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The Starting Scenario

Background.
Processes algebras and cryptographic protocols: the spi-calculus.

The study of reactive systems requires to consider both the
steps taken by the system and those taken by its
environment.
The spi-calculus is an extension of the π-calculus designed
for reasoning about cryptographic protocols. In particular
terms exchanged during communications can be
encrypted with a shared-key scheme:

c.(x)P | c.〈{M}K 〉Q
τ→ P[{M}K /x ] | Q

The environment may be hostile and little can be assumed
about its behaviour.
As a consequence, representing the environment as a
nondeterministic process is hard, so bisimulation
techniques are often used.
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Background.
Testing equivalence

Usually, testing equivalence (∼) is used in order to reason
about processes.
Intended meaning of P ∼ Q:

P is the implementation of a protocol,
Q is the specification of the protocol.

If the equivalence holds, the implementation of the protocol
meets the corresponding specification.
This approach is applied for verifying many protocols.
Another interesting application: PCA (PCC for security
purposes):

P is the mobile code received from the producer,
Q is the security policy specified by the consumer,
“d : P ∼ Q” (proof that P complies to Q): provided by the
producer and checked by the consumer.
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Background.
Indistinguishable terms and Framed Bisimilarity.

Verifying testing equivalences is difficult.
Moreover, when reasoning about cryptographic protocols
new challenges arise:

two cleartexts M and N are encrypted under a session key,
yielding two cyphertexts P(M) and P(N),
in order to express preservation of secrecy, an attacker
should not be able to distinguish between P(M) and P(N),
standard notions of bisimulations do not allow that; hence it
is necessary to relax the usual definition in order to
introduce indistinguishable messages.

Framed Bisimulation address both problems and is more
tractable; moreover, we have: P ∼f Q ⇒ P ∼ Q
Framed Bisimulation is decidable is we consider a suitable
finite fragment of the spi-calculus and there exists a
decision algorithm provided by Hüttel in [2].
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Our idea.

Our work in progress focus on the integration of
proof-assistants and automatic decision procedures.

We aim to provide a Coq-signature such that the user can
specify its protocol and the goal-equivalence P ∼ Q.

The proof can then proceed interactively, as usual, but with
the possibility of invoking an ad-hoc tactic to automatically
verify finite subgoals.

Eventually, the tactic could not terminate or fail if a depth
limit is imposed.
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Problems.

In general it is not sufficient to have an “oracle” able to say
“yes/no” (which amounts to introduce a new axiom for the
related case) when invoked on a goal P ∼f Q, since it can
be bugged.

Moreover, this approach is not acceptable in PCA.

Hence, we need a tactic which can provide an effective
witness.

Thus, eventual bugs in the algorithm/implementation can
be easily spotted (and the size of TCB decreases).
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Status of the work.

Implementation in Coq: done (using weak-HOAS,
coinductive types, multiple judgments, capitalizing on
similar experience with π-calculus, ambients, . . . ).

Testing of the implementation, by manual verification of
some example equivalence: done.
Implementation of the tactic for finite processes: to do

modification of existing algorithms to produce witnesses of
equivalences,
implementation as Ltac .
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The encoding of the object language
Basic Ideas for Proofs/Implementation

Names, Variables and Terms.

(Names) N  Parameter Name : Set.
forall m n:Name, m = n + m <> n.

(Variables) V  Parameter Var : Set.

Terms are encoded by means of an inductive type:

Inductive Term : Set :=
name : Name -> Term (name)

| var : Var -> Term (variable)
| zero : Term (zero)
| suc : Term -> Term (successor)
| pair : Term -> Term -> Term (pair)
| sk_enc : Term -> Term -> Term. (shared-key encryption)

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Names, Variables and Terms.

(Names) N  Parameter Name : Set.
forall m n:Name, m = n + m <> n.

(Variables) V  Parameter Var : Set.

Terms are encoded by means of an inductive type:

Inductive Term : Set :=
name : Name -> Term (name)

| var : Var -> Term (variable)
| zero : Term (zero)
| suc : Term -> Term (successor)
| pair : Term -> Term -> Term (pair)
| sk_enc : Term -> Term -> Term. (shared-key encryption)

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Names, Variables and Terms.

(Names) N  Parameter Name : Set.
forall m n:Name, m = n + m <> n.

(Variables) V  Parameter Var : Set.

Terms are encoded by means of an inductive type:

Inductive Term : Set :=
name : Name -> Term (name)

| var : Var -> Term (variable)
| zero : Term (zero)
| suc : Term -> Term (successor)
| pair : Term -> Term -> Term (pair)
| sk_enc : Term -> Term -> Term. (shared-key encryption)

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Names, Variables and Terms.

(Names) N  Parameter Name : Set.
forall m n:Name, m = n + m <> n.

(Variables) V  Parameter Var : Set.

Terms are encoded by means of an inductive type:

Inductive Term : Set :=
name : Name -> Term (name)

| var : Var -> Term (variable)
| zero : Term (zero)
| suc : Term -> Term (successor)
| pair : Term -> Term -> Term (pair)
| sk_enc : Term -> Term -> Term. (shared-key encryption)

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Names, Variables and Terms.

(Names) N  Parameter Name : Set.
forall m n:Name, m = n + m <> n.

