GH3CMP Compilers: Coursework Part I
Autumn, Academic Year 2014/15

Henrik Nilsson
School of Computer Science
University of Nottingham

October 4, 2014

1 Introduction

The assessed coursework for the module G53CMP Compilers is centred around
a compiler for a small language, MiniTriangle. You will be asked to extend
MiniTriangle with various new constructs and to then extend the compiler
accordingly. The compiler is called HMTC (for Haskell MiniTriangle Com-
piler).

There are two parts to the coursework, Part I and Part II. This document
details Part I. The weights of the two parts are as follows:

e Part I: 10 %
e Part II: 15 %

Overall, the coursework is thus worth 25 % of the G53CMP mark.

The G53CMP coursework is to be carried out individually. You are wel-
come to discuss the coursework with friends, in the G53CMP Moodle forum,
with the module team, etc., but, in the end, you must solve the problems on
your own and demonstrate that you have done so by being able to explain
your solutions as well as their wider context. The assessment of the course-
work is in part written and in part oral. The oral examination will take place
during a slot assigned to you during one of the lab sessions in the two weeks
following the coursework deadline. Note that both the written and the oral
parts are integral to the assessment: no marks will be awarded unless both
aspects are undertaken and judged sufficiently good.

As its name suggests, the compiler is implemented in Haskell. You are
referred to the main G53CMP web page for references to a number of Haskell

1

resources that will be helpful to you should you need to brush up your Haskell
knowledge. The page include references to a number of introductory texts and
tutorials, including to Graham Hutton’s book Programming in Haskell. The
first 70 pages or so of this book should be enough to get you up to speed.

Additionally, there are references to documents more closely related to
how Haskell is used in the context of this coursework. In particular, there is
a set of “getting started” exercises, which among other things give hands-on
instructions regarding GHC and the School’s Haskell installations, and there
is a set of slides that explain some Haskell facilities for “programming in the
large” that are used in the HMTC source code but which you might not have
come across before. Even if you have encountered Haskell or other functional
programming languages before, it is recommended that you quickly browse
through these latter documents as they cover aspects of Haskell used in the
supplied code with which you may not be familiar.

Finally, the lecture notes, available via the main module web page as well,
are obviously also a very important source of information.

2 Submission

For practical information about deadlines, timetables for oral vivas, and so
forth, see the module web page and the coursework support page (linked from
the main page). There you can also find links to other practical information;
such as on electronic submission.

For Part I of the coursework, the following has to be submitted by the
deadline:

e A brief written report as specified below.

e The complete source tree for the extended compiler.
The submission is part physical, part electronic:

e Physical: hard copy of the report to the School office

e FElectronic:

— Electronic copy of the report (PDF). The file should be called
xyz99u-report-partI.pdf, where xyz99u should be replaced by
your School of Computer Science user 1D.

— Archive of the source code hierarchy (gzipped TAR, or zip). The
archive should be called xyz99u-src-partI.tgz or xyz99u-src-partI.zip,

where xyz99u again should be replaced by your School of Com-
puter Science user 1D, and it should contain a single top-level
directory containing all the other files.

The written report should be structured by task. For each task:

Brief comments about the key idea of the solution and any subtle
aspects; a few sentences should suffice.

Answers to any theoretical questions, such as additions of productions
to the context free grammar or modifications of existing productions.

All added or modified code, with enough context to make an incomplete
definition easy to understand. (Thus, you should not include all code!)

Anything extra that the task specifically asks for.

To exemplify the point about added and modified code, if you:

3

have added a new function, then include the complete function defini-
tion, including the type signature;

have extended a lengthy function with a few cases, then include the new
cases along with immediately surrounding cases to the extent needed
to make it clear where the extension was made;

have added a constructor to a datatype, include the definition and state
the name of the extended type explicitly.

Assessment and Feedback

Both Part I and Part II are structured by tasks, each carrying a weight: a
maximal mark between 0 and 100 such that the weights of all tasks add up
to 100. Each individual task is assessed on two aspects:

e Correctness:
— 2 (Good): Solution entirely correct according to the specification,
except possibly in some very minor way.
— 1 (Pass): Solution mostly correct, but fails to entirely meet the
specification; AND/OR minor omissions.
— 0 (Fail): Solution mostly incorrect; AND/OR major omissions.
e Style:

— 2 (Good): Solution elegant and simple, and thus easy to under-
stand; code is well-written, well-formatted, tidy, good names.

