Towards Intensionally More Expressive Systems for
PTime

Stefan Schimanski

Department of Mathematics
Ludwig-Maximilians-Universitdt Miinchen

Types 2006

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sys

nae

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system
@ by syntactical methods

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity
@ by combining different recursion schemes into one system
@ by syntactical methods

» finding decreasing measures for most general reduction sequences

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system
@ by syntactical methods

» finding decreasing measures for most general reduction sequences
» considering sharing normalisation techniques

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system
@ by syntactical methods

» finding decreasing measures for most general reduction sequences
» considering sharing normalisation techniques

» pointing out where special reduction strategies are essential

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system
@ by syntactical methods

» finding decreasing measures for most general reduction sequences
» considering sharing normalisation techniques

» pointing out where special reduction strategies are essential

g(;)
h(x; y)
f(n;)

rec(g, h, h)(n;)
Stefan Schimanski (LMU Miinchen)

* Folklore that BC needs special reduction strategy. What happens if we

3

use proper sharing? Weiermann and Beckmann’s example breaks down:

cGy,y,y)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
Motivation

Aim: study extensions of well-known PTime systems LFPL and BC to
increase intensional expressiveness

@ by relaxing linearity

@ by combining different recursion schemes into one system
@ by syntactical methods

» finding decreasing measures for most general reduction sequences
» considering sharing normalisation techniques

» pointing out where special reduction strategies are essential

g(;)
h(x; y)
f(n;)

rec(g, h, h)(n;)
Stefan Schimanski (LMU Miinchen)

* Folklore that BC needs special reduction strategy. What happens if we

3

use proper sharing? Weiermann and Beckmann’s example breaks down:

cGy,y,y)

Towards Intensionally More Expressive Sy

Da
Types 2006 2/17

|
First Example: linearity in LFPL

@ LFPL = Hofmann's non-size-increasing term system

v

(affine) linearly typed

special { type, seen as money

¢ to be payed for list constructors

{ cannot be created out of nothing

= amount of) money doesn’t increase during normalization
non-size-increasing iteration (list {step} base)

vV vy VY VvYyy

@ Exactly LinSpace PTime algorithms representable

@ Hofmann M. : Linear Types and Non-Size-Increasing Polynomial Time
Computation. Logic in Computer Science (1998)

=] = = E A
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 3/17

Types
o,7:=0|B|lo—oT|o®T|0oxT1|L(0)
Terms
s,tu=x"|c|XxT.t|(t,s)|(ts)]|{t}

Constructors

tt ff B

cons, O —o7T —L(T)— L(T)
nil, L(7)
Ro,r O-—oT—o00QRT

Do
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 4 /17

o

]
1
[

it

Complexity

Theorem (Aehlig, Schwichtenberg)

For any typed term t there is a polynomial ¥(t) such that the length of a
(special) reduction sequence is bounded by V(t)(|FV (t)]).

Proof.

@ explicit definition of ¥(t) by recursion on ¢.

@ J(t)(N) decreases every conversion step. ..
if L(/) < N for every occurring list /

@ linear typing = |FV/(t)| doesn’t increase

o and L(/) < [FV(t)|.

O

v

=] F = = E DA
Stefan Schimanski (LMU Miinchen) [Towards Intensionally More Expressive Sys

Types 2006 5 /17

Restricted non-linearity in LFPL

@ Insertion Sort

insert(a, []) = [a]
insert(a, b ::) =if a < b then a:: b:: [else b:insert(a,/)
sort([]) =[]

sort(a :: 1) = insert(a, sort(/))

=] = = E A
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 6 /17

Restricted non-linearity in LFPL

@ Insertion Sort

insert(a, []) = [a]
insert(a, b ::) =if a < b then a:: b:: [else b:insert(a,/)
sort([]) = I
sort(a :: 1) = insert(a, sort(/))
@ Not linear:

if p(x) then f(x) else g(x)
o Intuition suggests: p”~8 € PTIME does not harm

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

DA

Types 2006 6 /17

o
Naive extension

@ Operator dp of type 0 — (B ® o) for p

O'—}B

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sys

DA

o
Naive extension

@ Operator dp of type 0 — (B ® o) for p

O'—}B
@ Conversion (dp s)— (ps)®s

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sys

nae

Naive extension

@ Operator dp of type 0 — (B ® o) for p

@ Conversion (dp s)— (ps)®s
@ Then

O'—}B

if p(x) then f(x) else g(x)
means:

((0p x) Ay, z.(y ((f 2),(g 2))))

