Formal Global Optimisation with Taylor Models

TYPES
20 April 2006

Roland Zumkeller
LogiCal project, Ecole Polytechnique, Paris

Formal Global Optimisation with Taylor Models

LogiCal

Outline

m Global Optimisation

m Problem: finding the minimum and maximum value of a given
objective function f : R” — R on a certain domain
[a1; b1] X ... X [an; ba)

m Traditional methods based on interval arithmetic.

m Taylor Models

m An optimisation method computing with sets of functions of
the form “polynomial + error interval”

m Formal

m Both the optimisation algorithm (-Cal) and its correctness
proof (Logi-) are Coq terms. To obtain a formal proof for a
particular problem it suffices to execute the algorithm (proof
by reflection).

What Is Global Optimisation Good for?

m Engineering: aeronautics, robotics, ...

m Experimental physics: particle motion in accelerators

m Geometry: volumes of cells in space decomposition occuring in
T. Hales' proof of the Kepler conjecture

x1 € [4;2.168%] A x» € [6.3001;2.6962] A x3 € [4;2.1682%] A
x4 € [4;6.3001] A x5 € [4;6.3001] A x¢ € [4;6.3001] —

—x3 —(x3—x5)(x2 —x6)+(x1 (x2+x3 —2xa+x5+x6)) > 0.74
J 4X1(7X12 * X4 — x22 * x5 — (x3 — xa)(x3 — x5)X6 —

g + arctan

x3x3 + x2((x3 — x5)(x5s — xa) + (x3 + x5)x6) +
x1((x3 — xa)(xa — x5) + (x3 + xa)x6 + x2(xa + x5 — X6)))

The Kepler Conjecture (1611)

m The maximal density of any sphere packing in 3-space is itt

m In 1998 Thomas C. Hales has found a proof, which is large in
every sense: article of 300 pages, 40.000 lines of code, several
weeks of computation

m The “Flyspeck™ project aims at formalising this proof, in order
to eliminate any doubt about its correctness.

Interval Arithmetic

m The set of intervals: I = (RU {—00}) x (RU {c0})

m Let f : R” — R. The function f : I" — T is called . ..
m an extension of f iff VX el F(X) D {fx | x e X}
m a sharp extension of f iff VX el F(X) = {fx| x e X}

m Some sharp extensions:

[a;6] + [c;d] = (a+c,b+d)
[a;b] = [c;d] = (a—d,b—¢)
[a;b] % [c;d] = (min{ac,ad, bc,bd}, max{ac, ad, bc, bd})
A (3,.Y) fazovhb<o
L/ (28] = {(—obo,oo) ifa<0<b

m Structural recursion with these extensions over a term yields
its natural extension.

The Dependence Problem

m Goal: x € [1;2]|Ay,z€[2;3] = xy —z> -5
Proof: [1;2]%[2;3] = [2;3] =[-1;3] > -5
structural induction; apply extension property. q.e.d.
m Goal: x € [3;5] = x —x > —1
Proof: [3;5] = [3;5] = [-2;2] # —1
=(
m Why? For interval arithmetic the second goal looks like:
X,y €[3;5] = x—y>-1

A Remedy: Branch & Bound

m If a simple evaluation of the natural extension fails, we split
the domain X into X; and X5. From the extension property
follows: XEXIVXE Xy > x€E ?(Xl) U ?(Xg)

m Goal: x € [3;5] = x —x > —1
Proof: ([3;4]=[3;4]) U ([4;5]~[4;5]) = [-1,1]

...structural induction; apply extension property. q.e.d.

m Algorithm for proving x € X — fx > 0:

m F(X) > 0: success
m F(X) # 0: split X into X; and X, and restart for each one

sinx +y?(y —x)+4>0

S e Ao
.‘_‘\x\xx\\\.\\.\\'.\?ﬁ\\'\
\-\u\\\\\\\\\m\\m

B

12*""‘"."&"\\
#:-:“1,‘\\\'\'\'\\\\\\\\\

sinx +y2(y —x)+4>0

N
S S
\\\\\\\\\\\\\\\\
RO AN
R
SASRSN

SN
§§§$§§

sinx +y?(y —x)+4>0

W

NN

N \\\\\
\\\\\\\\\\\\.