— 1 (Pass): Solution unnecessarily convoluted; AND/OR coding style
has major flaws.

— 0 (Fail): Solution is incomprehensible; AND/OR coding style is
unacceptably poor.

Part II is additionally subject to an oral examination where each task is
assessed as follows:

e 2 (Good): Examination demonstrated complete and thorough under-
standing of the problem and submitted solution.

e 1 (Pass): Examination revealed significant lack of understanding of cen-
tral aspects of the problem and/or submitted solution.

e (0 (Fail): Examination revealed severe lack of understanding; OR no
oral examination took place.

The mark for each Part I task is computed as follows:

correctness + style

mark = weight X 1

while the mark for each Part II task is computed as follows:

correctness + style

4

mark = weight X

x score(oral)

where
0.00, if oral =0

score(oral) = ¢ 0.65, if oral =1
1.00, if oral = 2

After marking, you will, as feedback, get your written report back with
each task assessed according to the scheme above. For Part II, you will get
your reports back at the end of your oral examination.

4 Getting Started

In the following, it is assumed that you are going to use the Haskell system
GHC on the School’s Linux/Unix servers. However, GHC is also available on
the School’s Windows machines, and for the most part, with the exception
of using gmake, things work the same. However, if you do this, please read

4

section 4.2 first, as there are some caveats that tend to cause a lot of unnec-
essary confusion. It may be possible to use other Haskell implementations,
such as Hugs or NHC, and you could certainly use a different platform, such
as Mac OS X if you prefer. But then you need to fetch and install those sys-
tems yourself, and you cannot expect the module TAs to provide much if any
technical assistance if you run into trouble with your installation. The site
www.haskell.org is your starting point for most things you might want to
know about Haskell, and for downloading Haskell implementations, related
tools, and documentation.

4.1 Notes for Working on the Linux Servers

The following assumes that you use one of the School’s Windows machines,
e.g. in the main lab A32, effectively as a terminal. Log on to your Linux server
using e.g. the SSH Secure Shell Client (easiest) or PuTTY (there should be
shortcuts to both on your desktop). At time of writing, the servers are avon
for 1st year students, bann for 2nd year students and clyde for 3rd and 4th
year students.

Start the interactive GHC environment by issuing the command ghci at
the command line prompt:

bann$ ghci
Some information about GHCi gets printed, and you’ll then get a new prompt:
Prelude>

From here, you can enter and evaluate Haskell expressions, load Haskell code
from files, etc.

You can also edit code on the servers using text editors like Emacs (com-
mand emacs) or Vi (command vi). Using a terminal multiplexer like Screen
(command screen; do man screen for info) you can start a number of in-
teractive sessions (e.g. GHCi, Emacs, shell) and quickly and easily switch
between them, all within one window. Alternatively, you can start a num-
ber of SSH sessions in separate windows by invoking the SSH client multiple
times.

4.2 Notes for Working on the Windows Machines

The Haskell Platform, which includes GHCi, has been installed on the Win-
dows machines in the lab. Just select GHCi from the start menu (you will
find it under All Programs, Haskell Platform).

Note that you can navigate around the directory structure using the :cd
command. For example, to get to the H drive:

:cd H:

Also, you can set GHCi (if it isn’t already) as the default program as-
sociated with .hs files, so you can load them into GHCi just by clicking on
them in a file browser window.

Alternatively, you can use WinGHCi. It allows you do do simple things
like loading, editing, and running code through GUI shortcuts. However, the
associated editor is Notepad, and as Notepad does not understand Unix line-
ending conventions, you may need to work around that one way or another
in certain cases; see section 4.2.1.

You can edit Haskell files on the Windows machines using editors like
XEmacs or Notepad++ (there should be shortcuts to both on your desktop).
Both of these adapt automatically to different line-ending conventions, but
Notepad++ may need some configuration regarding the width of tab stops;
see section 4.2.2.

