
The Nominal
Datatype Package
in Isabelle/HOL

Christian Urban

University of Munich

joint work with Stefan Berghofer,
Markus Wenzel, Alexander Krauss. . .

Nottingham, 18. April 2006 – p.1 (1/1)

The POPLmark-Challenge
“How close are we to a world where program-
ming language papers are routinely supported

by machine-checked metatheory proofs, where
full-scale language definitions are expressed in
machine-processed mathematics. . . ?”

Obviously we aren’t there yet:

for binders reasonable powerful tools are
available: de-Bruijn indices (in Coq, Isabelle,. . .) or
HOAS (mainly in Twelf)

but apart from some theorem-proving experts,
nobody seems to use them; non-experts are still
routinely do their proofs on paper, only

Nottingham, 18. April 2006 – p.2 (1/2)

The POPLmark-Challenge
“How close are we to a world where program-
ming language papers are routinely supported

by machine-checked metatheory proofs, where
full-scale language definitions are expressed in
machine-processed mathematics. . . ?”

Obviously we aren’t there yet:

for binders reasonable powerful tools are
available: de-Bruijn indices (in Coq, Isabelle,. . .) or
HOAS (mainly in Twelf)

but apart from some theorem-proving experts,
nobody seems to use them; non-experts are still
routinely do their proofs on paper, only

The aim of the nominal datatype
package is to support the kind of
reasoning that is employed on paper.
The hope is: if you can do formal
proofs on paper, then you can
implement them in Isabelle/HOL
with ease.

That is not a trivial task.

Nottingham, 18. April 2006 – p.2 (2/2)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

This is a simple example illustrating
a point. We have already
implemented much more complicated
proofs, e.g. Church-Rosser, SN,
transitivity of subtyping in
POPLmark, etc.

Nottingham, 18. April 2006 – p.3 (1/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (2/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (3/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (4/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (5/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (6/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Remember: only if y 6= x and x 62 FV (N) then(�y:M)[x := N ℄ = �y:(M [x := N ℄)(�z:M1)[x := N ℄[y := L℄� (�z:(M1[x := N ℄))[y := L℄ 1 � �z:(M1[x := N ℄[y := L℄) 2 � �z:(M1[y := L℄[x := N [y := L℄℄) IH� (�z:(M1[y := L℄))[x := N [y := L℄℄) 2! !� (�z:M1)[y := L℄[x := N [y := L℄℄. 1!

Nottingham, 18. April 2006 – p.3 (7/8)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. �

Nottingham, 18. April 2006 – p.3 (8/8)

Formal Proof in Isabelle
lemma forget:
assumes a: ”x # L”
shows ”L[x ::=P ℄ = L”
using a by (nominal induct L avoiding: x P rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma fresh fact:
fixes z :: ”name”
assumes a: ”z # N ” and b: ”z # L”
shows ”z # N [y ::=L℄”
using a b by (nominal induct N avoiding: z y L rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma subst lemma:
assumes a: ”x 6= y” and b: ”x # L”
shows ”M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄”
using a b by (nominal induct M avoiding: x y N L rule: lam.induct)

(auto simp add: forget fresh fact)
Nottingham, 18. April 2006 – p.4 (1/3)

Formal Proof in Isabelle
lemma forget:
assumes a: ”x # L”
shows ”L[x ::=P ℄ = L”
using a by (nominal induct L avoiding: x P rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma fresh fact:
fixes z :: ”name”
assumes a: ”z # N ” and b: ”z # L”
shows ”z # N [y ::=L℄”
using a b by (nominal induct N avoiding: z y L rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma subst lemma:
assumes a: ”x 6= y” and b: ”x # L”
shows ”M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄”
using a b by (nominal induct M avoiding: x y N L rule: lam.induct)

(auto simp add: forget fresh fact)

stands for x 62 FV (L)
reads as “x fresh for L”

is a polymorphic
construction from the
Nominal Logic Work by
Pitts

Nottingham, 18. April 2006 – p.4 (2/3)

Formal Proof in Isabelle
lemma forget:
assumes a: ”x # L”
shows ”L[x ::=P ℄ = L”
using a by (nominal induct L avoiding: x P rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma fresh fact:
fixes z :: ”name”
assumes a: ”z # N ” and b: ”z # L”
shows ”z # N [y ::=L℄”
using a b by (nominal induct N avoiding: z y L rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma subst lemma:
assumes a: ”x 6= y” and b: ”x # L”
shows ”M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄”
using a b by (nominal induct M avoiding: x y N L rule: lam.induct)

(auto simp add: forget fresh fact)
Nottingham, 18. April 2006 – p.4 (3/3)

Crucial Points
The nominal datatype package generates the�-equivalence classes as a type in Isabelle/HOL.

atom decl name

nominal datatype lam =j Var “name”j App “lam” ”lam”j Lam “hhnameiilam” (“Lam [℄. ” [100,100℄ 100)
The type lam is defined so that we have equations

Lam [a℄:(Var a) = Lam [b℄:(Var b)

which do not hold for “normal” datatypes.

Nottingham, 18. April 2006 – p.5 (1/1)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t

Nottingham, 18. April 2006 – p.6 (1/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t

the variable over which the induction proceeds:

“. . . By induction over the structure ofM . . . ”

Nottingham, 18. April 2006 – p.6 (2/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t

the context of the induction; for which the
binder should be fresh) (x; y;N; L):
“. . . By the variable convention we can assumez 6� x; y and z not free inN,L. . . ”

Nottingham, 18. April 2006 – p.6 (3/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t
the property to be proved by induction:�(x;y;N;L): �M: x 6= y ^ x # L)M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄

Nottingham, 18. April 2006 – p.6 (4/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t
One only has to write (more in the talk of Markus Wenzel):

by (nominal inductM avoiding: x y N L rule: lam.induct)

Nottingham, 18. April 2006 – p.6 (5/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t
The lambda-case amounts to:z # (x; y;N; L) !!8xyNL: x 6= y ^ x # L)M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄x 6= y; x # L(Lam [z℄:M)[x ::=N ℄[y ::=L℄ =(Lam [z℄:M)[y ::=L℄[x ::=N [y ::=L℄℄

Nottingham, 18. April 2006 – p.6 (6/7)

Structural Induction
Then automatically generated is a structural induction
principle that has Barendregt’s convention already build in:8ax: P x (Var a)8t1 t2 x: (8z: P z t1) ^ (8z: P z t2)) P x (App t1 t2)8a t x: a # x ^ (8z: P z t)) P x (Lam [a℄:t)P x t
By the way: There is a condition for when Barendregt’s
variable convention is applicable—it is almost always
satisfied, but not always:x needs to be finitely supported (is not allowed to mention
all names as free)

Nottingham, 18. April 2006 – p.6 (7/7)

Conclusion
the nominal datatype package is still work
in progress

already quite usable for the lambda-calculus

Church-Rosser
strong normalisation using candidates

weakening

(transitivity of subtyping, �-calc.)
mailing list and download

nominal-isabelle@mailbroy.informatik.tu-muenchen.de

http://isabelle.in.tum.de/nominal/

Nottingham, 18. April 2006 – p.7 (1/1)

	�egin {tabular}{c}The Nominal\[-1mm] Datatype Package\[-1mm] in Isabelle/HOLend {tabular}
	�egin {tabular}{c}The POPLmark-Challengeend {tabular}
	
	mbox {Formal Proof in Isabelle}
	Crucial Points
	Structural Induction
	Conclusion

