
Structured Induction Proofs
in Isabelle/Isar

Makarius

April 2006

1. Motivation

2. The Isabelle/Isar framework

3. The induct method

4. Common induction patterns

Motivation

Introduction

Isabelle/Pure: simple logical framework
(models abstract syntax and primitive inferences)

Isabelle/Isar: framework for human-readable structured proofs
(interprets declarative proof texts in terms of Pure concepts)

Observation: realistic applications routinely use compound inductive
predicates, including

• local parameters
∧

x

• local premises A =⇒ . . .

• local definitions x ≡ a y
• simultaneous goals P x & Q y

Motivation 2

Example: Induction is trivial?

Natural deduction rule:

nat-induct : P 0 =⇒ (
∧

n. P n =⇒ P (Suc n)) =⇒ P n

Canonical Isar proof:

lemma
fixes n :: nat
shows P n

proof (rule nat-induct)
show P 0 〈proof 〉

next
fix n
assume P n
show P (Suc n) 〈proof 〉

qed

Motivation 3

Example: Induction is non-trivial!

lemma
fixes n :: nat and x :: ′a
assumes A n x
shows P n x

proof −
have ∀ x . A n x −→ P n x
proof (rule nat-induct)
show ∀ x . A 0 x −→ P 0 x
proof
fix x show A 0 x −→ P 0 x
proof
assume A 0 x
show P 0 x 〈proof 〉

qed
qed

next

Motivation 4

fix n assume raw-hyp: ∀ x . A n x −→ P n x
have hyp:

V
x . A n x =⇒ P n x

proof −
fix x from raw-hyp have A n x −→ P n x ..
also assume A n x
finally show P n x .

qed
show ∀ x . A (Suc n) x −→ P (Suc n) x
proof
fix x show A (Suc n) x −→ P (Suc n) x
proof
assume prem: A (Suc n) x
show P (Suc n) x 〈proof 〉

qed
qed

qed
then have A n x −→ P n x ..
also note 〈A n x 〉
finally show P n x .

Motivation 5

qed

Motivation 6

Discussion

Anything wrong with Isabelle/Isar?

• Primitive natural deduction exhibits many details.

• Object-level connectives ∀ , −→ demand extra work.

• “. . . , but this can be automated.” (Really?)

Other systems:

• Old-style Isabelle tactic scripts often refer to adhoc automation,
e.g. [rule-format], (intro strip), blast.

• Coq induction seems to be slightly better: full proof context may
participate in the induction.

Proper Isar approach:

→ Natural Induction as specific Isar proof method.

→ Sane proof structure instead of ad-hoc automation.

Motivation 7

Example: Induction is trivial!

lemma
fixes n :: nat and x :: ′a
assumes A n x
shows P n x using 〈A n x 〉

proof (induct n fixing: x)

case 0

from 〈A 0 x 〉
show P 0 x 〈proof 〉

next
case (Suc n)

from 〈
V

x . A n x =⇒ P n x 〉
and 〈A (Suc n) x 〉

show P (Suc n) x 〈proof 〉
qed

Motivation 8

The Isabelle/Isar framework

Pure logic

⇒ function type constructor∧
:: (α ⇒ prop) ⇒ prop universal quantifier

=⇒ :: prop ⇒ prop ⇒ prop implication

[x]....
B(x)∧
x . B(x) (

∧
I)

∧
x . B(x)
B(a) (

∧
E)

[A]....
B

A =⇒ B (=⇒I) A =⇒ B A
B (=⇒E)

≡ :: α ⇒ α ⇒ prop equality (αβη-conversion)
& :: prop ⇒ prop ⇒ prop ephemeral conjunction

The Isabelle/Isar framework 10

Isar contexts

Idea: elaborate Γ of natural deduction judgments Γ ` ϕ.

{
fix x
have B x 〈proof 〉

}
note 〈

V
x . B x 〉

{
def x ≡ a
have B x 〈proof 〉

}
note 〈B a〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B 〉

{
obtain x where A x 〈proof 〉
have B 〈proof 〉

}
note 〈B 〉

Abbreviations: case (a ~x) invokes context expression a being defined
in the context

The Isabelle/Isar framework 11

Isar proofs

Idea: interpretation of algebraic expressions of facts/goals/rules.

have A ∧ B
proof (rule 〈A =⇒ B =⇒ A ∧ B 〉)

show A 〈proof 〉
show B 〈proof 〉

qed

have A 〈proof 〉
then have A ∧ B
proof (rule 〈A =⇒ B =⇒ A ∧ B 〉)

show B 〈proof 〉
qed

have A and B 〈proof 〉
then have A ∧ B
by (rule 〈A =⇒ B =⇒ A ∧ B 〉)

The Isabelle/Isar framework 12

The induct method

Method syntax

Idea: sophisticated wrapper for Pure rule method.