4.2.1 Unix and Windows Line-Ending Conventions

As you may be aware, Unix (and hence also Linux, Solaris, Mac OS, etc.) and
Windows use different line-ending conventions for text files. Consequently,
you could encounter problems if you switch between systems. In particular,
the source code for the GE3CMP coursework was created under Linux, and
thus uses its line-ending convention. To get around this problem, you can
either use a text editor that adapts to the convention used, or you can use
programs such as unix2dos and dos2unix to convert text files from Unix
to Windows and vice-versa. You can run these programs (under Linux) by
supplying them with the names of one or more files to convert (old files will
be overwritten); for example:

unix2dos MyFilel.hs MyFile2.hs MyFile3.hs
Alternatively, you can specify input-output file pairs; for example:
unix2dos -n MyFile-Unix.hs MyFile-Windows.hs

In more detail, the Unix convention is to use a single character LF (for
“Line Feed”, ASCII/UNICODE character 10). The Windows convention is to
use a character CR (for “Carriage Return”, ASCII/UNICODE character 13)
followed by LF. An additional complication is that some languages (e.g. C and
Haskell) have some provisions for hiding such platform-dependent differences.

For example, the character escape sequence \n stands for an abstract newline
character that signifies a line ending. Internally, this may be (and typically
will be, but is not guaranteed to be) mapped to the LF character. However,
for input/output purposes (in text mode), this character is mapped to and
from the appropriate external, platform specific line-ending convention, such
as LF on Unix-like platforms and CR+LF on Windows platforms. Other
languages (e.g Java) takes a different approach and simply define \n to be
LF and \r to be CR. For more information on these issues, see Wikipedia:

http://en.wikipedia.org/wiki/Newline.

Note that the HMTC scanner has been written to work with text files
using both Unix and Windows line-ending conventions (to the extent visible:
see above regarding platform-specific mapping between internal and exter-
nal representations). Thus, when you are testing the (extended versions of)
the HMTC compiler on some MiniTriangle source code, it does not matter
whether this code was written using Unix or Windows line-ending conven-
tions.

4.2.2 Haskell Layout and the Width of Tab Stops

Another issue concerns assumptions about the width of tab stops, although
this is more of a tool issue (in particular, text editors, like Emacs or Notepad—++)
than an operating system issue. If you are using a Windows-specific editor
like Notepad++, it is important that you read the following.

Parsing of Haskell programs take layout (indentation) into account (unless
the structure is made explicit using curly braces and semicolons). If tab
characters are used in a Haskell file, it thus become a critical question just
how wide (in spaces) a tab stop is supposed to be, as the presence of a tab
character means that the horizontal position of the next character should be
aligned with the next tab stop. The Haskell language standard has a precise
definition (to ensure that Haskell programs always are interpreted the same
way): a tab stop is 8 spaces wide. This is also the default in many text editors,
like Emacs.

However, for example Notepad++, which is a popular text editor among
Windows users, has a different default: it opts for tab stops being 4 spaces
wide. To avoid unnecessary grief caused by this (such as seemingly inexpli-
cable parse errors), it is recommended that you, when editing Haskell source
using Notepad++, go to Settings, Preferences, Tab Settings and change the
width of tab stops to 8, and that you also tick the box “treat tabs like spaces”.

If using Notepad, at least from within WinGHCi, the width of a tab stop
seems to default to 8, which is appropriate for Haskell, but as noted above,

7

it seems Notepad cannot handle Unix line-ending conventions, so you might
need to convert files from Unix to Windows conventions manually.

4.3 Downloading and Compiling HMTC

First download the archive that contains the HMTC source code along with
some MiniTriangle test programs. There are links from the G53CMP Com-
pilers module web pages. To unpack the archive:

clyde$ tar zxvf G53CMP-CWPartI.tgz
clyde$ cd G53CMP-CWPartI

In the top-level directory, you will find a copy of this document and a
subdirectory containing the source code for HMTC relevant to Part 1. That
in turn contains a further subdirectory containing some MiniTriangle test
programs.

The HMTC source directory contains a makefile (called Makefile) that
specifies how to build HMTC and its documentation. To compile HMTC,
change to the source code directory and invoke GNU Make. Building the
compiler is the default goal in the makefile, so no further arguments to GNU
Make are needed:

clyde$ gmake

However, note that the makefile is written specifically for GNU Make, so
other versions of Make will likely not work. However, on a typical Linux
system, make is just another name for gmake.

