The Nominal
Datatype Package
In |sabelle/HOL

Christian Urban
University of Munich

joint work with Stefan Berghofer,
Markus Wenzel, Alexander Krauss. ..

gham, 18. April 2006 - p.1 (1/1

)

The POPL mark-Challenge

"How close are we to a world where program-
ming language papers are routinely supported

by machine-checked metatheory proofs, where
full-scale language definitions are expressed in
machine-processed mathematics...?"

Obviously we aren't there yet:

B for binders reasonable powerful tools are
available: de-Bruijn indices (in Coq, Isabelle,...) or
HOAS (mainly in Twelf)

B but apart from some theorem-proving experts,
nobody seems to use them; non-experts are still
routinely do their proofs on paper, only

Nottingham, 18. April 2006 - p.2 (1/2)

The POPL mark-Challenge

How -
ming| The aim of the nominal datatype ted
by m package is to support the kind of ere

£ull-4 reasoning that is employed on paper. |4,
The hope is: if you can do formal
proofs on paper, then you can

Obviog implement them in Isabelle/HOL

W 7 with ease.

d That is not a trivial task.) or

B but apart from some theorem-proving experts,
nobody seems to use them; non-experts are still
routinely do their proofs on paper, only

Nottingham, 18. April 2006 - p.2 (2/2)

mac

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is a variable.

(This is a simple example illustrating 2
la point. We have already

({implemented much more complicated
* dproofs, e.g. Church-Rosser, SN, me
transitivity of subtyping in 'S
POPLmark, etc.

= Az.(Mily := L[z := N[y := LJ])
(Az.M;)[y := L][x := N[y := L]|.

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is a variable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ @,y and z is not free in IN, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # y.
Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L)
implies L(x := ...] = L.
Case 1.3. M = z #Z x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since x # y.
Case 1.2. M = y. Then both sides equal L, for x ¢ FV (L)
implies L(x := ...] = L.
Case 1.3. M = z #Z x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (g)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Substitution Len Remember: only if y # @ and x & FV(IN) then
Mx := N (Ay.M)[x := N| = Ay.(M |z := NJ])

Proof: By inducti (Az.M;)[x := N]|y := L]
® Case I: Miist = (xz.(Mu[z := N))[y := L] &
Case 1.1. M = 0
Case 12 M o = Az.(Mi[z := N][y := L) Yal
impli{ = Az.(M;|y := L][x := N|y := L]]) IH
Case 13. M 5 = (Az.(Mily := L]))[z := N[y := L]]) =
® Case 2: M = 1 e

that z 2 z,y| (Az.M4)|y := L][x := N[y := L]]. =

(Az.M;)[x := N]ly := L]

Az.(M;|x := Nl|y := L])

Az.(M;|y := L][x := N|y := L]])

(Az.M;)[y := L][x := N[y := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis. Notingham, 16, April 2006 - 5.3 (79)

Substitution Lemma: If * 2 yand x € F'V (L), then
M|x := N]|y := L] = M|y := L][x := N[y := L]].

Proof: By induction on the structure of M.
® Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since * # .
Case 1.2. M = y. Then both sides equal L, for x & FV (L)
implies L(x := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

® Case 2: M = MAz.M;. By the variable convention we may assume
that z £ x,y and z is not free in N, L. Then by induction hypothesis

(Az.M;)[x := N]ly := L]
Az.(M;|x := Nl|y := L])
Az.(Miy := L][x := Ny := L]])
(Az.My)[y := L][x := Ny := L]].

® Case 3: M = M; M. The statement follows again from the induc-
tion hypothesis.

Nottingham, 18. April 2006 - p.3 (Q)

Formal Proof in | sabelle

lemma forget:

assumes a: "x # L"

shows "L[x::=P] = L"

using a by (nominal_induct L avoiding: P rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:

fixes z :: "name”

assumes a: "z # N"and b: "z # L"

shows "z # N|y::=L]|"

using a b by (hominal_induct IN avoiding: z y L rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma subst_lemma:

assumes a: " # y" and b: "x # L"

shows "M [x::=N]|[y::=L] = M|y ::=L][x::= Ny ::=L]]"

using a b by (nominal_induct M avoiding: ©* y NN L rule: lam.induct)
(auto simp add: forget fresh_fact)

Nottingham, 18. April 2006 - p.4 (1/3)

