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Abstract

In this paper, we outline a research strategy for analysing the properties of different agent architectures, in particular
the cognitive and affective states/processes they can support. We demonstrate this architecture-based research strategy,
which effectively views cognitive and affective states as architecture-dependent, with an example of a simulated multi-
agent environment, where agents with different architectures have to compete for survival. We show that agents with
“affective” and “deliberative” capabilities do best in different kinds of environments and briefly discuss the implications

of combining affective and deliberative capabilities in a single architecture. We argue that such explorations of the trade-
offs of alternative architectures will help us understand the role of affective processes in agent control and reasoning,
and may lead to important new insights in the attempt to understand natural intelligence and evolutionary trajectories.

1 Introduction

and processes they can support. We are pursuing various
such analyses within the context of the “Cognition and

Deliberative mechanisms and processes (such as planning,Affect project” at the University of Birmingham (Sloman,

searching, reasoning, etc.) have been a major focus of re-
search activities ever since the beginning of artificial intel-
ligence. More recently, affective states have become an-
other area of attention, especially in the design of artificial
“believable” agents (Simon, 1967; Sloman and Croucher,
1981; Damasio, 1994; Reilly, 1996; Picard, 1997; Hatano
et al., 2000). However, the interaction of affective and
deliberative processes in biological agents and the pos-
sibilities of integrating affective and deliberative compo-
nents in control systems of artificial agents (synthetic or
robotic) are not yet well understood. This is partly due
to the complexity of the subject matter, but also partly to
complications brought about by an overwhelming number
of different definitions and concepts of affective states.
We believe that the definitional morass can be separated
from substantive scientific and technical questions by a
strategy which involves exploring a variety of informa-
tion processing architectures for various sorts of agents.
The idea is to use agent architectures to (1) study families
of concepts supported by each type of architecture and (2)
explore the functional design tradeoffs between different
architectures in various contexts.

Understanding the complex interplay of cognition and
affect requires a close analysis of the properties of dif-
ferent information processing architectures and the states

2000). In this paper, we focus on one current track of the
Cognition and Affect project, which studies the interac-
tion of “affective” and “deliberative” behaviours in agent
control.

2 Kinds of Architectures

We can view an agent as consisting of three main compo-
nents (e.g., Russell and Norvig (1995)):

e theagent progranimplements a mapping from per-
cepts to actions (this is sometimes called the action
selection function or action composition).

the agent staténcludes all the internal representa-
tions on which the agent program operates. This
may include representations of the agent’s environ-
ment and goals, the plans it has for achieving those
goals, which parts of the plan have been executed
and so on.

theagent architecturga (possibly virtual) machine

that makes the percepts from the agent’s sensors
available to the agent program, runs the agent pro-
gram, updates the agent state, and executes the prim-
itive action(s) chosen by the agent program.



Our main concern is with the agent architecture. The ar-
chitecture defines the atomic operations of the agent pro-
gram, and implicitly defines the components of the agent.
For exampleload andstoreoperations in a conventional
CPU imply some sort of memory, otherwise the opera-
tions would not have the effect they are supposed to: call-
ing load afterstorewould not return the saved value. The
architecture also determines which operations happen au-
tomatically without the agent program having to do any-
thing, e.g., incrementing the program counter in a conven-
tional CPU or production firing and conflict resolution in

a rule-based system.

In practice, the distinction between agent program,
state and architecture is often a matter of interpretation or
convenience. In an implemented agent there are a whole
hierarchy of virtual machines: the agent program is ex-
pressed in terms of the primitive operations provided by
the architecture; the architecture is usually implemented
in terms of a programming language, which in turn is im-
plemented using the instruction set of a particular CPU
(or another virtual machine such as the JVM). Likewise
some “agent programs” together with their architecture
can implement a new, higher-level architecture (virtual
machine). In what follows, “agent architecture” used with-
out qualification means the most abstract architecture or
the highest level virtual machine.

The primitive operations supported by the architec-
ture, together with the things that happen automatically,
determine what kind of architecture it is, for example,
whether an architecture is reactive or deliberative. In this
paper we will focus on three kinds of agent (and hence on
three kinds of architecture): reactive, affective and delib-
erative.