The HMTC source code is well-documented, and the source code com-
ments have furthermore been formatted to allow the generation of separate,
typeset, documentation by means of Haddock, the Haskell Documentation
system. To create this documentation, invoke GNU Make with the goal doc:

clyde$ gmake doc

At present, hyper-linked, indexed, HTML documentation is built. All docu-
mentation files are created in the subdirectory Doc. To view the documenta-
tion, point your browser to the file Doc/index.html. Browsing through this
documentation is an excellent way to get familiar with HMTC. Make sure
you understand how the hyper-linking works and to check out the various
indices.

When building the documentation you will likely see warnings from Had-
dock that it cannot find link destinations for standard Haskell types like
GHC.Types.Int. This just means there will be no hyper-links to those types
in the generated documentation. This is not a problem and those warning
can thus be ignored.

4.4 Using HMTC

Once HMTC has been compiled, it can be invoked to “compile” a MiniTri-
angle program as follows:

clyde$./hmtc filename
where filename gives the path of the program to compile. For example
./hmtc MTTests/test2.mt

Unless there are errors, you will not see very much since no code is being
generated yet. However, you can ask the compiler to print the intermediate
representation at various stages to get some more information. For example:

./hmtc --print-after-parsing MTTests/test2.mt

To get help with the HMTC command-line syntax, call HMTC with the
—--help option:

./hmtc --help

Note that it is possible to ask HMTC to pretty-print the intermediate rep-
resentation after one or more different compilation phases, and to instruct
HMTC to stop after a specific phase. For example, if the scanner and parser
have been extended with new functionality, but the corresponding changes
still have to be undertaken in the contextual checker, it is useful to be able
to show the result both after scanning and parsing, and then stop before
checking in order to test the new features in isolation:

./hmtc --print-after-scanning --stop-after-parsing ...

(Note further that an option --stop-after-XXX always implies the corre-
sponding print option --print-after-XXX.)

HMTC can also compile a program provided through the standard input.
Just invoke HMTC without any file name argument. This allows you to enter
the program to compile directly, without first having to write it into a named
file. Terminate the input by pressing CTRL-D immediately after a newline.
For example:

clyde$./hmtc
let const x : Integer = 1 in putint(x)
CTRL-D

You can also test individual functions from within GHCi. In particular,
there are specific test functions in the modules Scanner and Parser called
testScanner and testParser. For example:

clyde$ ghci

Prelude> :load Scanner

Scanner> :type testScanner
testScanner :: String -> I0 ()
Scanner> testScanner "1 42 xyzzy let"
Diagnostics:

Tokens:

(LitInt {1ivVal = 1}, line 1, column 1)
(LitInt {1iVal = 42}, line 1, column 3)
(Id {idName = "xyzzy"}, line 1, column 6)
(Let, line 1, column 12)

(EOF, line 1, column 15)

Of course, you may want to write your own test utilities along similar lines.

Familiarise yourself with MiniTriangle and HMTC. For instance, try out
HMTC on various MiniTriangle examples. Go through the documentation in
order to become familiar with the various modules.

4.5 It just is not working; what is wrong?

OK, so your code just does not compile. Or it does, but HMTC still refuses
to parse even a simple example. Well, don’t despair; it can be made to work,
and chances are you're very close. First of all, make sure you have not made
any of the following simple, but very common, mistakes!:

e Are you sure your tab stops are set to be 8 characters wide? Really
sure??? A setting of the tab stop width to some other value than 8 in
Wordpad-++ is responsible for a large part of all seemingly inexplicable
parse errors.

e Are you loading or compiling the versions of the files you think you
are using? If you're editing files on one machine, and then manually
copying them over to one of the School servers for compilation there,
it is easy enough to make mistakes. But it could also be that the files
you are editing are being saved to a different place than you thought.
Or you might have forgotten to save! Double-check that you are using
the right versions. For example, look at the problematic file using a
command-line tool like less in the same shell (window) you are using

! Apologies if they seem too obvious; but they really are mistakes that we come across
a lot.