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

DA

Types 2006 7/17

Naive extension

@ Operator 6p of type 0 — (B ® o) for p”~5.
@ Conversion (dp s)— (ps)®s
@ Then
if p(x) then f(x) else g(x)

means:

((0p x) Ay, z.(y ((f 2),(g 2))))

@ This destroys linearity = only occurrences of variables count, not
their names

@ no easy measure for size anymore by counting variables, or even
occurrences

=] = = E A
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 7 /17

Terms

s, t=x" | c| ATt | (t,s) | (ts)]|{t} of

Conversions
(MT.ts
(s@tr
((cons d v x) {h} g

tls/x]
((rs))

)
)
) (hdv(x{h}g))
)
)
)

1111111

(nil {h} & 8

(tt (s, t) s

(fF (s, t) t
(of t) (fFt)yet

o
]
1
u
it

Do
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 8 /17

Quasi-linear typing rules

Fx Fx (Var) % (Const)
rx7kt (ot A F t7T A b 57
rFOxo)7 A, Mg F (ts)T
A F P97 Aok 770 oy
A1, Ag F (t s)°
AF 0 0 hO—eT—o 0 (L))
AE (e {h})7
[(54)

o Fofo e

(—o

)

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

Types 2006

Da
9/17

Quasi-linear typing rules

Var
Mx™; AN X7 (Var)

c of type 7 (Const)
MAECT
r; ijcr Ft7 (_o+ r./\l ot r,/\2 Fs? (—O_)
HAE(AX7.8)77 AL, A (ts)T
[Ny PoT [Ao | sP™oT™0
1 2 US G
AL, A F (t S)
CAR e g1 pOT o0 _
— (L))
CAE (e {h})77
AT (5+)
O A Fof77T®7

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

DA
Types 2006 9 /17

Quasi-linear typing rules

Var
MxT; N X7 (Var)

c of type 7 (Const) (Var))
MAECT A xT = X7
r;/\axa Ft7 (_o+ r,/\l ot r,/\2 Fs? (—O_)
MAE(AX7.8)7 7 AL A (ts)T
A P Ay B sP—T—0
1 2 US G
AL A F (t S)
CAR e g9 pOoT o0 _
— (L))
LA (t{h})7
MAEf (5+)
O of77T®0

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

DA
Types 2006 9 /17

NN
Reduction strategy matters

@ Assume p = Ax".tt

o and t = M) (1 {\O, v, xB.((0p x) Ay, z.y)} tt).

Stefan Schimanski (LMU Miinchen)

o
Towards Intensionally More Expressive Sys

nae

Reduction strategy matters

@ Assume p = AxB.tt

o and t = M) (1 {\O, v, xB.((0p x) Ay, z.y)} tt).

@ Then the following reduction sequence is possible:

(t (cons O1 d

—

.(cons On dp nil)))
— (op (op ...tt).l).ll

depth n

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

Da
Types 2006 10 / 17

Reduction strategy matters

@ Assume p = AxB.tt

o and t = M) (1 {\O, v, xB.((0p x) Ay, z.y)} tt).

@ Then the following reduction sequence is possible:

(t (cons O1 d

—

.(cons On dp nil)))
— (op (dp ...tt).1).1

depth n

o Applying all n 6p conversions leads to 2("~1) sub-terms of the form
(AxB.tt t), i.e. an exponential complexity.

Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sy

Da
Types 2006 10 / 17

NS
“Healthy” reduction strategy

@ Reason for exponential growth: duplication of remaining “work”

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sys

nae

“Healthy” reduction strategy

@ Reason for exponential growth: duplication of remaining “work”
@ “one Op after the other”

@ = Only convert Jp if the argument is in normal form

Stefan Schimanski (LMU Miinchen)

o
Towards Intensionally More Expressive Sy

Da
Types 2006 11 /17

“Healthy” reduction strategy

@ Reason for exponential growth: duplication of remaining “work”
@ “one Op after the other”

@ = Only convert Jp if the argument is in normal form

@ or using sharing no special reduction strategy at all

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 11 /17

Syntactical analysis

@ Inductive predicates to render interaction of variables
> ¢;(s) smallest "passive” super-term or t itself

> v >, x between subterms v <t and free variables x € FV/(t)
> x <>, y between x,y € FV(t)
Q c(x) = x

Q z<> . xAX2".s<dt — ¢(A27.8) = x
©Q Je(ctxNcrry)—=x=<-,y.