2.1 Reactive Architectures

A reactivearchitecture is one in which percepts directly
trigger actions. The selection of which action(s) to per-
form is determined by the agent program. When more
than one action is potentially appropriate in a given situa-
tion, the agent program must choose which of the possibly
conflicting actions to perform. Actions which do not in-
terfere can be executed in parallel (within the limitations
of the underlying architecture, e.g., the number of degrees
of freedom). However if the set of possible actions cannot
be executed in parallel, either because of the limitations
of the architecture or because the actions are logically in-
consistent, the agent must either select the most appropri-
ate subset of the actions to perform or synthesise a new
action by combining the candidate actions into a single
composite action e.g., simultaneously moving towards a
goal while avoiding an obstacle—the obstacle avoidance
modifies the motion towards the goal, by deflecting the
path around the obstacle.

Reactive architectures may make use of simple repre-
sentations of the state of the world and/or the agent, but
these representations do not explicitly encode goals, hy-

pothetical states of the world or sequences of possible ac-
tions. We may ascribe intentional states such as beliefs
and desires to a reactive agent, but the agent architecture
contains no explicit representation of these states. Rather
such states supervene on the architecture. In such cases
we can view the agent as artentional systenthat is, we
ascribe to it the beliefs and goalsoitightto have, given
what we know of its environment, sensors and (putative)
desires Dennett (1996). For example, an agent which has
an ‘avoid obstacles’ behaviour, can be said to have a goal
of ‘avoiding collisions’, even though this goal is not ex-
plicitly represented in the ageht.

Reactive architectures are often implemented in dedi-
cated, parallel hardware using many simple components.
The limited amount of processing necessary for a percept
or set of percepts to trigger an action, the use of dedicated
parallel hardware and the lack of complex representations
means that reactive systems typically respond quickly to
changes in the environment. Indeed the absence of com-
plex internal representations often mandates the use of
tight sensorimotor feedback loops with frequent sampling
of the environment.

2.2 Affective Architectures

An affectivearchitecture is one in which there are explicit
representations of affective control states such as prefer-
ences, desires or emotions. Such states are directly en-
coded within the agent’s state, e.g., in a connectionist
unit, real-valued variable etc. rather than being super-
venient on the architecture as in the case of a reactive
agent. Note that this does not mean thhtintentional
states are explicitly represented in an affective architec-
ture, for example, beliefs and goals may be supervenient.
Nor does it mean that all affective states are directly rep-
resented in the architecture, only that some are. The fact
that some affective states are explicitly represented within
the architecture and do not merely supervene on it means
that the architecture to monitor the achievement or non-
achievement of such states, and allows them to take a role
in learning, deliberation, the modification of reactive be-
haviours, etc?.

2.3 Deliberative Architectures

A deliberativearchitecture in one in which there is some
consideration of alternative courses of action before an

1Dennett calls this approach “adopting the intentional stance”.

2Note that while supervening affective states can have the same be-
havioural potential as explicitly implemented affective states, their coun-
terfactual potential with respect to architecture extensions is not the
same: take two agents with “identical behavioural capacities”, where in
the first an affective states supervenes, and in the second the same state
is part of the architectures (and trivially supervenes too). Then there are
extensions of the latter that can make use of the state, whereas there no
extensions of the former that could make use of the supervenient state
unless the “add” mechanisms to monitor this supervenient state, which
would effectively amount to changing the architecture to make this su-
pervenient state “explicit”.



action is taken. required to code or evolve all the reactive solutions. For
A deliberative architecture is one in which at least example, to understand English sentences a reactive ar-
some of the states are counterfactual in the sense of re- chitecture needs to encode the meaning of every possible
ferring to hypothetical past or future states or as yet un- input sentence separately, whereas a deliberative system
executed actions (or sequences of such actions) and in simply needs a grammar and a parser. The problem for
which at least some of the basic operations of the architec- the reactive approach is that there is an unbounded num-
ture produce/read/write such counterfactual states. Such ber of possible sentences (and choosing the potentially
states include goals (descriptions of states to be achieved), relevant ones might not be possible ahead of time).
plans (sequences of unexecuted actions), states describ- Note that at a given level of abstraction, a component
ing the imagined consequences of performing an action of an architecture cannot be both reactive and delibera-
in the current state or some hypothetical state, partial so- tive, since deliberation presupposes representational ca-
lutions generated during planning or problem solving, the pabilities which by definition are missing from a reactive
hypothetical states of the agent’s beliefs generated dur- architecture. However, a given component can be both
ing belief revision and many others. We further require affective and deliberative, as we shall see.
that such states should be influential in the production of
actions, in the counterfactual sense that, had the (coun- . . .
terfactual) state not been generated, the agent Woul(d have 3 Affective and Deliberative Agent
chosen a different action to execute. Control
Note that this definition implies no commitments as