10

5

to compile the compiler. You might discover the file is different from
the one you are editing. Or change the problematic file in various ways
just to see what happens. For example, comment out bits you have
changed. Or insert some deliberate errors. If nothing changes, chances
are that you are compiling a different file from what you are editing.

Have you compiled the compiler? Be aware that loading files into GHCi
will neither re-build the executable hmtc, nor run the parser generator
Happy on the file Parser.y to generate a new version of the parser. So,
for example, if you have changed Parser.y, and then just load Parser
into GHC1, you will be using an old version of the parser. Whenever you
change Parser.y, you have to run Happy one way or another; e.g., by
running Make or by running Happy manually. Similarly, if you change
things in the compiler and then verify that things work through GHCi,
but you then decide you want to continue testing by invoking hmtc,
you need to re-build hmtc first; e.g., by running Make.

Are you sure your MiniTriangle test program actually are valid Mini-
Triangle programs? Study the grammar in Appendix A carefully. In
particular, note that a MiniTriangle program is a command (not an
expression). So attempting to parse a “program” like 1 + 2 is going
to fail, and rightly so. But it is easy enough to turn this into a com-
mand and thus a program; e.g., putint(1 + 2) orx := 1 + 2. (Asfar
as the parser is concerned, the last program is fine; contextual check-
ing happens later.) Another common mistake is to use semicolon as a
terminator and not a separator. In particular, there must not be any
semicolon after the last declaration in a list of declarations or after the
last command in a begin-end-block.

Tasks

Part I of the coursework is concerned with scanning (or lexical analysis)
and parsing. You will extend the front end of the given HMTC compiler to
support a number of new language construct, which means that both the
scanner and parser as such will have to be extended, as well as the internal
representation of tokens (lexical symbols) and the abstract syntax.

Task 1.1 (Weight 15%) Extend MiniTriangle with a repeat-loop. Infor-
mally, the loop construct has the following syntax:

repeat

11

cmd
until
boolEzp

The semantics is that the command cmd is repeated (at least once) until
boolFxp evaluates to true.

For example, the following should be a valid MiniTriangle program frag-
ment:

repeat
X :=x + 1
until x > 42

The MiniTriangle lexical, context-free, and abstract syntax can be found
in Appendix A. First extend these grammars (add or extend productions
as necessary) to formally define the syntax of the new language construct.
Remember that the grammar extensions should be included in the written
report! Then extend the provided HMTC code accordingly. You will have to
modify:

e Token.hs
e Scanner.hs

e AST.hs

Parser.y (not Parser.hs: this latter file is generated from Parser.y
by the parser generator Happy)

e PPAST .hs

Important! Do start by extending the grammar for the concrete syntax
on paper before attempting the programming! If you are not able to correctly
express the extended concrete syntax by extending the grammar, this (and
the following tasks) are likely going to be very confusing to you. Conversely,
once you have extended the grammar properly, you will find that much of the
work actually is done: you can take your new grammar rules and add them
to the Happy parser specification with only minor syntactic adaptations, and
then add in the semantic actions to actually build the abstract syntax tree.
Should you have forgotten what a context-free grammar is and how it works,
please do review these notions first, e.g. by referring to the G52MAL lecture
notes, before continuing.

12

Task 1.2 (Weight 20 %) Extend MiniTriangle with C/Java-style conditional
expressions. Informally, the conditional expression should have the following
syntax:

boolExp 7 exp, : expy

The dynamic semantics is as follows. If boolExp evaluates to true, then exp,
is evaluated, and the value of the entire conditional expression is the value of
that expression. If boolEzp evaluates to false, then exp, is evaluated instead,
and the value of the entire conditional expression is its value.

Note that MiniTriangle’s if-then-else is a command (a statement), not
an expression. The following is thus syntactically invalid in MiniTriangle:

(if b then x else y) + z

But, using the new conditional expression, the above can be expressed as
follows:

b7?7x:y)+z

First extend the MiniTriangle grammars with the relevant productions.
Remember that the grammar extensions should be included in the written
report! Then extend the provided HMTC code accordingly. You will have to
modify the same files as for Task I.1.

You don’t have to worry (too much) about ambiguity of the context-free
grammar here: keep the productions simple, and use Happy’s support for
operator precedence and associativity to disambiguate; that is, just follow
the present design.