Formal Proof in | sabelle

lemma forget:

assumes a: "x # L" p \
shows "L[x::=P| = L' Bistands for « & FV(L)

using a by (nominal_induct K avoid Bireads as "z fresh for L"
(auto simp add: abs\fres : :
Blis a polymorphic

lemma fresh_fact: construction from the
fixes z:: "name” Nominal Logic Work by
assumes a: "z # IN"and b: "z # Pitts

shows "z # N|y::= L]" \ /

using a b by (nominal_induct IN avoiding: z y L rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma subst_lemma:

assumes a: " # y" and b: "x # L"

shows "M [x::=N]|[y::=L] = M|y ::=L][x::= Ny ::=L]]"

using a b by (nominal_induct M avoiding: ©* y NN L rule: lam.induct)
(auto simp add: forget fresh_fact)

Nottingham, 18. April 2006 - p.4 (2/3)

Formal Proof in | sabelle

lemma forget:

assumes a: "x # L"

shows "L[x::=P] = L"

using a by (nominal_induct L avoiding: P rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:

fixes z :: "name”

assumes a: "z # N"and b: "z # L"

shows "z # N|y::=L]|"

using a b by (hominal_induct IN avoiding: z y L rule: lam.induct)
(auto simp add: abs_fresh fresh_atm)

lemma subst_lemma:

assumes a: " # y" and b: "x # L"

shows "M [x::=N]|[y::=L] = M|y ::=L][x::= Ny ::=L]]"

using a b by (nominal_induct M avoiding: ©* y NN L rule: lam.induct)
(auto simp add: forget fresh_fact)

Nottingham, 18. April 2006 - p.4 (3/3)

Crucial Points

The nominal datatype package generates the
a-equivalence classes as a type in Isabelle/HOL.

atom_decl name

nominal_datatype lam =
Var "name”

| App \\|amll Nlamll
| Lam “«name»lam” (*Lam [_]._" [100,100] 100)

The type lam is defined so that we have equations
Lam [a].(Var a) = Lam [b].(Var b)

which do not hold for "normal” datatypes.

Nottingham, 18. April 2006 - p.5 (1/1)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)
Pxt

Nottingham, 18. April 2006 - p.6 (1/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)
Pxt

N

the variable over which the induction proceeds:

"...By induction over the structure of M..."

Nottingham, 18. April 2006 - p.6 (2/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px(Lam [a].t)
Pzt

~

‘the context of the induction: for which the
binder should be fresh = (x,y, IN, L):

"...By the variable convention we can assume
z % x,y and z not freein N, L. .."

Nottingham, 18. April 2006 - p.6 (3/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)
Pxt

\

the property to be proved by induction:

Mx,y,N,L).AM. x #y N * #+ L =
Mx::=N]ly::=L] = M|y::=L][x::=N|y::=L]||

Nottingham, 18. April 2006 - p.6 (4/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)
Pxt

One only has to write (more in the talk of Markus Wenzel):
by (hominal_induct M avoiding: y N L rule: lam.induct)

Nottingham, 18. April 2006 - p.6 (5/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)

Pzxt

The lambda-case amounts to:
z # (z,y,N, L) !
VeyNL. € FyNx # L =

Mx::=N]ly::=L] = M|y::=L][x::=N|y::=L]||
xr #yY,c # L
(Lam [z].M)[x::= N]ly::=L] =
(Lam [z].M) [y ::= L][x::= N[y ::= L]]

Nottingham, 18. April 2006 - p.6 (6/7)

Structural Induction

Then automatically generated is a structural induction
principle that has Barendregt's convention already build in:

Vax. Px (Vara)
Vtitox. (Vz. Pzty) AN (Vz. Pzty) = Px (Apptyts)

Vatx.a # x N\ (Vz. Pzt) = Px (Lam [a].t)
Pxt

By the way: There is a condition for when Barendregt’'s
variable convention is applicable—it is almost always
satisfied, but not always:

x needs to be finitely supported (is not allowed to mention
all names as free)

Notringham, 18. April 2006 - p.6 (7/7)

Conclusion

B the nominal datatype package is still work
In progress

B already quite usable for the lambda-calculus

m Church-Rosser
m strong normalisation using candidates

m weakening
m (fransitivity of subtyping, m-calc.)

B mailing list and download

nominal-isabelle@mailbroy.informatik.tu-muenchen.de
http://isabelle.in.tum.de/nominal/

Nottingham, 18. April 2006 - p.7 (1/1)

	�egin {tabular}{c}The Nominal\[-1mm] Datatype Package\[-1mm] in Isabelle/HOLend {tabular}
	�egin {tabular}{c}The POPLmark-Challengeend {tabular}
	
	mbox {Formal Proof in Isabelle}
	Crucial Points
	Structural Induction
	Conclusion