to whether the states and operations are fine grained, e.9., |n many cases, the generative potential of deliberative ca-
dealing with partial plans or alternative solutions and their  papilities opens up realms that are inaccessible to reactive
generation and comparison, or whether the states and op- agents (unless they have vast memories with pre-computed
erations are ‘coarse grained’, e.g., a single ‘plan’ operator strategies for all possible eventualities), justifying their
which takes a goal and a description of the current state additional computational cost. However, there are cases
and returns a plan with the rest of the fine-grained states \where the same (if not better) results can be achieved us-
and operators buried in the implementation of the archi- jng reactive systems augmented by simple affective states.
tecture and invisible to the agent program and the agent sych trade-offs are not always obvious, and careful and
state. Both cases have at least one counterfactual statedetailed explorations in design space may be needed in or-
and one operator that takes a non-counterfactual state and der to find good designs to meet particular requirements.
returns a counterfactual state. In the following we compare (1) adding different types
To represent counterfactual states, a deliberative agent of deliberative extensions to a reactive architecture with
requires representations with compositional semantics, in (2) adding some simple states recording current needs,
the sense that the meaning of the representations is a func- ajong with behaviours triggered by those states which mod-
tion of the meanings of their parts. Italso implies areusable ify the agent's reactive behaviours. Option (2) can be
working memory for the construction and comparison of  |oosely described as adding primitive “affective” (or “emo-
hypothetical states and some means of deriving the con- tional”) states. In a number of experiments, we demon-
sequences of actions performed in these states. Atits sim- strate that both approaches can have a powerful influence
plest, this might be memories of the consequences of per- on an agent's ability to survive in dangerous multi-agent

forming the action in similar states in the past. The use of environments Containing different kinds of agentsi obsta-
a common working memory limits the number of alterna-  ¢les, food sources, and the like.

tive courses of action that can be considered in parallel, In the following, we focus on two main kinds of agents,
and hence the degree of parallelism possible within a de-  the “affective agents” (A-agents) and “deliberative agents”
liberative architecture. (D-agents). A-agents have reactive mechanisms augmented

All other things being equal, a deliberative architec- by Simp|e “affective states”, whereas D-agents have rep-

ture must be slower and require more resources than a resentational and planning abilities in addition to the same
reactive architecture which encodes a solution to any spe- reactive mechanisms.

cific goal solvable by the deliberative architecture, since
the generation of alternatives must take time. However a . .
deliberative architecture will typically be more space effi- 3.1 The SimWorld Environment
cientthan an equivalentreactive architecture, even though The experiments were conducted in a simple artificial en-
it will often require more space than a reactive solutionto  vironmentimplemented using ti&mAgent toolkit®. The
any given problem instance, since it can solvelassof simulation can run either in “display mode” or “batch
problems in a fixed amount of space, whereas a reactive mode”. Display mode provides a graphical representation
architecture requires space proportional to the number of of the simulation and allows user interaction; batch mode
problems. dispenses with the display but allows the collection of sta-
We can view this as an example of the standard space- tistical information during the runs. The display mode is
time tradeoff, though in this case there is also the time

3Seehttp://www.cs.bham.ac.uk/research/simagent/



intended to aid in the design of evolutionary experiments,
which can then be run much faster in batch mode.

The simulated environment (the “world”) consists of
a rectangular surface of fixed size (usually around 600 by
600 units) populated with various kinds of objects:

e static obstacles (displayed as rectangles of varying

size, usually around 10 by 10)

moving obstacles (displayed as rectangles of vary-
ing size moving at particular speed in a particular
direction without ever changing it)

energy sources—"food items” (displayed as small

circles that pop up at random locations within the

world and stay there for a pre-determined period of
time, after which they disappear unless consumed
by agents)

various kinds of agents (displayed as circles with a
small square on the circumference and a text string
indicating the direction the agent is heading in and
its type, respectively)

The environmentis continuous in the sense that the agents
positions are real-valued (rather than being confined to
a grid). Agents can move in any direction (from 0 to
359 degrees, where 0 means “east”), and consume energy
proportional to the speed at which they move. However,
even when stationary, agents will still consume a certain
amount of energy per timestep. Agents which run out of
energy “die” and are removed from the simulation. They
are also removed if they run into obstacles or other agents
(in the latter case all agents involved in the collision will
be removed). In the environments studied, agents typi-
cally die of hunger or as a result of collisions within 2000
timesteps, thereby obviating the need to limit their life-
time explicitly.