The ? should be a new, distinct, token (do not treat it as an operator),
and conditional expressions should be a new, distinct, kind of expressions
in the abstract syntax (do not attempt to use ExpApp). The pair ? and :
together is an example of a ternary operator. However, ? on its own is not
an operator. Moreover, the typing rules for the conditional expression and
its dynamic semantics (only one of ezp, and exp,, evaluated, not both) is
such that it cannot easily be treated just as a function, unlike the binary
operators. Thus, in the context of MiniTriangle, it will be much simpler to
treat the conditional expression as a distinct language construct.

The conditional operator should have the lowest precedence of all opera-
tors, and it should be right associative. That is,

e1 7ey i e3?ey ey

should be parsed as

13

e17ey: (e3?eq:€5)

not as

and

(eg?ey:e3) 7eq: €5

€1 e €9 ? €3 . €4 . €5

should be parsed as

€1 e (€9 ? €3 . €4) . €5

Task 1.3 (Weight 35 %) Extend the syntax of MiniTriangle if-command
so that:

e the else-branch is optional

e zero or more Ada-style “elsif ...then ...” are allowed after the then-

branch but before the (now optional) else-branch.

For example:

and

if x > 1 then
y =1

if x < 10 then

y =1

elsif x == 10 then
y =2

elsif x > 10 then
y =3

else
y :=0

should both be valid MiniTriangle fragments.

First extend the MiniTriangle grammars with the relevant productions.
Remember that the grammar extensions should be included in the written
report! Then extend the provided HMTC code accordingly. You will have to
modify the same files as for Task I.1.

Important! Do start by extending the grammar rules on paper. If you

don’t understand how to express the desired syntax using grammar rules, you

14

will likely find it very challenging to modify the Happy parser specification in
a correct manner. Getting your head around how to extend the grammar to
express that the else-branch may be left out and that there may be one or
more elsifs with associated then-branches is the very key to approaching
this task successfully.

Note that your extended grammar likely will be ambiguous (the “dangling-
else” problem). This manifests itself by the parser generator Happy reporting
shift /reduce conflicts. Happy’s default disambiguation strategy for shift /reduce
conflicts is to prefer shifting to reduction. This will result in, for example, an
else-branch becoming associated with the nearest if, which is what usually
is desired. Thus we choose to accept the ambiguity and the default disam-
biguation strategy in this case.

The definition of the constructor CmdIf in AST needs to be changed to
accommodate the richer syntax. The pretty-printing utility functions ppOpt
and ppSeq will likely be useful to you when you extend the pretty printer. For
example, the second MiniTriangle fragment above should be printed along
the lines:

CmdIf <line 1, column 1>

ExpApp <line 1, column 4>
ExpVar "<"
ExpVar "x"
ExpLitInt 10

CmdAssign <line 2, column 5>
ExpVar "y"
ExpLitInt 1

ExpApp <line 3, column 7>
ExpVar "=="
ExpVar "x"
ExpLitInt 10

CmdAssign <line 4, column 5>
ExpVar "y"
ExpLitInt 2

ExpApp <line 5, column 7>
ExpVar ">"
ExpVar "x"
ExpLitInt 10

CmdAssign <line 6, column 5>
ExpVar "y"
ExpLitInt 3

CmdAssign <line 8, column 5>

15

ExpVar "y"
ExpLitInt O

Hint: Do the optional else-branch first. Make sure this works prop-
erly. Then attempt elsif. Introduce extra non-terminals and productions
as needed.

Task 1.4 (Weight 30 %) Extend MiniTriangle with character literals as de-
scribed by the following productions:

Character-Literal — ° (Graphic | Character-Escape) ’
Graphic — any non-control character except ’ and \
Character-Escape — \(n|r|t|\]|’)

For example, >1°, *A’, ’z’>, >?°_ ’\n’, ’\\’, >\’’ are all valid character
literals. But >\’ and ’’’ are not. Thus, after your extension, you should be
able to parse programs like:

let
var ¢ : Character := ’a’
in
begin
c =77,
c :=’\n’
end

First extend the MiniTriangle context-free and abstract grammars to ac-
commodate character literals as a new kind of expression. Then extend the
provided HMTC code accordingly.

