
Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Constraint based Termination

Frédéric Blanqui1 Colin Riba2

1INRIA & LORIA

2INPL & LORIA

TYPES 2006 University of Nottingham

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Simply typed λ-calculus with let (λlet).

Constants defined via rewrite rules

f~l → r with ~l algebraic

Rewrite relation
f~lσ → rσ

Sufficient condition for strong normalization of well-typed
terms.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Example

minus, div : N ⇒ N ⇒ N
s : N ⇒ N

div (sx) y → s(div (minus x y) y)

s x
?
> minus x y

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Example

N(α) : terms headed by less than n constructor symbols s.

minus, div : N(α) ⇒ N ⇒ N(α)
s : N(α) ⇒ N(α + 1)

div (sx) y → s(div (minus x y) y)

x : N(α) ` sx : N(α + 1) , minus x y : N(α)

α + 1 > α

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Example

N(α) : terms headed by less than n constructor symbols s.

minus, div : N(α) ⇒ N ⇒ N(α)
s : N(α) ⇒ N(α + 1)

div (sx) y → s(div (minus x y) y)

x : N(α) ` sx : N(α + 1) , minus x y : N(α)

α + 1 > α

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Previous work

Hughes, Pareto & Sabry, 1996

Giménez 1998

Amadio & Coupet-Grimal, 1998

Abel, 2002

Barthe, Frade, Giménez, Pinto & Uustalu 2000-2004

Blanqui 2004,2005

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

qsort l → qsapp l []

qsapp [] l ′ → l ′

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

qsort : L(α) ⇒ L(α)
qsapp : L(α) ⇒ L(β) ⇒ L(α + β)

pivot : N ⇒ L(?) ⇒ L(?)× L(?)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

qsort l → qsapp l []

qsapp [] l ′ → l ′

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

qsort : L(α) ⇒ L(α)
qsapp : L(α) ⇒ L(β) ⇒ L(α + β)

pivot : N ⇒ L(?) ⇒ L(?)× L(?)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

If pivot : N ⇒ L(α) ⇒ L(α)× L(α)
then qsort : L(α) ⇒ L(∞)

We would like
pivot : N ⇒ L(α) ⇒ L(γ)× L(δ)

with α = γ + δ

Constrained types
L(α) : lists of length α

pivot : N ⇒ ∀α L(α) ⇒ ∃γ∃δ (α = γ + δ) L(γ)× L(δ)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

If pivot : N ⇒ L(α) ⇒ L(α)× L(α)
then qsort : L(α) ⇒ L(∞)

We would like
pivot : N ⇒ L(α) ⇒ L(γ)× L(δ)

with α = γ + δ

Constrained types
L(α) : lists of length α

pivot : N ⇒ ∀α L(α) ⇒ ∃γ∃δ (α = γ + δ) L(γ)× L(δ)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

qsapp (x :: l) l ′ → let y = pivot x l
in qsapp (π1 y) (x :: qsapp (π2 y) l ′)

If pivot : N ⇒ L(α) ⇒ L(α)× L(α)
then qsort : L(α) ⇒ L(∞)

We would like
pivot : N ⇒ L(α) ⇒ L(γ)× L(δ)

with α = γ + δ

Constrained types
L(α) : lists of length α

pivot : N ⇒ ∀α L(α) ⇒ ∃γ∃δ (α = γ + δ) L(γ)× L(δ)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Xi’s Dependent ML 1998 - 2002 (MLΠ,Σ).

Types constructors : product types and sum types.
Reflected at the term level: λα.t , 〈α, t〉 (with appropriate
destructors)

Two-level approach : ML, MLΠ,Σ

Elaboration process : ML −→ MLΠ,Σ.

Normalization proved in MLΠ,Σ.

Erasure : MLΠ,Σ −→ ML that preserves normalization.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Xi’s Dependent ML 1998 - 2002 (MLΠ,Σ).

Types constructors : product types and sum types.
Reflected at the term level: λα.t , 〈α, t〉 (with appropriate
destructors)

Two-level approach : ML, MLΠ,Σ

Elaboration process : ML −→ MLΠ,Σ.

Normalization proved in MLΠ,Σ.

Erasure : MLΠ,Σ −→ ML that preserves normalization.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Contributions

We present a type system λC with constrained simple
types.
We use it in a criterion for Strong Normalization of rewriting
(plus β-reduction).