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 12 /17

Interacting variables

Example
t
(cons d v -)
x©
/B\ "
2% B\
%
@ x and y interact.

@ z and u do not interact.

Stefan Schimanski (LMU Miinchen)

v

]
Towards Intensionally More Expressive Sy

Types 2006

DA
13 /17

Interacting variables through A

Example

Stefan Schimanski (LMU Miinchen)

o
Towards Intensionally More Expressive Sy

Da
Types 2006 14 /17

Syntactical analysis

@ Inductive predicates to render interaction of variables
> ¢;(s) smallest "passive” super-term or t itself

> v >, x between subterms v <t and free variables x € FV/(t)
> x <>,y between x,y € FV(t)
Q c(x) = x

Q z <>, xAX2".s<t — ¢(A27.8) = x
©Q Je(c=txAcmry) = x =<, y.

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 15 /17

Syntactical analysis

@ Inductive predicates to render interaction of variables
> ¢;(s) smallest "passive” super-term or t itself

> v >, x between subterms v <t and free variables x € FV/(t)
> x <>,y between x,y € FV(t)

Q c(x) = x

Q z <>, xAX2".s<t — ¢(A27.8) = x

©Q Je(c=txAcmry) = x =<, y.

@ Induces equivalence relation over variables which reflects
non-linearity

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 15 /17

Syntactical analysis

@ Inductive predicates to render interaction of variables
> ¢;(s) smallest "passive” super-term or t itself

> v >, x between subterms v <t and free variables x € FV/(t)
> x <>,y between x,y € FV(t)

Q c(x) = x

Q z=<- . xAAZ". st — (Az7.5) ¢ x

©Q Je(c=txAcmry) = x =<, y.
°

Induces equivalence relation over variables which reflects
non-linearity

@ every list resides completely in one class
°

°

°

classes do not grow, only new classes are created

new size measure: size of those equivalence classes

= strong normalisation with sharing in PTime

Stefan Schimanski (LMU Miinchen)

= - =
Towards Intensionally More Expressive Sy

Da
Types 2006 15 /17

NN
Second Example: non-size-increasing iteration and BC

Stefan Schimanski (LMU Miinchen)

Towards Intensionally More Expressive Sys

DA

Second Example: non-size-increasing iteration and BC

@ LFPL originally developed to inject new base functions into BC
@ What happens when adding nsi-It to BC directly?

@ i.e. nsi-lteration over incomplete/safe terms

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 16 / 17

Second Example: non-size-increasing iteration and BC

@ LFPL originally developed to inject new base functions into BC
@ What happens when adding nsi-It to BC directly?
@ i.e. nsi-lteration over incomplete/safe terms

@ Naive:

cat = Aa,b.lt(a)(Ax,0,t,y.(cons x O y))b
exp; = Aa.Rec((cons 1 ¢ nil))(A\x,t,y.(cat y y))a
expy = Aa.Rec(Az.(z,z)(cons 1 ¢ nil))
(Ax, t,y.(Az.(z,z) (cat (fst y) (snd y))))a

o
]
1
u
it

Do
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 16 / 17

Second Example: non-size-increasing iteration and BC

@ LFPL originally developed to inject new base functions into BC
@ What happens when adding nsi-It to BC directly?
@ i.e. nsi-lteration over incomplete/safe terms

@ Naive:

cat = Aa,b.lt(a)(Ax,0,t,y.(cons x O y))b
exp; = Aa.Rec((cons 1 ¢ nil))(Ax,t,y.(cat y y))a
expy = Aa.Rec(Az.(z,z)(cons 1 ¢ nil))
(Ax,t,y.(Az.(z,2) (cat (fst y) (snd y))))a
= in conflict with duplication of safe variables

o destroys sharing and separation of safe lists

@ more precise analysis (e.g. using Gol) can characterise sane cases

=]) = = Do
Stefan Schimanski (LMU Miinchen) Towards Intensionally More Expressive Sys Types 2006 16 / 17

N —
Conclusion

@ Known systems can be extended

... but syntactical methods get much more complicated.

@ Forcing reduction strategies is a tool to avoid "bad” behaviour
... though often sharing can remove those constraints.

@ Hence: How essential are sharing or reduction strategies?

LLL does not need that, more careful about duplication.

systems

@ Combination of recursion schemes not explored very much yet
@ But fruitful to better understand dynamics of normalisation in PTime

e.g. importance of separation of safe data in BC.

Stefan Schimanski (LMU Miinchen)

]
Towards Intensionally More Expressive Sy

Da
Types 2006 17 / 17

