of reducibility:

if T ∈ T and µ : V −→ N then [[T ]]µ ∈ CR

Soundness :

if C ; Γ `λC t : T and µ, θ |= C , Γ then tθ ∈ [[T ]]µ

We let

[[(∀αP)T ]]µ =def
⋂
{ [[T ]]µ[a/α] ; µ[a/α] |= P }

[[(∃αP)T ]]µ =def
⋃
{ [[T ]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination
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Interpretation of Types
Normalization

Interpretation of base types

Base types B interpreted as

[[B]] : N −→ P(Λ)

Singleton interpretation

Example :
si 0 ∈ [[N]](j) iff i = j

It follows that
[[N]](i) 6⊆ [[N]](i + 1)

Blanqui, Riba Constraint based Termination
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Interpretation of Types
Normalization

Some cases of (|T ≤ U|)

Subtyping : (|T ≤ U|) is such that

if µ |= (|T ≤ U|) then [[T ]]µ ⊆ [[U]]µ

(|B(a) ≤ B(b)|) =def a = b

if a = b then [[B]](a) ⊆ [[B]](b)

(|T ≤ (∃αP)U|) =def ∃α [ P ∧ (|T ≤ U|) ] (α /∈ T )

if µ |= ∃α [ P ∧ (|T ≤ U|) ] then

[[T ]]µ ⊆
⋃
{ [[U]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination
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Interpretation of Types
Normalization

For all rule f~l → r , if

f : ~V ⇒ ∀~α ~T ⇒ U
and

C; Γ `λC f~l : U[~a/~α]
and

C; Γ `λC r : U[~a/~α]

using f : ~V ⇒ ∀~α (~α < ~a) ~T ⇒ U

then we get soundness of [[·]] ; hence SN of terms typable
in λC.

If constants have type of the form

f : ~V ⇒ ∀~α ~B(~α) ⇒ Q~β
⊗

~B(~β)

then every term typable in λlet is SN .

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

For all rule f~l → r , if

f : ~V ⇒ ∀~α ~T ⇒ U
and

C; Γ `λC f~l : U[~a/~α]
and

C; Γ `λC r : U[~a/~α]

using f : ~V ⇒ ∀~α (~α < ~a) ~T ⇒ U

then we get soundness of [[·]] ; hence SN of terms typable
in λC.

If constants have type of the form

f : ~V ⇒ ∀~α ~B(~α) ⇒ Q~β
⊗

~B(~β)

then every term typable in λlet is SN .

Blanqui, Riba Constraint based Termination



Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Conditional rewriting

McCarthy’s 91 function:

≤ x 100 = true ⊃ f x → let y = f (plus x 11)
in f y

≤ x 100 = false ⊃ f x → minus x 10

with types

minus : ∀α β N(α) ⇒ N(β) ⇒ ∃δ P N(δ)
P =def (α ≤ β ∧ δ = 0) ∨ (α > β ∧ α = β + δ)

f : ∀αN(α) ⇒ ∃β Q N(β)
Q =def (α ≤ 100 ∧ β = 91) ∨ (α > 100 ∧ α = β + 10)

Blanqui, Riba Constraint based Termination
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Conclusion

We proposed a constraint type system. In which we can
express size relations between input and output of
functions.

No elaboration, but some automation may be interesting
for the insertion of let .

The constraints allows to express relationship between
input and output of functions.

Conditional rewriting.
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Further work

Constraints solving.
Simplification of constraints

Higher-order types.

Dependent types and polymorphism.

Other properties than termination.
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Example with Higher-order types

c : ((C ⇒ N) ⇒ N) ⇒ C
ex : C ⇒ N

ex (cf ) → f ex

cf
?
>
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Example with Higher-order types

c : ((C(α) ⇒ N) ⇒ N) ⇒ C(α + 1)
ex : C(α) ⇒ N

ex (cf ) → f ex

f : (C(α) ⇒ N) ⇒ N ` cf : C(α + 1)

ex : C(α + 1) ⇒ N
ex : C(α) ⇒ N

α + 1 > α
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Union types vs Sum types

let -reduction makes fail subject reduction
Union types:

(∃E)
C; Γ ` t : (∃αP)T C ∧ P; Γ, x : T ` u : U C ` ∃αP

C; Γ ` u[t/x ] : U

Sum types:

(∃I)
C; Γ ` t : T [a/α] C ` P[a/α]

C; Γ ` 〈t〉 : (∃αP)T

let x = 〈t〉 in u → u[t/x ]

[[(∃αP)T ]] =def {t ∈ SN ; t →∗ 〈u〉 => u ∈
⋃
{[[T ]]µ[a/α]; . . . }}
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