An alternative to Xi’s type system: intersection and union
instead of type constructors (product, sum)

The systems λlet and λC use the same terms.

If rules are typable in λC with some constrains on the type
of constants symbols, then every term typable in λlet is
SN .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Contributions

We present a type system λC with constrained simple
types.
We use it in a criterion for Strong Normalization of rewriting
(plus β-reduction).

An alternative to Xi’s type system: intersection and union
instead of type constructors (product, sum)

The systems λlet and λC use the same terms.

If rules are typable in λC with some constrains on the type
of constants symbols, then every term typable in λlet is
SN .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Termination of recursive definitions
Sized types
Constrained types

Contributions

We present a type system λC with constrained simple
types.
We use it in a criterion for Strong Normalization of rewriting
(plus β-reduction).

An alternative to Xi’s type system: intersection and union
instead of type constructors (product, sum)

The systems λlet and λC use the same terms.

If rules are typable in λC with some constrains on the type
of constants symbols, then every term typable in λlet is
SN .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Constraints

First order language with logical connectives ∧, ⊃, ∀, ∃.

Notations
V : variables
P, Q : constraints
C : conjunction of constraints

Satisfiability in N,

C ` P iff for all µ : V −→ N,

µ |= C ⊃ P .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Types

T , U ∈ T ::= B(α) | T ⇒ U | T ×U | (∀αP)T | (∃αP)T

B =def ∃αB(α).

Inductive types: B with comes constructors

c : ~T ⇒ ~B(~α) ⇒ B(max(~α) + 1)

where B /∈ ~T

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Terms

t , u ∈ Λ ::= x | f | c | λx .t | t u | let x = t in u

Rewrite rules

f~l → r with ~l algebraic constructor terms

Reductions

Rewriting f~lσ → rσ
β-reduction (λx .t)u → t [u/x]
let -reduction let x = t in u → u[t/x]

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(∀I)
C ∧ P ; Γ `λC t : T C ` ∃αP

C ; Γ `λC t : (∀αP)T

(∀E)
C ; Γ `λC t : (∀αP)T C ` P[a/α]

C ; Γ `λC t : T [a/α]

(∃I)
C ; Γ `λC t : T [a/α] C ` P[a/α]

C ; Γ `λC t : (∃αP)T

(∃E)
C ; Γ `λC t : (∃αP)T C ∧ P ; Γ, x : T `λC u : U C ` ∃αP

C ; Γ `λC let x = t in u : U

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Subtyping

Subtyping relation C ` T ≤ U defined via constraints (|T ≤ U|):

C ` T ≤ U iff C ⊃ (|T ≤ U|)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(|T ≤ U|)

(|B(a) ≤ B(b)|) =def (a = b)

(|T ≤ (∃αP)U|) =def ∃α [P ∧ (|T ≤ U|)]

(|(∃αP)T ≤ U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|T ≤ (∀αP)U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|(∀αP)T ≤ U|) =def ∃α [P ∧ (|T ≤ U|)]

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(|T ≤ U|)

(|B(a) ≤ B(b)|) =def (a = b)

(|T ≤ (∃αP)U|) =def ∃α [P ∧ (|T ≤ U|)]

(|(∃αP)T ≤ U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|T ≤ (∀αP)U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|(∀αP)T ≤ U|) =def ∃α [P ∧ (|T ≤ U|)]

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

(|T ≤ U|)

(|B(a) ≤ B(b)|) =def (a = b)

(|T ≤ (∃αP)U|) =def ∃α [P ∧ (|T ≤ U|)]

(|(∃αP)T ≤ U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|T ≤ (∀αP)U|) =def ∃αP ∧ ∀α [P ⊃ (|T ≤ U|)]

(|(∀αP)T ≤ U|) =def ∃α [P ∧ (|T ≤ U|)]

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

No type annotation under abstractions. (Because we want
terms of λC be terms of λ).

Incomplete bidirectional type checking algorithm.

Constraints generation

C ; Γ ` t ↑ T
given Γ and t , generates C and T such that C ; Γ `λC t : T .

C ; Γ ` t ↓ T
given Γ, t and T , generates C such that C ; Γ `λC t : T .

Constraints in Presburger arithmetic.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Types and Terms
Some typing rules
Subtyping relation
Type checking

No type annotation under abstractions. (Because we want
terms of λC be terms of λ).

Incomplete bidirectional type checking algorithm.

