Representation of

Partial Recursive Functions
by
Inductive-Recursive
and by

Inductive Definitions

Anton Setzer

Swansea University

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

Principle of Ind.-Rec. Defs.

Developed by P. Dybijer.

Prime example: Universes

s Inductively define
U : Set

» While simultaneously recursively defining
T(u) : Set (u: U)

SoT:U — Set.

® Generalization:
s T:U — D for some arbitary type D.
o Indexed ind.-rec. definitions:

U: I — Set T:(:1,U(@)) — Dli]

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

2Z)
X
=
=

=

o
=

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

Bove/Capretta Appr. to Par.-Rec. FuL

Example

#® Represented by the following indexed ind.-rec. def.
f(-)] : N — Set
eval : (n:N,f(n)]) — N

f(0)] = data true
eval(0,true) = 0

fln+1)] = dataC (p:f(n)],q: f(eval(n,p))|)
eval(n +1,C(p,q)) = eval(eval(n,p),q)

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 4

Standard Appr. to Part.-Rec. Func

Standard approach to representing a part.-rec. funct.:
s Define by an ordinary indexed inductive definition

Graph; : N — N — Set
s In the example we have:
Co : Graphe(0,0)
Cs : (n:N;m:N,p: Graph¢(n,m),

k: N, q: Graphs(m, k))
— Graph¢(n + 1, k)

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

5

Standard Appr. to Part.-Rec. Func

f0)=0 fln+1)=f(f(n))
Graphs : N — N — Set
Co : Graph¢(0,0)

Cg: (n:N;m:N,p: Graphs(n,m),
k:N,q: Graph¢(m, k)) — Graphs(n + 1, k)

\We can define f(-)], eval as follows:

f(-)] : N — Set

f(n)l := (m:N) x Graph¢(n,m)
eval : (n:N,f(n)]) —N
eval(n, (m,p)) = m

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

6

Generalisation

® Assume a small indexed ind.-rec. def.

U : [— Set
T : (i:1,U(t) — D7)

where
D :] — Set

This can be simulated by an indexed ind. def.
Graphr : (¢ : I, D(7)) — Set

Jump to conclusion.

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

Generalisation

® Now we can define

U : I — Set
U(i) = (d: D(z)) x Graphr(i,d)
T : (i:1,U(®) — D()

T(i,{(d,p)) = d

Simple case: U non-indexed, so
U:Set, T: U — D.

® Then we have
Grapht : D — Set

Jump to conclusion.

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

8

Example

Assume a single inductive argument (plus other
constructors):

C : U—-U
T(C(uw) = g(T(u))

#® Replace this by

Grapht : D — Set
C'" . (d':D,p:Graphp(d')) — Graphr(g(d'))

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions

9

Conclusion

® Reduction of small indexed ind.-rec. definitions to
Indexed inductive definition.

Maybe reason why not many real world examples of
Ind.-rec. definitions have been found.

Need to explore whether using small ind.-rec.
definitions or ind. definitions is easier.

Propaganda:

s Talk about object-oriented programming in
dependent type theory on
Thursday at 11:45 in TFP

o Talk about functional concets in C++ on
Thursday at 15:15 in TFP (presented by U. Berger).

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 10

	
	Principle of Ind.-Rec. Defs.
	Example
	Bove/Capretta Appr. to Par.-Rec. Fun.
	Standard Appr. to Part.-Rec. Func
	Standard Appr. to Part.-Rec. Func
	Generalisation
	Generalisation
	Example
	Conclusion

