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Abstract

Computer Generated Forces (CGF') are software agents which simulate
the behaviour of military units or equipment in a distributed interactive
simulation environment. Route planning in ‘realistic’ terrain is a critical
task for CGF agents, as many of the agent’s higher-level goals can only
be accomplished if the agent is in the right place at the right time. In this
paper we present a new approach to route planning in complex terrains for
CGF agents based on searching the space of complete plans. We describe
an implementation of these ideas, the SALIX planner, and report some
preliminary results obtained by running the planner on a number of test
problems. Our work is also potentially relevant to other applications, e.g.
route planning for autonomous vehicles.

1 Route planning in continuous terrains

Computer Generated Forces (CGF) are software agents which simulate the be-
haviour of military units or equipment in a distributed interactive simulation
environment. Such systems are becoming increasingly important in areas as
diverse as staff training and equipment procurement. For example, CGF agents
offer the potential of dramatically reducing the cost and complexity of mounting
training exercises for commanders, with many of the functions carried out by
large teams of human controllers replaced by intelligent software agents. These
agents must achieve their goals in complex, uncertain and changing environ-
ments.

Route planning in ‘realistic’ terrain is a critical task for CGF agents, as
many of the agent’s higher-level goals can only be accomplished if the agent is
in the right place at the right time. The problem can be viewed as one of finding
a minimum-cost (or low-cost) route between two locations in a digitised map
which represents a complex terrain of variable altitude. The cost of a particular
route is typically a complex function of factors such as the distance travelled, the
time required to execute the plan and the visibility of the route. The problem is
complicated by the non-linearity of the cost of going from one point to another
which varies with the magnitude and the sign of the local gradient (e.g. moving
downhill costs much less than moving uphill) as well as the distance travelled.



In this paper we present a new approach to route planning in complex ter-
rains for CGF agents based on searching the space of complete plans. In the
next section, we identify some of the characteristics that a route planner should
posses, and highlight some of the problems of existing planners. In section 3 we
outline the key idea of plan refinement by continuous deformation and describe
an implementation of these ideas, the SALIX planner. In section 4, we report
some preliminary results obtained by running the SALIX planner on a number of
test problems and compare these with results from more conventional planners.
In the final section we discuss some of the outstanding problems with the ap-
proach and the implementation, and identify a number of directions for future
research.

2 Requirements for a planner

In addition to the minimum-cost requirement, we can identify a number of
additional characteristics that a route planner should possess (in no particular
order):

Continuous and discrete terrain: the planner should be able to cope with
route planning over and round all the features to be found in the agent’s environ-
ment. These include both continuous features such as hills and valleys, ‘discrete’
features such as rivers and bridges, and ‘no-go’ areas in which the continuous
terrain exceeds some threshold value, e.g. the maximum safe gradient in the
case of cliffs.

Anytime planning: the amount of time an agent can afford to spend on
planning depends on the current situation: uncertainty about the terrain, the
positions of opponents etc. may mean that it is not worth developing a detailed
plan. It is therefore desirable if the planner can quickly return a partial plan,
or a crude plan only the first segment of which has been developed in detail,
as a basis for immediate action. Needless to say, the planner should return
reasonably good (partial) plans reasonably quickly.

Plan repair: the environment in which the agent is embedded is constantly
changing, and while it would always be possible to replan from a given point
(for example to avoid an obstacle), it is often desirable if the agent can patch
an existing plan.

However the conventional route planners described in the CGF literature (for
example [1, 3, 4, 5, 6]) suffer from a number of problems. These systems typically
work by incrementally extending an initial partial plan. Starting from one or
more fixed points (often the start point or destination), the planner successively
selects atomic plan steps on the basis of their cost and/or the estimated cost of
completing the plan. In the case of discretised terrain models, the plan steps
are often taken to be the straight line segments connecting the cell centres
(though interpolation is also used, see for example [3]). This can work well if
the resolution of the terrain model is adequate, but results in artifacts in the
case of coarse grained models. Moreover these planners are typically incapable
of repairing a plan following a change in the environment that invalidates the
unexecuted portion of the current (partial) plan.



3 Searching the space of complete plans

In an attempt to overcome these problems, we have developed an alternative
approach which is based on searching the space of complete plans. Rather than
incrementally extend a partial plan, we start with a complete plan and refine it
by deforming it. We use a novel representation for plans based on the idea that
a complete path between any two points A and B can be considered as the result
of applying a set of deformation functions to some initial path connecting A and
B. If the deformation functions are orthogonal (or at least linearly independent)
any plan can be obtained as a linear combination of such functions.

