
A Type Theory with Partially De�ned Functions

and Pattern Matching

Yong Luo

University of Kent, UK

18th April 2006



Partially de�ned functions

A subtitle: Partially De�ned Functions Are Harmless.

Partially de�ned function:

I the domain of the function is not totally covered

I NOT a non-terminated function

Example:

pred(succ(x)) = x



Motivation

In theory, it is novel.

I In conventional type theories, e.g. Martin-Lof's TT and Luo's
UTT, only are total functions are allowed.

I Now, it is not important whether a function is totally de�ned.

In practice, it is good for implementation.

I Avoid an undecidable problem (total covering is undecidable).

I Allow any pattern, and hence easy to de�ne functions.
(explain it by examples)



Meaning

pred [x : Nat] : Nat

pred(succ(x)) = x

What about pred(zero) ?

1. pred(zero) is of type Nat.

2. For all x : Nat, x =Nat zero or x = succ(y) for some y.

3. At this moment, pred(sero) is a normal form and its value is
unknown.

4. Its value can be de�ned later, or will never be de�ned.



Implementation (1)

The Ackermann function

ack : Nat → Nat → Nat

ack(zero, y) = succ(y)
ack(succ(x), zero) = ack(x , succ(zero))
ack(succ(x), succ(y)) = ack(x , ack(succ(x), y))

Nested Patterns

np : List(List(Nat))→ Nat → Nat

np([], n) = n

np(([] : xss), n) = np(xss, n)
np(((x : xs) : xss), n) = np((xs : xss), succ(n))



Implementation (2)

The Quick Sort

QS : List(Nat)→ List(Nat)

QS([]) = []
QS(x : xs) = QS(leq(x , xs)) + +[x ] + +QS(bt(x , xs))

Programs are coded as it is. The internal behaviour such as
complexity will not be changed.

I A type theory is often regarded as a programming language.

I Program: functionality and code