“Non-control” characters refer to any character with a printable represen-
tation. For simplicity, you can take that to mean the ASCII range 32 (space)
to 126 (tilde). The meaning of the escape sequences (i.e. the corresponding
character to be carried by the token) is given by the following table:

Escape Meaning
\n New Line
\r Carriage Return
\t Tab
\\ The character \
\’ The character ’

As it happens, the above escape sequences agree with the escape sequences
that are used in Haskell to encode special characters.

16

You will again have to modify the same files as for Task I.1. Beside ex-
tending the scanner itself, you also need to introduce character literals as a
new kind of expression into the context-free syntax of MiniTriangle, and you
need to extend the representation of tokens and of the AST.

Dealing with characters and character encodings at a number of different
levels at the same time can be a bit confusing. The levels have to be carefully
distinguished:

e The input character sequence: That which is passed to the MiniTriangle
scanner and which may be a textual representation of a sequence of
MiniTriangle tokens and ultimately a MiniTriangle program, a program
in the object language.

o MiniTriangle character literals: Specific subsequences of input charac-
ters, defined by the grammar above. Each such sequence is a constant
MiniTriangle expressions whose value is a single character. Just like a
sequence of digit characters (like 1, 2, 3) in most programming lan-
guages, including MiniTriangle, is a constant expression whose value is
an integer (in this case the integer 123).

o Haskell character encodings: The way strings and character literals are
written in Haskell, our implementation or meta language. These have
to be used when we implement the scanner and look for specific char-
acters in the input sequence, or sometimes when we construct tokens
that represent MiniTriangle character literals. They are also used when
working in GHC1, both to enter string and character values and when
string or character-valued results are printed.

In fact, making you appreciate these distinctions is part of the point of this
task.

To exemplify, if the scanner encounters the three characters ’, A, and ’ in
the input sequence, it should turn those into a single literal character token
carrying the single character A. But be aware that if you later print that
token from within GHCi, the carried character will be rendered ’A’ again,
as that is how Haskell happens to print character values.

To give another example, if the scanner encounters the four characters ?,
\, n, and ’ in the input sequence, it should turn those into a single literal
character token carrying a single New Line character (character number 10
in the ASCII/ISO code). But be aware that if you later print that token, the
carried character will be rendered ’\n’ again, as that is how Haskell happens
to print the New Line character. Also, if you need to mention the New Line
character in your Haskell code (such as when constructing a token carrying a

17

New Line character), you would again write >\n’ as that is how the character
literal standing for the New Line character is written in Haskell.
You may find the following hints helpful:

e Hint 1: At the GHCi prompt, type the expression

length n \\\ nn

(all 13 characters, exactly as above). Make sure you fully understand
why the result is 2!

e Hint 2: Use the function length to check that the length of input
strings to the scanner is what you think they should be.

e Hint 3: Avoid the whole issue of how to encode strings containing
backslashes at the GHCi prompt by putting the input in a text file and
reading it from there.

18

A MiniTriangle Grammars

This appendix contains the grammars that define the concrete and abstract
syntax of the version of MiniTriangle used in this module. The concrete
syntax is divided into two parts: lexical syntax and context-free syntax. The
grammars are slight variations on what can be found in the book by Watt &
Brown.

A.1 MiniTriangle Lexical Syntax

Non-terminals are typeset in italics, like this. Terminals are typeset in type-
writer font, like this. Terminals whose spelling (the concrete character se-
quence) is different from what is shown in the grammar, such as names of
special characters, are typeset in italics and underlined, like this. For sim-
plicity, we resort to a slightly informal way of stating that the keywords are
not valid identifiers.

Program — (Token | Separator)*

Token — Keyword | Identifier | IntegerLiteral | Operator
L5l L= =1 (1) | eot

Keyword — begin | const | do | else | end | if | in

| let | then | var | while

Identifier — Letter | Identifier Letter | Identifier Digit
except Keyword

IntegerLiteral — Digit | IntegerLiteral Digit

Operator = x| /] +] -] <|<=|==|1=]>=|>|&&| 1]
Letter — A|B|...|Z]a|b]|...|z

Digit —~ o|1]2]3|4|5]6|7|8]|9

Separator — Comment | space | eol

Comment — // (any character except eol)* eol

19

A.2 MiniTriangle Context-Free Syntax

Non-terminals are typeset in italics, like this. Terminals are typeset in type-
writer font, like this. Terminals whose spelling (the concrete character se-
quence) is different from what is shown in the grammar are typeset in italics
and underlined, like Identifier and IntegerLiteral. Their spelling is defined
by the lexical grammar (where they are non-terminals!).

