On the density of types with decidable lambda definability problem

Marek Zaionc Computer Science Department, Jagiellonian University. Simple typed λ calculus with one ground type O is considered.

 $\mathbb{T} := O \mid \mathbb{T} \to \mathbb{T}$

We consider lambda definability problem limited to fourth order types

A full type hierarchy $\{D_{\tau}\}_{\tau \in \mathbb{T}}$ is a collection of finite domains, one for each type.

The whole hierarchy is determined by D_O .

$$D_{\tau \to \mu} = D_{\mu}^{D_{\tau}}.$$

All D_{τ} are finite.

Lambda definability problem

For the particular type τ the τ -lambda definability problem is the decision problem:

GIVEN: Finite domain D_O and object $f \in D_{\tau}$.

PROBLEM: Decide if f is lambda definable in D_{τ} .

Up to rank 3 types the *lambda definability problem* is decidable.

Definition 1. Type τ is called regular if $rank(\tau) \leq 4$ and every component of τ has $arg \leq 1$. This implies that only components allowed for regular types are O, $O \rightarrow O$ and $(O^k \rightarrow O) \rightarrow O$ for any k.

Theorem 2. λ definability problem is decidable for all rank 1, 2, 3 types and for regular rank 4 types.

 $((O \to O \to O) \to O) \to (O \to O)$ $((O \to O \to O) \to O) \to ((O \to O) \to (O \to O))$ $((O \to O) \to O) \to ((O \to O) \to O)$ $((O \to O) \to O) \to ((O \to O \to O) \to (O \to O))$. (example of Thierry Joly)

 $\mathbb{M} = (((O \to O \to O) \to O) \to O) \to (O \to O)) .$

We consider probability of the fact that randomly chosen 4 order type has decidable lambda definability problem.

Definition 3. By $||\tau||$ we mean the length of type τ which we define as the total number of occurrences of atomic type O in the given type.

Definition 4. We associate the density $\mu(\mathcal{A})$ with a subset $\mathcal{A} \subset \mathbb{T}$ of types as:

(1)
$$\mu(\mathcal{A}) = \lim_{n \to \infty} \frac{\#\{\tau \in \mathcal{A} : \|\tau\| = n\}}{\#\{\tau \in \mathbb{T} : \|\tau\| = n\}}$$

if the limit exists.

Theorem 5. The density of rank 4 types with decidable λ definability problem among all rank 4 types is 0.

Theorem 6. The density of types of rank ≤ 4 with the decidable λ definability problem among all types of rank ≤ 4 is again 0.