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Outline

Global Optimisation
Problem: �nding the minimum and maximum value of a given
objective function f : Rn → R on a certain domain
[a1; b1] × . . . × [an; bn]
Traditional methods based on interval arithmetic.

Taylor Models
An optimisation method computing with sets of functions of
the form �polynomial + error interval�

Formal
Both the optimisation algorithm (-Cal) and its correctness
proof (Logi-) are Coq terms. To obtain a formal proof for a
particular problem it su�ces to execute the algorithm (proof
by re�ection).



What Is Global Optimisation Good for?

Engineering: aeronautics, robotics, . . .

Experimental physics: particle motion in accelerators

Geometry: volumes of cells in space decomposition occuring in
T. Hales' proof of the Kepler conjecture

x1 ∈ [4; 2.1682] ∧ x2 ∈ [6.3001; 2.6962] ∧ x3 ∈ [4; 2.1682] ∧
x4 ∈ [4; 6.3001] ∧ x5 ∈ [4; 6.3001] ∧ x6 ∈ [4; 6.3001] →
π
2
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> 0.74



The Kepler Conjecture (1611)

The maximal density of any sphere packing in 3-space is π√
18
.

In 1998 Thomas C. Hales has found a proof, which is large in
every sense: article of 300 pages, 40.000 lines of code, several
weeks of computation

The �Flyspeck� project aims at formalising this proof, in order
to eliminate any doubt about its correctness.



Interval Arithmetic

The set of intervals: I = (R ∪ {−∞})× (R ∪ {∞})
Let f : Rn → R. The function f̂ : In → I is called . . .

an extension of f i� ∀X ∈ In. f̂ (X ) ⊇ {f x | x ∈ X}
a sharp extension of f i� ∀X ∈ In. f̂ (X ) = {f x | x ∈ X}

Some sharp extensions:

[a; b] +̂ [c; d ] := (a + c, b + d)

[a; b] −̂ [c; d ] := (a − d , b − c)

[a; b] ∗̂ [c; d ] := (min{ac, ad , bc, bd},max{ac , ad , bc, bd})

1 /̂ [a; b] :=

{
( 1
b
, 1

a
) if a ≥ 0 ∨ b ≤ 0

(−∞,∞) if a ≤ 0 ≤ b

Structural recursion with these extensions over a term yields
its natural extension.



The Dependence Problem

Goal: x ∈ [1; 2] ∧ y , z ∈ [2; 3] → xy − z ≥ −5
Proof: [1; 2] ∗̂ [2; 3] −̂ [2; 3] = [−1; 3] ≥ −5

structural induction; apply extension property. q.e.d.

Goal: x ∈ [3; 5] → x − x ≥ −1
Proof: [3; 5] −̂ [3; 5] = [−2; 2] 6≥ −1

:-(

Why? For interval arithmetic the second goal looks like:
x , y ∈ [3; 5] → x − y ≥ −1



A Remedy: Branch & Bound

If a simple evaluation of the natural extension fails, we split
the domain X into X1 and X2. From the extension property
follows: x ∈ X1 ∨ x ∈ X2 → x ∈ f̂ (X1) ∪ f̂ (X2)

Goal: x ∈ [3; 5] → x − x ≥ −1
Proof:

(
[3; 4]−̂[3; 4]

)
∪

(
[4; 5]−̂[4; 5]

)
= [−1, 1]

. . . structural induction; apply extension property. q.e.d.

Algorithm for proving x ∈ X → f x ≥ 0:
f̂ (X ) ≥ 0: success

f̂ (X ) 6≥ 0: split X into X1 and X2 and restart for each one
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Another Remedy: Use of The Gradient

Fermat/Euler: x is a local extremum→ ∇f (x) = 0

∇̂f (X ) 63 0→ X does not contain a local extremum

A global extremum is either a local one, or it lies on the border
of the domain.

If (after several splits) a sub-domain X does not touch the
original domain's borders and ∇̂f (X ) 63 0, then it can be safely
forgotten.

If ∇̂f (X ) 63 0 and it still touches some borders, then there is
some i with ∂̂i f (X ) > 0.
So x ∈ X → x ∈ f̂ (X [i := Xi ]) ∪ f̂ (X [i := Xi ])



The Choice of Interval Bounds

Most implementations use �oating-point numbers as interval
bounds.