0
4>
+
+y2(y — x)

sin x

W
3 W
SN

sinx +y?(y —x)+4>0

N
NN
R NN
NNANRNRRY W
TR
Ry
R
eI

N
N

sinx +y?(y —x)+4>0

W
3 W
SN

sinx +y?(y —x)+4>0

W
\\.\\\\\\
O :
Rttt
T
>

W
RS ‘\
S

NN
SN
\\\\\\1&\\\\\\\\\\
“\\\\\‘\\\

R

0
4>
+y2(y —x) +

sin x

N
ST

sinx +y?(y —x)+4>0

W
TR
AR

2 N
At R

N

S

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

W

SN
SSsSSn

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

N
SR
e

TR

= \Q\\
o N
R N

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

N
ST

sinx +y?(y —x)+4>0

Another Remedy: Use of The Gradient

m Fermat/Euler: x is a local extremum — V£ (x) =0

" ﬂ(X) # 0 — X does not contain a local extremum

m A global extremum is either a local one, or it lies on the border
of the domain.

m If (after several splits) a sub-domain X does not touch the
original domain’s borders and V£(X) # 0, then it can be safely
forgotten.

m If ﬂ(X) # 0 and it still touches some borders, then there is
some i with 9;f(X) > 0. A B
Sox € X —x e f(X[i:=X])Uf(X[i:=X])

The Choice of Interval Bounds

Most implementations use floating-point numbers as interval
bounds.

m Therefore irrational functions have to be approximated with a
pre-defined precision.

For example with 1/(0, 2) \[}) = (0,1.42) the
inequality x € (0,2) — \f § 1 416 can’t be proved.

This is the floating-point numbers’ fault!

Use of Constructive Real Numbers

m From Russell'stalkk RC Q — Q
m With I = (RU{—o00}) x (RU {o0}) the united extension

b—a b—a
ra-t

n

Folaib] = J F [a+(i—1)

i=1
converges towards f’s actual bounds, i.e.

X — lim £, X
n—oo
is sharp.

m Constructive reals can be faster than rationals with
fixed-precision operations (precisely when the precision actually
necessary is less). But they can also be slower . ..

Solving the Dependence Problem: Taylor Models

m For interval arithmetic x — x on X looks like x — y with
X =Y

m A Taylor model represents a set of functions:
T>(X,P,A)Z{f: X >R |VxeX.fx—PxeA}

m domain X : I¥
m polynomial P : R[k]
m error bound A : 1
m Assuming we have some polynomial bounder B available, we
can bound all functions in a Taylor model by BX P + A
m How to obtain Taylor Models?

m by Taylor's theorem with Lagrange remainder
m by composition . ..

Arithmetic on Taylor Models

m Constants, variables: trivial (A := [0; 0])

m Addition and multiplication:

(X, P1, A1) F (X, P2,0) = (X, P +R[K] Py, A1F+AS)
(X, P1,81)7(X, P2, B2) = (X, (P1 rikg P2)<n, BX(P1 rpiq P2)>n+
BPi X"AyFA1°BPy X+ A1°A))

m f:T7" — Tis a Taylor-extension of f : R™ — R iff:

VT.[FTh. . Tull 2 {x— f (t1x)...(ax) | Vi< m. t; e[| Ti|]}

Combining Smooth Functions with Taylor Models

Makino/Berz: First apply an addition theorem, depending on the
function under consideration. Then apply Taylor's theorem with
Lagrange's remainder.

_ P
logoF = logo(c+ F) Heurekal log ¢ + log o (1 +)

D e

where X the domain under consideration.
In [Makino/Berz] this procedure is applied to exp, log, inv, sqrt, sin,
cos, sinh, cosh, arcsin, arccos, arctan.

Combining Smooth Functions with Taylor Models

without Heureka

(—1)"(BF X — yo)"**
n+ 1)[yo, B F X]*+1

IogoFC|0gyo+Z(k)k (F —yo)* +

= (

m for yp = c this is equivalent to Makino/Berz's version
m Advantages:

m Implementation and proofs can be factorised.
m Better choices for yy are possible.

Computational Proof by Reflection

m This approach has been successfully applied to the four colour
theorem [Gonthier/Werner| and to Pocklington certificates for
prime numbers [Grégoire/ Thery/Werner]

m The tactic is a program written in Coq's term language:
test : list intvl -> term -> nat -> bool

B test_correct :
forall (X : list intvl) (t : term) (n : nat),
test X t n = true ->
forall x:R, contains x X ->
interpR x t >= 0

m The trace does not need to be stored:
test_correct X t n (refl_equal true)
forall x:R, contains x X -> interpR x t >= 0

Future Work

m Better polynomial bounding algorithms: vast choice

m let x = pi~2 in x + x performs two approximations of

pi~2
m Provide a user-friendly Coq tactic.

