
Representation of
Partial Recursive Functions

by

Inductive-Recursive
and by

Inductive Definitions

Anton Setzer

Swansea University

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 1



Principle of Ind.-Rec. Defs.
Developed by P. Dybjer.

Prime example: Universes
Inductively define

U : Set

while simultaneously recursively defining

T(u) : Set (u : U)

So T : U → Set.

Generalization:
T : U → D for some arbitary type D.
Indexed ind.-rec. definitions:

U : I → Set T : (i : I,U(i)) → D[i]

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 2



Example

bN

a bΣ(a, b)

T(a)
T(a)

Σ(T(a), T ◦ b)

T(b(x))
N

b(x) (x : T(a))

U

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 3



Bove/Capretta Appr. to Par.-Rec. Fun.
Example

f : N ⇀ N

f(0) = 0 f(n + 1) = f(f(n))

Represented by the following indexed ind.-rec. def.

f(·)↓ : N → Set

eval : (n : N, f(n)↓) → N

f(0)↓ = data true

eval(0, true) = 0

f(n + 1)↓ = data C (p : f(n)↓, q : f(eval(n, p))↓)

eval(n + 1,C(p, q)) = eval(eval(n, p), q)

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 4



Standard Appr. to Part.-Rec. Func
f(0) = 0 f(n + 1) = f(f(n))

Standard approach to representing a part.-rec. funct.:
Define by an ordinary indexed inductive definition

Graphf : N → N → Set

In the example we have:

C0 : Graphf(0, 0)

CS : (n : N,m : N, p : Graphf(n,m),

k : N, q : Graphf(m, k))

→ Graphf(n + 1, k)

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 5



Standard Appr. to Part.-Rec. Func
f(0) = 0 f(n + 1) = f(f(n))
Graphf : N → N → Set
C0 : Graphf(0, 0)

CS : (n : N,m : N, p : Graphf(n,m),

k : N, q : Graphf(m, k)) → Graphf(n + 1, k)

We can define f(·)↓, eval as follows:

f(·)↓ : N → Set

f(n)↓ := (m : N) × Graphf(n,m)

eval : (n : N, f(n)↓) → N

eval(n, 〈m, p〉) = m

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 6



Generalisation
Assume a small indexed ind.-rec. def.

U : I → Set

T : (i : I,U(i)) → D(i)

where
D : I → Set

This can be simulated by an indexed ind. def.

GraphT : (i : I,D(i)) → Set

Jump to conclusion.

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 7



Generalisation
GraphT : (i : I,D(i)) → Set

Now we can define

U : I → Set

U(i) := (d : D(i)) × GraphT(i, d)

T : (i : I,U(i)) → D(i)

T(i, 〈d, p〉) := d

Simple case: U non-indexed, so
U : Set, T : U → D.

Then we have
GraphT : D → Set

Jump to conclusion.

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 8



Example
Assume a single inductive argument (plus other
constructors):

C : U → U

T(C(u)) = g(T(u))

Replace this by

GraphT : D → Set

C′ : (d′ : D, p : GraphT(d′)) → GraphT(g(d′))

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 9



Conclusion
Reduction of small indexed ind.-rec. definitions to
indexed inductive definition.

Maybe reason why not many real world examples of
ind.-rec. definitions have been found.

Need to explore whether using small ind.-rec.
definitions or ind. definitions is easier.

Propaganda:
Talk about object-oriented programming in
dependent type theory on
Thursday at 11:45 in TFP
Talk about functional concets in C++ on
Thursday at 15:15 in TFP (presented by U. Berger).

Anton Setzer: Representation of part.-rec. functions by ind.-recursive and by ind. definitions 10


	
	Principle of Ind.-Rec. Defs.
	Example
	Bove/Capretta Appr. to Par.-Rec. Fun.
	Standard Appr. to Part.-Rec. Func
	Standard Appr. to Part.-Rec. Func
	Generalisation
	Generalisation
	Example
	Conclusion