Constraints generation

C ; Γ ` t ↑ T
given Γ and t , generates C and T such that C ; Γ `λC t : T .

C ; Γ ` t ↓ T
given Γ, t and T , generates C such that C ; Γ `λC t : T .

Constraints in Presburger arithmetic.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Types interpreted as candidates of reducibility:

if T ∈ T and µ : V −→ N then [[T]]µ ∈ CR

Soundness :

if C ; Γ `λC t : T and µ, θ |= C , Γ then tθ ∈ [[T]]µ

We let

[[(∀αP)T]]µ =def
⋂
{ [[T]]µ[a/α] ; µ[a/α] |= P }

[[(∃αP)T]]µ =def
⋃
{ [[T]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Types interpreted as candidates of reducibility:

if T ∈ T and µ : V −→ N then [[T]]µ ∈ CR

Soundness :

if C ; Γ `λC t : T and µ, θ |= C , Γ then tθ ∈ [[T]]µ

We let

[[(∀αP)T]]µ =def
⋂
{ [[T]]µ[a/α] ; µ[a/α] |= P }

[[(∃αP)T]]µ =def
⋃
{ [[T]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Interpretation of base types

Base types B interpreted as

[[B]] : N −→ P(Λ)

Singleton interpretation

Example :
si 0 ∈ [[N]](j) iff i = j

It follows that
[[N]](i) 6⊆ [[N]](i + 1)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Some cases of (|T ≤ U|)

Subtyping : (|T ≤ U|) is such that

if µ |= (|T ≤ U|) then [[T]]µ ⊆ [[U]]µ

(|B(a) ≤ B(b)|) =def a = b

if a = b then [[B]](a) ⊆ [[B]](b)

(|T ≤ (∃αP)U|) =def ∃α [P ∧ (|T ≤ U|)] (α /∈ T)

if µ |= ∃α [P ∧ (|T ≤ U|)] then

[[T]]µ ⊆
⋃
{ [[U]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Some cases of (|T ≤ U|)

Subtyping : (|T ≤ U|) is such that

if µ |= (|T ≤ U|) then [[T]]µ ⊆ [[U]]µ

(|B(a) ≤ B(b)|) =def a = b

if a = b then [[B]](a) ⊆ [[B]](b)

(|T ≤ (∃αP)U|) =def ∃α [P ∧ (|T ≤ U|)] (α /∈ T)

if µ |= ∃α [P ∧ (|T ≤ U|)] then

[[T]]µ ⊆
⋃
{ [[U]]µ[a/α] ; µ[a/α] |= P }

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Outline

1 Introduction
Termination of recursive definitions
Sized types
Constrained types

2 Syntax of λC
Types and Terms
Some typing rules
Subtyping relation
Type checking

3 Semantics of λC
Interpretation of Types
Normalization

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

For all rule f~l → r , if

f : ~V ⇒ ∀~α ~T ⇒ U
and

C; Γ `λC f~l : U[~a/~α]
and

C; Γ `λC r : U[~a/~α]

using f : ~V ⇒ ∀~α (~α < ~a) ~T ⇒ U

then we get soundness of [[·]] ; hence SN of terms typable
in λC.

If constants have type of the form

f : ~V ⇒ ∀~α ~B(~α) ⇒ Q~β
⊗

~B(~β)

then every term typable in λlet is SN .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

For all rule f~l → r , if

f : ~V ⇒ ∀~α ~T ⇒ U
and

C; Γ `λC f~l : U[~a/~α]
and

C; Γ `λC r : U[~a/~α]

using f : ~V ⇒ ∀~α (~α < ~a) ~T ⇒ U

then we get soundness of [[·]] ; hence SN of terms typable
in λC.

If constants have type of the form

f : ~V ⇒ ∀~α ~B(~α) ⇒ Q~β
⊗

~B(~β)

then every term typable in λlet is SN .