All agents are equipped with three kinds of exterocep-
tive sensors: sonar, smell and touch. In addition, some
agents have a vision sensor, which allows them to gather
information about the size and position of objects within
their visual field.

Sonar is used to detect obstacles and other agents,
smell to detect food, and touch to detect impending colli-
sions. For sonar and smell, gradient vectors are computed
pointing in the direction of obstacles and food within the
respective sensor range. These vectors can then be com-
bined in various ways and mapped onto the effector space,
yielding a direction in which to move to avoid obstacles
and/or move closer towards food.

The touch sensor is connected to a global alarm sys-
tem, which triggers a reflex to move away from whatever
the agent touches (unless it is food, which will be con-
sumed). These movements will be initiated automatically
and the agent cannot control them. They are also some-
what erratic and will slightly reorient the agent.

In addition to the three exteroceptive sensors, all agents
also have two proprioceptive sensors, which measure their

energy-level and their orientation, respectively (some have
an additional orientation sensor which keeps track of their
heading).

The agents also have a number of effectors: they have
motors for locomotion (forward and backward), motors
for turning (left and right in degrees) and a mechanism
for consuming food. Agents need to sit on top of a food
source in order to be able to consume it. Consuming food
takes time proportional to the energy stored in the food
source and the maximum amount of energy an agent can
extract in a timestep.

After a certain number of simulation cycles, agents
reach maturity and can reproduce asexually. The num-
ber of offspring produced depends on the energy level of
the “parent”, and the offspring are created in the immedi-
ate vicinity of the parent (temporarily increasing the local
competition for resources and increasing the likelihood
of collisions). The energy necessary to create each new
agent is subtracted from the parent.

Before a run of the simulation, which can typically
take anywhere from 10,000 to 1,000,000 simulation up-
date steps, various parameters of the environment must
be specified, including:

e the size of the world
e the number and sizes of stationary obstacles,

e the number, sizes, speeds and directions of moving
obstacles,

e the number of energy sources together with their
energy capacities, frequency of appearance, and life
time

For agents at the least the following parameters need to
be set:

¢ the respective sensor ranges for sonar, smell, and

touch
the maximum food intake per time step

the procreation age and the energy expenditure for
each offspring

the maximum speed of movement and the energy
expenditure for it

the different concurrently active modules making
up the agent’s cognitive system and their speed of
execution relative to a simulation update step

Usually, agents, obstacles and food are placed at ran-
dom locations in the environment to be able to “average
out” possible advantages due to their location over a large
number of trials. However, it is also possible to fix lo-
cations in advance, e.g., to study how different kinds of
agents would fare in the same situation.



3.2 The Agents ...

While different kinds of agents may have different short
term goals at any given time (e.g., getting around an ob-
stacle or avoiding a predator), common to all of them is
the implicit goal of survival and procreation, i.e., to get
(enough) food and avoid getting killed (i.e., run into/get
run over by an obstacle/other agent) to be able to live long
enough to have offspring.

In the following we will consider various different
kinds of agents, which differ solely with respect to their
architecture:

1. reactive agents (R-agents)

2. (simple) affective agents (A-agents)

3. pseudo-deliberative agents (PD-agents)
4. (advanced) deliberative agents (D-agents)

5. combined affective and pseudo-deliberative agents
(PC-agents)

6. combined affective and (advanced) deliberative agent

(C-agents)

These reflect two different kinds of extensions of a ba-
sic reactive architecture: (1) the addition of primitive af-
fective states and (2) the addition of primitive and ad-
vanced deliberative capabilities. Each agent has the reac-
tive mechanisms of R-agents. A-agents extend R-agents
by simple affective states such as “hunger”, “fear”, “per-
sistence”, “caution”, etc. (still located within the reactive
layer). PD-agents extend R-agents by a simple planning
and plan execution mechanism (i.e., by a rudimentary de-
liberative layer), whereas D-agents are genuine deliber-
ative agents with complex representational and planning
capacities (as explained below). The combined PC- and
C- agents integrate the capabilities of PD- and A-agents
and D- and A-agents, respectively.