Therefore irrational functions have to be approximated with a
pre-de�ned precision.

For example with
√

(0, 2) = (b
√
0c, d

√
2e) = (0, 1.42) the

inequality x ∈ (0, 2) →
√
x ≤ 1.416 can't be proved.

This is the �oating-point numbers' fault!



Use of Constructive Real Numbers

From Russell's talk: R ⊂ Q → Q
With I = (R ∪ {−∞})× (R ∪ {∞}) the united extension

f̂n [a; b] :=
n⋃

i=1

f̂

[
a + (i − 1)

b − a

n
; a + i

b − a

n

]
converges towards f 's actual bounds, i.e.

X 7→ lim
n→∞

f̂n X

is sharp.

Constructive reals can be faster than rationals with
�xed-precision operations (precisely when the precision actually
necessary is less). But they can also be slower . . .



Solving the Dependence Problem: Taylor Models

For interval arithmetic x − x on X looks like x − y with
X := Y

A Taylor model represents a set of functions:

T 3 (X ,P,∆) ∼= {f : X → R | ∀x ∈ X . f x − P x ∈ ∆}

domain X : Ik
polynomial P : R[k]
error bound ∆ : I

Assuming we have some polynomial bounder B available, we
can bound all functions in a Taylor model by B X P + ∆

How to obtain Taylor Models?
by Taylor's theorem with Lagrange remainder
by composition . . .



Arithmetic on Taylor Models

Constants, variables: trivial (∆ := [0; 0])

Addition and multiplication:

(X ,P1,∆1) +̃ (X ,P2,∆2) = (X ,P1 +R[k] P2,∆1+̂∆2)

(X ,P1,∆1) ·̃ (X ,P2,∆2) = (X , (P1 ·R[k] P2)≤n,B X (P1 ·R[k] P2)>n +̂

B P1 X ·̂∆2 +̂∆1 ·̂B P2 X +̂∆1 ·̂∆2)

f̃ : Tm → T is a Taylor-extension of f : Rm → R i�:

∀T . [|f̃ T1 . . .Tm|] ⊇ {x 7→ f (t1 x) . . . (t2 x) | ∀i ≤ m. ti ∈ [|Ti |]}



Combining Smooth Functions with Taylor Models

Makino/Berz: First apply an addition theorem, depending on the
function under consideration. Then apply Taylor's theorem with
Lagrange's remainder.

log ◦F = log ◦(c + F̄ )
Heureka!

= log c + log ◦
(
1 +

F̄

c

)

∈ log c +
n∑

k=1

(−1)k−1

k

(
F̄

c

)k

+
(−1)n

(
B F̄ X

c

)n+1

(n + 1)
(
1 +

[
0, B F̄ X

c

])n+1

where X the domain under consideration.
In [Makino/Berz] this procedure is applied to exp, log, inv, sqrt, sin,
cos, sinh, cosh, arcsin, arccos, arctan.



Combining Smooth Functions with Taylor Models
without Heureka

log ◦F ⊆ log y0 +
n∑

k=1

(−1)k−1

kyk
0

(F − y0)
k +

(−1)n (B F X − y0)
n+1

(n + 1)[y0,B F X ]n+1

for y0 = c this is equivalent to Makino/Berz's version

Advantages:
Implementation and proofs can be factorised.

Better choices for y0 are possible.



Computational Proof by Re�ection

This approach has been successfully applied to the four colour
theorem [Gonthier/Werner] and to Pocklington certi�cates for
prime numbers [Grégoire/Thery/Werner]

The tactic is a program written in Coq's term language:
test : list intvl -> term -> nat -> bool

test_correct :

forall (X : list intvl) (t : term) (n : nat),

test X t n = true ->

forall x:R, contains x X ->

interpR x t >= 0

The trace does not need to be stored:
test_correct X t n (refl_equal true) :

forall x:R, contains x X -> interpR x t >= 0



Future Work

Better polynomial bounding algorithms: vast choice

let x = pi^2 in x + x performs two approximations of
pi^2

Provide a user-friendly Coq tactic.