A plan is therefore a linear combination of orthogonal or independent de-
formations applied to an initial plan. New plans are generated by changing the
deformational coefficients of the linear combination of deformations represent-
ing the parent plan. This allows a very compact plan representation, since we
only need to remember a fixed length vector of coefficients for each plan (one
for each deformation function). As a result, the actual route is only implicitly
represented and in particular there is no list of points traversed by the plan. The
current implementation of the SALIX planner uses a set of eleven independent
triangular plan deformation functions shown in Figure 1, and twenty two search
operators which increment or decrement by a fixed amount, ¢ the deformation
coefficients of the plan being expanded.

Starting with a initial plan (e.g. the straight line segment connecting A and
B) the search proceeds in a manner similar to best-first search. At each iteration
the twenty two deformation operators are applied to the unexpanded plan with
the lowest cost. Usually, this is a successor (deformation) of the current plan.
However if the current plan is a local minimum, an exhaustive search of the list
of unexpanded plans will result. (Since we are searching in the space of plans
and hence have no clearly defined goal state, some blind search is inevitable.)
The search terminates when a user-specified expansion limit, n, is reached.

Our approach has the advantage that the planner is ‘anytime’ in that the
planner can always return the best plan found so far. Moreover, plan repair
in response to changes in the agent’s environment is straightforward, as the
deformation operators can be applied directly to the current plan.
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Figure 1: Eleven independent deformation functions.



4 Preliminary results

Despite this rather simpleminded implementation, initial results have been en-
couraging. In this section we briefly describe the performance of the SALIX
planner in planning routes in two sample terrains: £1, a 256 x 256 grid of spot
heights representing a 2km x 2km region of a synthetic terrain model; and %2,
an 80 x 80 grid of spot heights representing a 10km x 10km region of Southern
California.! For each model we used 50 randomly generated problems consisting
of pairs of start and destination positions which are at least four cells apart.
Figure 2 shows a typical plan between the points (17, 127) and (244, 30) in the
t1 terrain model generated by the SALIX planner after 25 expansions (lighter
grey levels represent higher altitudes).?

Figure 2: An example route produced by the SALIX planner.

For the purposes of comparison, we also solved the same problems using
an A* planner similar to those described in the CGF literature. The A* algo-
rithm [2] has a number of attractive properties for route planning problems. A*
search is both complete and optimal.> Moreover among optimal algorithms of
this type—algorithms that search outwards from the start state(s)—A* is opti-
mally efficient for any given heuristic function, i.e. no other optimal algorithm
is guaranteed to expand fewer nodes than A*. A* in its various forms has been
used in a number of CGF systems as the basis of their planning component, for
example for planning road routes [1], avoiding moving obstacles [4], avoiding
static obstacles [5] and for planning concealed routes [6].

The memory requirements of A* mean that it is impractical in its pure form,
and for our tests we used the variant known as A [8] which is guaranteed to
find solutions that can be worse than optimal by at most €. For comparison,
Figure 3 shows the plan produced by A* with € = 0.1 on the same test problem
as Figure 2.

IWe are grateful to Richard Penney and Jeremy Baxter at DRA Malvern for providing the
terrain models.

2Note that to aid the presentation, the z values shown in Figures 2 and 3 have been
discretised into twenty steps. However all tests were conducted using the original ‘continuous’
models.

3Strictly, A* is complete on locally finite graphs—graphs with a finite branching factor
provided there is some positive constant ¢ such that every operator costs at least c¢. (If any
operator has negative cost, nothing but an exhaustive search of all nodes would find the
optimal solution.)



Figure 3: An example route produced by the A* planner.

Both planners used the same cost function which takes as its input a list
of cell coordinates in the discretised terrain models. In the case of the SALIX
planner, we sampled the plan to to produce the list of coordinates. In the case of
A? the operators encode motion from cell to cell and and the resulting list of cells
can be used directly as input to the cost function. The A¥ heuristic function,
h(n) (the cost of reaching the goal from the current state), was assumed to be
the cost of the straight line plan from the current position to the destination.
The resulting plans contained on average about 140 individual steps in the case
of the first (¢1) terrain model and about 40 steps for the second (t2) terrain
model.

Table 1 shows the average cost of the plans produced by the SALIX planner
for both terrain models and for various values of the expansion limit n. The
average cost of the plans produced by A* with € = 0.1 were 2335.8 and 17505.7
for t1 and t2 respectively. There is a marked difference between the performance
of the SALIX planner on the two terrain models. In one case it produces plans
which are, on average, within 25% of the (inferred) optimum, while for the
second model the planner produces plans which are only within a factor of
three of the optimum. The reason for this difference is unclear and further work
is required to isolate the characteristics of the terrain models that result in poor
performance.

Number of expansions

Model 5 25 50 100 500
t1 2852.4 | 2675.1 | 2675.1 | 2675.1 | 2675.1
t2 44612.0 | 43717.3 | 43717.3 | 43717.3 | 43717.3

Table 1: average cost of plans produced by SALIX.

Although in some cases the planner can quickly find plans within 25% of the
optimum (using less than 25 expansions), the results show the reduction in plan
cost rapidly levels off, and it is clear that the SALIX planner is becoming trapped
in local minima. The best plans are found after a relatively small number
of expansions and increasing the number of expansions does not improve the
quality of the plans produced.