The reactive layer of R-agents (which is common to
all other agents as well), is based on augmented finite
state machines, which run in parallel and can influence
each other (related to the style of Brooks’ subsumption ar-
chitecture, e.g., see (Brooks, 1986)). The finite state ma-

A-agents differ from R-agents in that they possess “in-
ner” states which can influence the way in which sen-
sory vector fields are combined: these states alter the gain
values of the perceptual schemas in the transformation
function mapping sensory to motor space (e.g., see Arkin
(1998)). Thus the very same sensory data can get mapped
onto different motor commands depending on the affec-
tive state. For example, a primitive “fear” state could
modify the gain value of the obstacle vector and thus the
degree to which the agent will be repelled by obstacles: an
agent, which is less “afraid”, will have a lower gain values
than an agent which is very afraid, resulting in different
locomotion behaviour in affective agents. In our exper-
iments, we used A-agents with a single “hunger” state,
which modifies the gain value of the “food” vector: if
hunger is low, the gain value for hunger is slightly nega-
tive and the agents tend to move away from food (possibly
corresponding to the feeling of being repelled by food one
has if one has eaten too much).

PD-agents, on the other hand, possess an additional
primitive deliberative layer, which allows them to pro-

duce a “detour plan” when their path to food is blocked
%ny an obstacle, predator, or any other agent). The plan
is a sequence of motor commands, which override those
given by the reactive mechanisms. To be more precise,
a PD-agent uses explicit representations of the food and
obstacle vectors to compute a trajectory to the food which
avoids the obstacles. Once a decision has been reached,
PD-agents start moving to points on the trajectory, sup-
pressing the influence from the food schema on the over-
all combined behaviour completely until plan execution is
completed. An “alarm” system interrupts plan execution
if a PD-agent comes too close to an obstacle and triggers
replanning, in which case the agent will attempt to make
a more extensive detour. Once the execution of a plan is
finished, the agent uses its reactive mechanisms to move
towards food, which should now not be obstructed, unless
the world has changed (e.g., the obstacle was not static).

D-agents extend PD agents in various ways. First,
they have a vision sensor, which they use to spot obsta-
cles and food (PD-agents, on the other hand, need to “ex
tract” obstacle and food locations from the force vectors
of the respective vector field, which is only possible to a

chines process sensor information and produce behaviouraVery rough degree). Second, they are able to remember

responses using a schema-based approa@irtiAgent

these finite state machines are realized as rule systems).

The reactive behaviours take sensor information and com-
pute a sensor vector field for each sensor (i.e., the sim-
ulated equivalents of a sonar and a smell sensor), which
are then combined and transformed into the agent’s motor
space (e.g., see Arkin (1989)). The transformation func-
tion mapping sensory to motor space is giverd Sy v F’
(where ‘'S’ and ‘F’ are the sonar and food vector fields and
§ andry the respective gain values).

4Note that this formula leaves out many details, such as the mappings
for the “touch” sensor, for ease of presentation.

the location of obstacles and food they have encountered
relative to their current position (i.e., in an agent-centric
polar coordinate system)They have mechanisms to up-
date their internal representations of food and obstacles
when they move so as to adjust the relative angles and
distances according to their movements. They also pos-
sess a coherency mechanism, which deletes a memorized
item if it does not agree with what is being perceived (e.g.,

if the agent expects a food item to be in a particular loca-

5In the current implementation agents never “forget” anything they
have committed to memory, but it is possible to associate a “decay”-rate
to items in memory to simulate “forgetting”, so that after a certain time
the item will be erased from memory.



tion in visual field, but no food item can be found in this
area, the agent will erase the item from memory).

Third, D-agents have a simple route planning mech-
anism which allows them to find a route to the nearest
food item, avoiding obstacles. The planner is given a list
of obstacles and food items known to the agent, and re-
turns a plan to the nearest reachable food R€Fhe plan
is a list of headings and distances and is executed by the
underlying motor behaviours of the agent.

Planning is triggered by the alarm mechanism in re-
sponse to an imminent collision with an obstacle. A col-
lision is considered to be “imminent” if the obstacle is
within a predefined “imminent collision range” and the
agent is facing the obstacle (within/— 60 degrees of
the current heading). The imminent collision range is rel-
atively large, and it possible for the agent to get well in-
side the collision region before actually colliding with or
even noticing the obstacle. For example, if the agent en-
ters the collision region from the “side” (not directly fac-
ing the obstacle) and then turns towards the obstacle, the
alarm will be triggered. As a result, the planner has to
be capable of producing plans which take the agent out of
the collision region without re-triggering the alarm mech-
anism. This is an example of the issues that arise in inte-
grating the continuous (i.e., real-valued), gradient-based,
relatively imprecise reactive behaviours of the agent with
the discrete representation used by the planner.

