
Formal Global Optimisation with Taylor Models

TYPES
20 April 2006

Roland Zumkeller
LogiCal project, École Polytechnique, Paris

Formal Global Optimisation with Taylor Models

TYPES
20 April 2006

Roland Zumkeller
LogiCal project, Ecole Polytechnique, Paris

Outline

Global Optimisation
Problem: �nding the minimum and maximum value of a given
objective function f : Rn → R on a certain domain
[a1; b1] × . . . × [an; bn]
Traditional methods based on interval arithmetic.

Taylor Models
An optimisation method computing with sets of functions of
the form �polynomial + error interval�

Formal
Both the optimisation algorithm (-Cal) and its correctness
proof (Logi-) are Coq terms. To obtain a formal proof for a
particular problem it su�ces to execute the algorithm (proof
by re�ection).

What Is Global Optimisation Good for?

Engineering: aeronautics, robotics, . . .

Experimental physics: particle motion in accelerators

Geometry: volumes of cells in space decomposition occuring in
T. Hales' proof of the Kepler conjecture

x1 ∈ [4; 2.1682] ∧ x2 ∈ [6.3001; 2.6962] ∧ x3 ∈ [4; 2.1682] ∧
x4 ∈ [4; 6.3001] ∧ x5 ∈ [4; 6.3001] ∧ x6 ∈ [4; 6.3001] →
π
2

+ arctan

− −x

2

1
−(x3−x5)(x2−x6)+(x1(x2+x3−2x4+x5+x6))vuuuuut

4x1(−x21 ∗ x4 − x2
2
∗ x5 − (x3 − x4)(x3 − x5)x6 −

x3x
2

6
+ x2((x3 − x5)(x5 − x4) + (x3 + x5)x6) +

x1((x3 − x4)(x4 − x5) + (x3 + x4)x6 + x2(x4 + x5 − x6)))

!
> 0.74

The Kepler Conjecture (1611)

The maximal density of any sphere packing in 3-space is π√
18
.

In 1998 Thomas C. Hales has found a proof, which is large in
every sense: article of 300 pages, 40.000 lines of code, several
weeks of computation

The �Flyspeck� project aims at formalising this proof, in order
to eliminate any doubt about its correctness.

Interval Arithmetic

The set of intervals: I = (R ∪ {−∞})× (R ∪ {∞})
Let f : Rn → R. The function f̂ : In → I is called . . .

an extension of f i� ∀X ∈ In. f̂ (X) ⊇ {f x | x ∈ X}
a sharp extension of f i� ∀X ∈ In. f̂ (X) = {f x | x ∈ X}

Some sharp extensions:

[a; b] +̂ [c; d] := (a + c, b + d)

[a; b] −̂ [c; d] := (a − d , b − c)

[a; b] ∗̂ [c; d] := (min{ac, ad , bc, bd},max{ac , ad , bc, bd})

1 /̂ [a; b] :=

{
(1
b
, 1

a
) if a ≥ 0 ∨ b ≤ 0

(−∞,∞) if a ≤ 0 ≤ b

Structural recursion with these extensions over a term yields
its natural extension.

The Dependence Problem

Goal: x ∈ [1; 2] ∧ y , z ∈ [2; 3] → xy − z ≥ −5
Proof: [1; 2] ∗̂ [2; 3] −̂ [2; 3] = [−1; 3] ≥ −5

structural induction; apply extension property. q.e.d.

Goal: x ∈ [3; 5] → x − x ≥ −1
Proof: [3; 5] −̂ [3; 5] = [−2; 2] 6≥ −1

:-(

Why? For interval arithmetic the second goal looks like:
x , y ∈ [3; 5] → x − y ≥ −1

A Remedy: Branch & Bound

If a simple evaluation of the natural extension fails, we split
the domain X into X1 and X2. From the extension property
follows: x ∈ X1 ∨ x ∈ X2 → x ∈ f̂ (X1) ∪ f̂ (X2)

Goal: x ∈ [3; 5] → x − x ≥ −1
Proof:

(
[3; 4]−̂[3; 4]

)
∪

(
[4; 5]−̂[4; 5]

)
= [−1, 1]

. . . structural induction; apply extension property. q.e.d.

Algorithm for proving x ∈ X → f x ≥ 0:
f̂ (X) ≥ 0: success

f̂ (X) 6≥ 0: split X into X1 and X2 and restart for each one

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

sin x + y2(y − x) + 4 > 0

Another Remedy: Use of The Gradient

Fermat/Euler: x is a local extremum→ ∇f (x) = 0

∇̂f (X) 63 0→ X does not contain a local extremum

A global extremum is either a local one, or it lies on the border
of the domain.