In an attempt to overcome this problem, we replaced the best-first search
strategy of the SALIX planner with the GA* algorithm [11]. GA* is a generalisa-
tion of A* inspired by work in Evolutionary Algorithms in which the operators
are not constrained to be unary (i.e. an operator can take more than one state
as input) and selection of the next state to be expanded is probabilistic rather
than deterministic. One of the major sources of power of Evolutionary Algo-
rithms derives from their use of non-unary operators (crossover), and the use of
such operators can significantly improve the power of the search algorithm (es-
pecially when h(n) is not an underestimate).* Probabilistic selection can lead
to important forms of optimality, like the optimum exploration/exploitation
tradeoff, i.e. the optimum compromise between the need to sample the search
space to collect information and the need to produce good solutions as soon as
possible. The algorithm uses a selection probability, s, which controls whether
the current best unexpanded plan should be selected for expansion or whether
the next best should be considered. We used a simplified version of GA* (a
best-first version with h(n) = 0 and no crossover) in our experiments.

Table 2 shows the average cost of the plans produced by the SALIX plan-
ner with GA* and s = 0.1 for both terrain models and various values of the
expansion limit n.

Number of expansions

Model 5 25 50 100 200
t1 3112.9 | 2703.3 | 2614.1 | 2603.7 | 2603.7
2 49349.0 | 41833.3 | 39888.8 | 39396.6 | 39253.4

Table 2: average cost of plans produced by SALIX with GA*.

As expected, rank selection prevents GA* from becoming trapped in local
minima, and the completeness of the algorithm guarantees that even if it is
temporarily trapped by a minimum it eventually explores other parts of the
search space. However the initial plans produced by GA* have a higher cost
than those produced by best-first search. In the test examples, between 25 and
50 expansions are required before the average plan cost drops to below that of
the plans produced by best-first search. This suggests that the choice of search
control should be based on the anticipated time available before the agent has
to commit to a plan. If the agent has only a limited amount of time, it may be
better to use best-first search; if more time is available then GA* will eventually
produce better plans. (Of course in both cases there is always a plan available if
it becomes necessary for the agent to act due to a change in the environment.)?

4The coefficients of the linear combinations of plan deformation functions map naturally
into the finite-length chromosomes of GA*, but the results reported below do not use crossover.

5Unfortunately simply reducing the selection probability with time doesn’t result in the
best of both worlds, as best-first search tends to fill the initial segment of the list of unexpanded
plans with small perturbations of the current best plan, reducing the probability that radically
different plans will be explored.



5 Conclusion

We have outlined a new approach to route planning in continuous terrains based
on search in the space of complete plans, and briefly described out initial imple-
mentation of this approach, the SALIX planner. For agents in an uncertain and
changing environment, planning in the space of complete plans has a number
of advantages over the e-admissible planners described in the CGF literature.
Our approach is inherently anytime, in that the planner can always return the
best plan found so far. In addition, plan repair in response to changes in the
agent’s environment can use the current best plan as the starting point directly
without having to estimate how much of the existing plan can be reused.

However the current implementation has a number of limitations. The sim-
pleminded search strategy means that the planner can get trapped in local
minima. While using GA* avoids this problem, it does so at the cost of poorer
initial plans, and a more sophisticated search strategy is required which com-
bines the advantages of both best-first and GA*. The current set of deformation
functions is not well suited to planning routes around discrete obstacles. More-
over plans can never extend beyond the normals to the line connecting the start
and end points of the plan at the endpoints.® It is not clear if this limitation is
responsible for the generation of sub-optimal plans in the test problems. How-
ever, there is no reason why the set of basis functions could not be expanded
to include step or other functions, splines, polylines, or even orthogonal de-
formation procedures which would behave differently according to the terrain
features. Such functions might be enabled and disabled by some more abstract
examination of the terrain model and/or the progress of the planner. In addi-
tion, the current implementation of the planner is rather slow, as each operator
application typically requires costing an entire plan, rather than computing the
incremental change in cost resulting from the operator application as with A¥.
We are currently investigating plan representations that allow us to cost op-
erator applications rather than the resulting complete plans. This problem is
currently unsolved.

We are hopeful that these limitations can be overcome and believe that
this is an area worth exploring. We are currently investigating a number of
extensions to the basic framework described above, including alternative search
strategies, e.g. varying plan deformation factor § with the depth of the search,
using different perturbation functions at different times, and using hierarchical
search, i.e. sampling the plan produced after a small number of expansions and
using the planner to plan routes between the endpoints of the resulting plan
segments. Another area which we hope to investigate is plan reuse or case-
based planning, to exploit the ability of the perturbation operators to adapt
existing, similar plans (for example plans with similar start and end positions,
and similar cost functions) to solve new problems.
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