The planner uses a discrete model of the environment
with relatively large plan steps, giving a coarse grained
grid representation centred on the agent. Plans are con-
structed to the nearest grid point to the goal, at which
point the reactive behaviours of the agent take over to
guide it to the food item. There are eight operators which
allow the agent to reach the eight adjacent grid cells from
the current cell. Operators are disallowed if the resulting
plan step would take the agent outside the environment
or outside a “planning region” which constrains the dis-
tance to the farthest point on the plan to be no greater than
a multiple of the distance from the start point to the goal.
In practice, we have found a planning region with a radius
of 2.5 times the distance to the goal to be sufficient.

The planner is based on a simplified version of #fe
algorithm Pearl (1982).A7 is a variant ofA* in which
the cost of the solution returned is guaranteed to be no
greater tharl + e x the cost of the optimum solution!}
is a good choice for a route planning agent as all we need
are good (rather than optimal) plans. The cost of a plan
is the distance the agent has to travel to reach the goal,
with a penalty for routes which pass through the collision
region around an obstacle. There is a very steep cost gra-
dient in the vicinity of obstacles, which means that the

6Some food items are too close to an obstacle to be reachable by the
agent, however the reactive behaviours used by the all agents will persist
in trying to reach the food. In such cases the planner can be useful both
in finding a route to a reachable food item, and in moving the D-agent
out of the local minimum represented by the unreachable food item,
into an area where the food items are (hopefully) reachable via reactive
behaviours.

first step of any plan which starts in a collision region will
be away from the obstacle. This re-orients the agent, so
that it is no longer facing the obstacle and prevents the
alarm mechanism being triggered again on the next cycle.
PC- and C-agents combine the capabilities of A- and
PD-agents and A- and D-agents respectively. PC-agents
combine the simple affective state of A-agents with prim-
itive deliberation of PD-agents. C-agents combine the
simple affective state of A-agents with the more advanced
representational and deliberative capabilities of D-agents.

3.3

As one would expect, the differences in the architecture
give rise to different behaviour of the agents: R-agents
are always interested in food and go for whichever food
source is nearest to them (often manoeuvring themselves
into fatal situations). They can be described as “greedy”.
Similarly, PD-agents are also always interested in food,
yet they attempt to navigate around obstacles and preda-
tors using their (limited) planning capacity though con-
stantly driven by their “greed”. Although their deliber-
ative abilities make good use of all locally available in-
formation, this can have the consequence that the agent
ends up too far from food and starves in situations where
it would have been better to do nothing for a short period
of time. By then the obstructing obstacles and predators
might no longer be blocking the direct route to food. PD-
agents (like R-agents) constantly move close to danger in
their attempts to get to food, and can therefore die for food
which they do not yet really need.

A-agents, on the other hand, are only interested in
food when their energy levels are low (i.e., they are not
constantly “greedy”, and seek food only when “hungry”).
When they are “hungry”, they behave like R-agents in
that they chase down every food source available to them.
However, their route around obstacles is dependent on
their “hunger level”: when they are less hungry, the re-
pulsive effect of an obstacle will have a greater effect on
their route. Otherwise they tend to avoid food and thus
competition for it, which reduces the likelihood of getting
killed because of colliding with other competing agents
or predators.

Finally, PC-agents, behave like PD-agents as far as
their maneuvers are concerned, but like A-agents with re-
spect to food in that they will not navigate towards food
if they are not hungry.

Finally, D- and C-agents are similar to PD- and PC-
agents respectively in their overall behaviour, except that
their planning mechanism is superior and often leads them
to food in a very efficient way.

... and Their Resultant Behaviours

4 Experiments

We have conducted various experiments to compare the
performance of the different kinds of agents. Before being
able to compare advantages and disadvantages of agents



in multi-agent environments with different kinds of agents,
it is necessary to check whether any given agent kind can
survive as a group in an environment on its own. This re-
sult can be taken to be a yard-stick against which one can
measure their performance in environments where they
have to compete with other kinds of agents. For the fol-
lowing experiments, we fix the “food rate” at 0.25, i.e.,
new food will appear on every forth environmental up-
date on average. Furthermore, we fix the procreation age
for all agents at 250 updates.