(Variables) V  Parameter Var : Set.

Terms are encoded by means of an inductive type:

Inductive Term : Set :=
name : Name -> Term (name)

| var : Var -> Term (variable)
| zero : Term (zero)
| suc : Term -> Term (successor)
| pair : Term -> Term -> Term (pair)
| sk_enc : Term -> Term -> Term. (shared-key encryption)

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Processes.

Processes are also encoded by means of an inductive type:

Inductive Proc : Set :=

plain, i.e., first order constructors:
out_barb : Term -> Term -> Proc -> Proc (output)

| par : Proc -> Proc -> Proc (parallel composition)
...

| nil : Proc (null process)
binders, i.e., higher order constructors:
| in_barb : Term -> (Var-> Proc) -> Proc (input)
...

| nu : (Name -> Proc) -> Proc. (restriction)

As usual, the weak-HOAS encoding approach allows to
delegate α-conversion and fresh renaming to the
metalanguage.
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delegate α-conversion and fresh renaming to the
metalanguage.
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Judgments

Commitment relation P a→ A (modeling the dynamic
behaviour of processes):
Inductive commit :
Proc -> Barb -> Agent -> Prop := ...

Equivalence between “undistinguishable” terms
(fr , th) ` M ↔ N:
Inductive eqTerm (fr:Frame) (th:Theory) :
Term -> Term -> Prop := ...

Framed Bisimilarity (fr , th) ` P ∼f Q:
CoInductive fBisim :
Frame -> Theory -> Proc -> Proc -> Prop := ...
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Abstractions and concretions.

Abstractions are monadic, so they can be representend in
a straightforward way by functional terms over Var :
Definition Abs := Var -> Proc.
Concretions instead can exhibit a prefix of restrictions of
arbitrary length:

(ν~n)〈M〉Q
In order to correctly render the notion of
pseudo-application (x)P@(ν~n)〈M〉Q = (ν~n)(P[M/x ] | Q),
we need to “decompose” the prefix before carrying out the
communication:

Inductive interactl : Abs -> Agent -> Proc -> Prop :=
interactl_base : forall A:Abs, forall M:Term, forall P Q:Proc,

(substProc M A P) -> (interactl A (conc_base M Q) (par P Q))
| interactl_bind : forall A:Abs, forall C:Name->Agent, forall P:Name->Proc,

(forall n:Name, interactl A (C n) (P n)) ->

interactl A (nu_ag C) (nu P).

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Abstractions and concretions.

Abstractions are monadic, so they can be representend in
a straightforward way by functional terms over Var :
Definition Abs := Var -> Proc.
Concretions instead can exhibit a prefix of restrictions of
arbitrary length:

(ν~n)〈M〉Q
In order to correctly render the notion of
pseudo-application (x)P@(ν~n)〈M〉Q = (ν~n)(P[M/x ] | Q),
we need to “decompose” the prefix before carrying out the
communication:

Inductive interactl : Abs -> Agent -> Proc -> Prop :=
interactl_base : forall A:Abs, forall M:Term, forall P Q:Proc,

(substProc M A P) -> (interactl A (conc_base M Q) (par P Q))
| interactl_bind : forall A:Abs, forall C:Name->Agent, forall P:Name->Proc,

(forall n:Name, interactl A (C n) (P n)) ->

interactl A (nu_ag C) (nu P).

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Abstractions and concretions.

Abstractions are monadic, so they can be representend in
a straightforward way by functional terms over Var :
Definition Abs := Var -> Proc.
Concretions instead can exhibit a prefix of restrictions of
arbitrary length:

(ν~n)〈M〉Q
In order to correctly render the notion of
pseudo-application (x)P@(ν~n)〈M〉Q = (ν~n)(P[M/x ] | Q),
we need to “decompose” the prefix before carrying out the
communication:

Inductive interactl : Abs -> Agent -> Proc -> Prop :=
interactl_base : forall A:Abs, forall M:Term, forall P Q:Proc,

(substProc M A P) -> (interactl A (conc_base M Q) (par P Q))
| interactl_bind : forall A:Abs, forall C:Name->Agent, forall P:Name->Proc,

(forall n:Name, interactl A (C n) (P n)) ->

interactl A (nu_ag C) (nu P).

M. Miculan, I. Scagnetto Framed Bisimilarity in Coq



Motivation
The encoding

Future work
Details about the encoding

The encoding of the object language
Basic Ideas for Proofs/Implementation

Example.

The processes
(νK )c〈{M}K 〉 and (νK )c〈{M ′}K 〉

are in a framed bisimulation according to Example 1 of [1].
Intuitively, this means that the abovementioned processes
do not reveal M and M ′, respectively.
This can be rendered in Coq as follows:

Lemma Example1: forall M M’:Term, forall c:Name,
(closedTerm M) -> (closedTerm M’) ->
exists th:Theory,
(ok (frame_add c (empty_set Name)) th) /\
(fBisim (frame_add c (empty_set Name))

th
(nu (fun K:Name => (out_barb (name c) (sk_enc M (name K)) nil)))
(nu (fun K’:Name => (out_barb (name c) (sk_enc M’ (name K’)) nil)))

).

The previous lemma can be proved mimicking the proof
made with “pencil and paper”.
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