If (after several splits) a sub-domain X does not touch the
original domain's borders and ∇̂f (X) 63 0, then it can be safely
forgotten.

If ∇̂f (X) 63 0 and it still touches some borders, then there is
some i with ∂̂i f (X) > 0.
So x ∈ X → x ∈ f̂ (X [i := Xi]) ∪ f̂ (X [i := Xi])

The Choice of Interval Bounds

Most implementations use �oating-point numbers as interval
bounds.

Therefore irrational functions have to be approximated with a
pre-de�ned precision.

For example with
√

(0, 2) = (b
√
0c, d

√
2e) = (0, 1.42) the

inequality x ∈ (0, 2) →
√
x ≤ 1.416 can't be proved.

This is the �oating-point numbers' fault!

Use of Constructive Real Numbers

From Russell's talk: R ⊂ Q → Q
With I = (R ∪ {−∞})× (R ∪ {∞}) the united extension

f̂n [a; b] :=
n⋃

i=1

f̂

[
a + (i − 1)

b − a

n
; a + i

b − a

n

]
converges towards f 's actual bounds, i.e.

X 7→ lim
n→∞

f̂n X

is sharp.

Constructive reals can be faster than rationals with
�xed-precision operations (precisely when the precision actually
necessary is less). But they can also be slower . . .

Solving the Dependence Problem: Taylor Models

For interval arithmetic x − x on X looks like x − y with
X := Y

A Taylor model represents a set of functions:

T 3 (X ,P,∆) ∼= {f : X → R | ∀x ∈ X . f x − P x ∈ ∆}

domain X : Ik
polynomial P : R[k]
error bound ∆ : I

Assuming we have some polynomial bounder B available, we
can bound all functions in a Taylor model by B X P + ∆

How to obtain Taylor Models?
by Taylor's theorem with Lagrange remainder
by composition . . .

Arithmetic on Taylor Models

Constants, variables: trivial (∆ := [0; 0])

Addition and multiplication:

(X ,P1,∆1) +̃ (X ,P2,∆2) = (X ,P1 +R[k] P2,∆1+̂∆2)

(X ,P1,∆1) ·̃ (X ,P2,∆2) = (X , (P1 ·R[k] P2)≤n,B X (P1 ·R[k] P2)>n +̂

B P1 X ·̂∆2 +̂∆1 ·̂B P2 X +̂∆1 ·̂∆2)

f̃ : Tm → T is a Taylor-extension of f : Rm → R i�:

∀T . [|f̃ T1 . . .Tm|] ⊇ {x 7→ f (t1 x) . . . (t2 x) | ∀i ≤ m. ti ∈ [|Ti |]}

Combining Smooth Functions with Taylor Models

Makino/Berz: First apply an addition theorem, depending on the
function under consideration. Then apply Taylor's theorem with
Lagrange's remainder.

log ◦F = log ◦(c + F̄)
Heureka!

= log c + log ◦
(
1 +

F̄

c

)

∈ log c +
n∑

k=1

(−1)k−1

k

(
F̄

c

)k

+
(−1)n

(
B F̄ X

c

)n+1

(n + 1)
(
1 +

[
0, B F̄ X

c

])n+1

where X the domain under consideration.
In [Makino/Berz] this procedure is applied to exp, log, inv, sqrt, sin,
cos, sinh, cosh, arcsin, arccos, arctan.

Combining Smooth Functions with Taylor Models
without Heureka

log ◦F ⊆ log y0 +
n∑

k=1

(−1)k−1

kyk
0

(F − y0)
k +

(−1)n (B F X − y0)
n+1

(n + 1)[y0,B F X]n+1

for y0 = c this is equivalent to Makino/Berz's version

Advantages:
Implementation and proofs can be factorised.

Better choices for y0 are possible.

Computational Proof by Re�ection

This approach has been successfully applied to the four colour
theorem [Gonthier/Werner] and to Pocklington certi�cates for
prime numbers [Grégoire/Thery/Werner]

The tactic is a program written in Coq's term language:
test : list intvl -> term -> nat -> bool

test_correct :

forall (X : list intvl) (t : term) (n : nat),

test X t n = true ->

forall x:R, contains x X ->

interpR x t >= 0

The trace does not need to be stored:
test_correct X t n (refl_equal true) :

forall x:R, contains x X -> interpR x t >= 0

Future Work

Better polynomial bounding algorithms: vast choice

let x = pi^2 in x + x performs two approximations of
pi^2

Provide a user-friendly Coq tactic.