4.1 Preliminary Experiments

The preliminary experiments, where groups of 5 agents
of one kind were placed in the environment at random
locations, show that each of the tested agent kinds can
survive in the long run in various kinds of environments,
from environments with no obstacles to very “dangerous”
environments with many obstacles.

Table 1 shows for R-, A-, PD-, and PC-agents the av-
erage [t) number of surviving agents of that kind taken
over 10 different runs of the simulation, each for 10000
environmental updates for a given environment (where
“(n,k)-env” is intended to indicate that static andk
moving obstacles were placed at random in the environ-
ment). In addition, the standard deviatiar) &nd the con-
fidence interval forx = 0.05 (Con) are given too.

Given that each agent kind can survive on its own (al-
though with different success), we are now interested in
comparing the performance of various A-, PD- and D-
agents in “mixed environments” (i.e., environments that
contain more than one agent kind). The first set of ex-
periments is concerned with the performance of A-agents
as compared to R-, PD-, or PC-agents. Only if A-agents
prove superior in a wide-range of environments is it nec-
essary to compare them with more complex deliberative
agents (like the D- or C-agents).

4.2 Series 1: Affective vs. Primitive Delib-
erative Control

Surprisingly, we found that A-agents reliably outperform
not only R-agents, but also PD- and PC-agents in all the

2. PC-agents
3. R-agents
4. PD-agents

This ranking can be shown independently by experi-
ments in which only 2 kinds of agents are placed in dif-
ferent environments initially. We have done these exper-
iments for all six combinations in all seven environments
and observed the same results: A-agents outperform all
other agents, PC-agents outperform R- and PD-agents,
and finally R-agents beat PD-agents.

The reason why PD-agents perform worse than R-
agents is that they almost never win a “duel” for food with
R-agents, as their deliberative mechanism does not dis-
tinguish between obstacles and agents, hence they even
make detour plans if competing for a food source with
an R-agent. In such a case, they R-agent will get the
food while the PD-agent attempts to get “around” the R-
agent. PD-agents that can discriminate between obsta-
cles and other agents perform as well as R-agents. It is
also worth pointing out that PD-agents usually die out of
hunger, whereas R-agents more often die because of col-
lisions (in particular in crowded environments).

It is not surprising that PC-agents perform better than
R-agents. Particularly in less crowded environments, PC-
agents can make use of their affective states in the same
way as A-agents, as their deliberative mechanisms do not
get activated all that often. Hence, we find that there
is a good chance that some PC-agents will survive. In
more crowded environments, however, this advantage dis-
appears and the disadvantages of deliberative detour plans
outweighs the advantage of avoiding competition using
the affective hunger state. When the PC-agents get “hun-
gry” enough to seek food in an environment with lots of
obstacles and other agents, their primitive deliberative ca-
pabilities are frequently triggered by proximity to obsta-
cles or other agents. The resulting “detour plans” can
sometimes lead them farther and farther away from food
resulting in starvation.

In addition, the experiments show that 20,20 and 30,30-
environment seem to be the ones where other agent kinds
stand the best chance against A-agents. This is because

environments considered above (the food rate is again 0.25xhese environments are crowded enough to make it more

if n agents of each kind competing against each other for
n = 3,5,8 (see Table 2, Table 3, and Tabl€ 4)

The above experiments show that regardless of the ini-
tial distribution, the number of agents in the environment
and the number of moving and static obstacles, we get the
following “ranking” (from best to worst):

1. A-agents

"The rationale for choosing these numbers is that with more than

difficult for A-agents to get food, while still not too crowded
for the other agents to mainly die because of collisions
(as happens in 40,40 and 50,50 environments; the latter
already becomes challenging for A-agents as well).

If the food rate is varied, then we find that higher food
rates (e.g., a food rate of 0.5) do not change the picture,
rather they show even more clearly the ability of affec-
tive agents to coexist in large groups. On the other hand,
lower food rates (in the range 0.125-0.25) make survival

8 agents, the environment is too crowded and, on average, the same in crowded environments impossible, as there are simply

number of agents of each kind will die in collisions, thus reducing the

overall number very quickly. Having fewer than 3 agents distorts the

statistics as the results are very sensitive to the initial (random) positions
of the agents.

too many obstacles obstructing the paths to food. With
these low food rates the advantage of A-agents over R-
agents slowly disappears as waiting for hunger to grow



Table 1: The average number of surviving agents in gZrenvironment when started with 5 agents of only one kind.