Program — Command

Commands — Command
| Command ; Commands

VarExpression (Expressions)
if Fxpression then Command
else Command
| while Expression do Command
| let Declarations in Command
| begin Commands end

Command — VarEzpression := FExpression

Ezpressions — Ezpression

| Ezpression , Erpressions
Ezpression — PrimaryFExpression

| Expression BinaryOperator FExpression
PrimaryEzpression — IntegerLiteral

| VarEzpression

| UnaryOperator PrimaryFEzpression

| (Expression)
VarEzpression — Identifier
BinaryOperator = x|/ |- <] <=="=]>=]>]&&]| |
UnaryOperator - =

20

Declarations — Declaration
| Declaration ; Declarations

Declaration — const Identifier : TypeDenoter = Ezxpression
| var Identifier : TypeDenoter
| var Identifier : TypeDenoter := Expression

TypeDenoter — Identifier

Note that the productions for Ezpression makes the grammar as stated
above ambiguous. Operator precedence and associativity for the binary op-
erators as defined in the following table is used to disambiguate:

Operator Precedence | Associativity
- 1 right
*x / 2 left
+ - 3 left
< <= == I=>= > 4 non
&& D left
| 6 left

A precedence level of 1 means the highest precedence, 2 means second highest,
and so on.

Also note that the syntactic category Declaration includes definition of
constants, as not only the type is given, but also the value of the constant
(through an expression), and that a variable declaration includes an optional
initialization.

A.3 MiniTriangle Abstract Syntax

This is the MiniTriangle abstract syntax. It captures the tree structure of
MiniTriangle programs as concisely as possible. It is used as the basis for de-
signing the datatypes for representing MiniTriangle programs. For example,
note that there is only one non-terminal for expressions as opposed to three
in the grammar for the concrete syntax. The extra non-terminals (along with
a specification of binary operator associativity and precedence) are needed
to make the concrete syntax unambiguous, which is necessary for parsing.
But once a program has been successfully parsed, its structure has been
determined, and ambiguity is no longer an issue. Another difference is that
general function application has been introduced as one expression form. This
replaces both concrete unary operator application and concrete (infix) binary

21

operator application, as such operators are functions of one and two argu-
ments, respectively. (The concrete syntax of MiniTriangle currently does not
include general function application, but that could easily be added.) As a
consequence, a single “variable” terminal Name also replaces both Identifier
and Operator; i.e., Identifier C Name and Operator C Name.

The rightmost column gives the node labels for drawing abstract syntax
trees. (They correspond to the names of the data constructors of the of
the abstract syntax datatypes in the compiler.) Note that some elements
of concrete syntax, such as keywords, do occur in the productions. They are
there to make the connection between the concrete and abstract syntax clear,
and to provide an alternative textual representation for the abstract syntax
(e.g. for use in typing rules). However, these fragments of concrete syntax are
omitted when drawing abstract syntax trees, as they are implied by the node
labels and thus superfluous. Also note that some of the productions make
use of the EBNF *-notation for sequences. When drawing an abstract syntax
tree, that means that the corresponding nodes will have a varying number of

children.

Program — Command Program
Command — FEaxpression := Expression CmdAssign
| Ezpression (Expression™) CmdCall
| Dbegin Command* end CmdSeq
| if Ezpression then Command
else Command CmdlIf

| while Expression do Command CmdWhile
| let Declaration® in Command CmdLet

Ezpression — IntegerLiteral ExpLitInt
| Name ExpVar
| Ezpression (Expression™) ExpApp

Declaration ~ — const Name : TypeDenoter

= Erpression DeclConst
| var Name : TypeDenoter
(:= Expression | €) DeclVar
TypeDenoter — Name TDBaseType

22