Method format:

facts
(induct insts fixing: vars rule: rule)

• facts: current facts passed to any Isar method (cf. then, using)

• insts: induction variables x, optionally with definition x ≡ a
• vars: fixed variables

• rule: actual induction rule

Note: all arguments are optional.

The induct method 14

Method operations (1)

1. context: declare local defs for defined induction variables x ≡ a
2. rule: apply insts according to conclusion P x y z
3. rule: expand defs in major premises

4. rule: consume prefix of facts according to major premises

5. goal: insert remaining facts and defs
6. goal: closeup fixed variables, using (

∧
x . B x) =⇒ B a

7. goal: internalize
∧

/=⇒/≡ into the object-logic

8. rule: unify conclusion against goal (→ fully-instantiated rule)

9. rule: carefully recover internalized
∧

/=⇒/≡ in the inductive cases

10. context: extract inductive cases from rule (for case)

11. context: discharge defs
12. goal: apply fully-instantiated rule

The induct method 15

Method operations (2) — simultaneous goals

1. goal: internalize A & B into object-logic

2. goal: apply induction rule

3. goal: recover A & B and apply congruences wrt.
∧

/=⇒
4. goal: eliminate & by currying
5. context: extract nested cases, numbered for each conjunct

Observation: induct has its complexities, but is algorithmic —
no automated reasoning here!

The induct method 16

Common induction patterns

Local premises and parameters

lemma
fixes n :: nat and x :: ′a
assumes A n x
shows P n x using 〈A n x 〉

proof (induct n fixing: x)

case 0

note prem = 〈A 0 x 〉
show P 0 x 〈proof 〉

next
case (Suc n)

note hyp = 〈
V

x . A n x =⇒ P n x 〉
and prem = 〈A (Suc n) x 〉

show P (Suc n) x 〈proof 〉
qed

Common induction patterns 18

Local definitions

lemma
fixes a :: ′a ⇒ nat
assumes A (a x)

shows P (a x) using 〈A (a x)〉

proof (induct n ≡ a x fixing: x)

case 0

note prem = 〈A (a x)〉 and def = 〈0 = a x 〉
show P (a x) 〈proof 〉

next
case (Suc n)

note hyp = 〈
V

x . A (a x) =⇒ n = a x =⇒ P (a x)〉

and prem = 〈A (a x)〉 and def = 〈Suc n = a x 〉
show P (a x) 〈proof 〉

qed

Common induction patterns 19

Simultaneous goals

lemma
fixes n :: nat
shows

V
x :: ′a. A n x =⇒ P n x

and
V

y:: ′b. B n y =⇒ Q n y
proof (induct n)

case 0

{ case 1

note prem = 〈A 0 x 〉
show P 0 x 〈proof 〉 }

{ case 2

note prem = 〈B 0 y〉
show Q 0 y 〈proof 〉 }

next
case (Suc n)

note hyps = 〈
V

x . A n x =⇒ P n x 〉 〈
V

y. B n y =⇒ Q n y〉
then have some-interemediate-result 〈proof 〉

Common induction patterns 20

{ case 1

note prem = 〈A (Suc n) x 〉
show P (Suc n) x 〈proof 〉 }

{ case 2

note prem = 〈B (Suc n) y〉
show Q (Suc n) y 〈proof 〉 }

qed

Common induction patterns 21

Conclusion

Stocktaking

• Isabelle/Isar framework is sufficiently flexible to support domain
specific proof patterns

• Minimal requirements on induction rule format, possible extensions
include:

– nominal induction: additional “freshness” context
(nominal-induct x avoiding : a b c fixing : u v)

– coinduction: dualized version (not fully implemented yet)
(coinduct x fixing : u v)

• Further examples: cf. POPLmark solutions by Berghofer (induct),
and Urban (nominal-induct)

• Paper available: http://isabelle.in.tum.de/Isar/Isar-induct.pdf

Conclusion 23

http://isabelle.in.tum.de/Isar/Isar-induct.pdf