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Conditional rewriting

McCarthy’s 91 function:

≤ x 100 = true ⊃ f x → let y = f (plus x 11)
in f y

≤ x 100 = false ⊃ f x → minus x 10

with types

minus : ∀α β N(α) ⇒ N(β) ⇒ ∃δ P N(δ)
P =def (α ≤ β ∧ δ = 0) ∨ (α > β ∧ α = β + δ)

f : ∀αN(α) ⇒ ∃β Q N(β)
Q =def (α ≤ 100 ∧ β = 91) ∨ (α > 100 ∧ α = β + 10)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Interpretation of Types
Normalization

Conditional rewriting

McCarthy’s 91 function:

≤ x 100 = true ⊃ f x → let y = f (plus x 11)
in f y

≤ x 100 = false ⊃ f x → minus x 10

with types

minus : ∀α β N(α) ⇒ N(β) ⇒ ∃δ P N(δ)
P =def (α ≤ β ∧ δ = 0) ∨ (α > β ∧ α = β + δ)

f : ∀αN(α) ⇒ ∃β Q N(β)
Q =def (α ≤ 100 ∧ β = 91) ∨ (α > 100 ∧ α = β + 10)

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Conclusion

We proposed a constraint type system. In which we can
express size relations between input and output of
functions.

No elaboration, but some automation may be interesting
for the insertion of let .

The constraints allows to express relationship between
input and output of functions.

Conditional rewriting.

Blanqui, Riba Constraint based Termination

Introduction
Syntax of λC

Semantics of λC
Conclusion & Further work

Further work

Constraints solving.
Simplification of constraints

Higher-order types.

Dependent types and polymorphism.

Other properties than termination.

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Example with Higher-order types

c : ((C ⇒ N) ⇒ N) ⇒ C
ex : C ⇒ N

ex (cf) → f ex

cf
?
>

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Example with Higher-order types

c : ((C(α) ⇒ N) ⇒ N) ⇒ C(α + 1)
ex : C(α) ⇒ N

ex (cf) → f ex

f : (C(α) ⇒ N) ⇒ N ` cf : C(α + 1)

ex : C(α + 1) ⇒ N
ex : C(α) ⇒ N

α + 1 > α

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Example with Higher-order types

c : ((C(α) ⇒ N) ⇒ N) ⇒ C(α + 1)
ex : C(α) ⇒ N

ex (cf) → f ex

f : (C(α) ⇒ N) ⇒ N ` cf : C(α + 1)

ex : C(α + 1) ⇒ N
ex : C(α) ⇒ N

α + 1 > α

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Union types vs Sum types

let -reduction makes fail subject reduction
Union types:

(∃E)
C; Γ ` t : (∃αP)T C ∧ P; Γ, x : T ` u : U C ` ∃αP

C; Γ ` u[t/x] : U

Sum types:

(∃I)
C; Γ ` t : T [a/α] C ` P[a/α]

C; Γ ` 〈t〉 : (∃αP)T

let x = 〈t〉 in u → u[t/x]

[[(∃αP)T]] =def {t ∈ SN ; t →∗ 〈u〉 => u ∈
⋃
{[[T]]µ[a/α]; . . . }}

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Union types vs Sum types

let -reduction makes fail subject reduction
Union types:

(∃E)
C; Γ ` t : (∃αP)T C ∧ P; Γ, x : T ` u : U C ` ∃αP

C; Γ ` u[t/x] : U

Sum types:

(∃I)
C; Γ ` t : T [a/α] C ` P[a/α]

C; Γ ` 〈t〉 : (∃αP)T

let x = 〈t〉 in u → u[t/x]

[[(∃αP)T]] =def {t ∈ SN ; t →∗ 〈u〉 => u ∈
⋃
{[[T]]µ[a/α]; . . . }}

Blanqui, Riba Constraint based Termination

Appendix
Higher-order types
Union types vs sum types

Union types vs Sum types

let -reduction makes fail subject reduction
Union types:

(∃E)
C; Γ ` t : (∃αP)T C ∧ P; Γ, x : T ` u : U C ` ∃αP

C; Γ ` u[t/x] : U

Sum types:

(∃I)
C; Γ ` t : T [a/α] C ` P[a/α]

C; Γ ` 〈t〉 : (∃αP)T

let x = 〈t〉 in u → u[t/x]

[[(∃αP)T]] =def {t ∈ SN ; t →∗ 〈u〉 => u ∈
⋃
{[[T]]µ[a/α]; . . . }}

Blanqui, Riba Constraint based Termination

	Introduction
	Termination of recursive definitions
	Sized types
	Constrained types

	Syntax of C
	Types and Terms
	Some typing rules
	Subtyping relation
	Type checking

	Semantics of C
	Interpretation of Types
	Normalization

	Conclusion & Further work
	Appendix
	Higher-order types
	Union types vs sum types