R-agents A-agents PD-agents PC-agents
Env p | o [Con]| g | o [Con|[[ w | o [Con|| p | o |Con
0,0 1460| 280 | 1.73 || 19.20| 2.74 | 1.70 || 16.70 | 3.09 | 1.92 || 18.00| 3.62 | 2.24
55 13.20| 4.78 | 2.96 || 17.20| 3.05| 1.89 || 13.60 | 2.07 | 1.28 || 16.30| 2.58 | 1.60
10,10|| 11.90| 3.81 | 2.36 || 17.20| 3.77 | 2.33 || 12.80| 3.85| 2.39 || 16.10| 1.79 | 1.11
20,20 || 11.60| 3.47 | 2.15|| 15.40| 3.95| 2.45| 8.00 | 3.89 | 2.41 || 14.80| 4.64 | 2.87
30,30 7.50 | 443 | 2.75|| 13.00| 3.56 | 2.21 | 4.30 | 437 | 2.71 || 10.50| 3.44 | 2.13
40,40 || 2.90 | 3.57| 2.21 || 10.40| 3.57| 2.21| 0.60 | 1.90| 1.18 || 7.70 | 4.88 | 3.02
50,50 | 0.20 | 0.63 | 0.39 || 8.00 | 3.56 | 2.21| 0.00 | 0.00| 0.00 || 1.00 | 1.94 | 1.20

Table 2: The average number of surviving agents in grenvironment when started with 3 agents of each kind.

R-agents A-agents PD-agents PC-agents
Env p | o [ Con p | o [Con| p | o [Con][ p [ o [Con
0,0 1.10 | 3.48 | 2.16 || 14.40| 5.87 | 3.64 || 0.00| 0.00 | 0.00 || 1.40| 2.37 | 1.47
5,5 1.70| 3.95| 245 | 14.40| 540 | 3.35 0.00| 0.00| 0.00|| 1.40| 3.27| 2.03
10,10 || 0.00 | 0.00 | 0.00 || 16.00| 2.28 | 1.35|| 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
20,20|| 0.00 | 0.00| 0.00| 14.80| 4.18 | 259 0.00| 0.00 | 0.00 || 0.60| 1.90 | 1.18
30,30 1.00| 3.16 | 1.96 || 10.90| 7.88 | 4.88 || 0.00 | 0.00| 0.00 || 3.10| 6.74 | 4.18
40,40| 0.00| 0.00 | 0.00 || 11.30| 3.09 | 1.92 || 0.00 | 0.00 | 0.00 || 0.00| 0.00| 0.00
50,50 | 0.00 | 0.00| 0.00| 4.92 | 5.32| 3.30 0.00| 0.00 | 0.00 || 0.00 | 0.00 | 0.00

before moving towards food is not a good strategy (if
missing out on one food source could be fatal).

4.3 Series 2: Affective vs. Advanced Delib-
erative Control

Given the superior performance of A-agents (even with
different food rates), we were particularly interested in
comparing them to advanced deliberative agents. D- and
C-agents have much more processing power in addition to
another very powerful visual sensory organ, so it is clear
that these two kinds are not on a par with A-agents. How-
ever, if the goal is to discover the limits of affective con-
trol, it seems only fair to employ more powerful mecha-
nisms to test the waters.

The setup for the following experiments is identical
to the previous ones, except that in the second series only
static obstacles were used. The reason for this restric-
tion is that D-agents do not have a tracking mechanism
for moving obstacles, and hence would wrongly classify
moving obstacles as “static”, very much to their disadvan-
tage®

ments with very few static obstacles (up to 10), D-agents
rarely plan, as their alarm mechanism is only triggered
by obstacles, not other agents. In these environments,
therefore, D-agents behave like R-agents. And since A-
agents beat R-agents in such environments, it does not
come as a surprise that they beat D-agents. In environ-
ments with a large number of obstacles, the compound
obstacle vectors used by the A-agents become uninforma-
tive, and A-agents must negotiate their way around obsta-
cles by trial and error, increasing the distance they have
to travel to food and the likelihood of collisions. In these
situations, the D-agent’s ability to plan routes around ob-
stacles that lead them directly to food pays off (see the
first two columns of Table 5).

The comparison between A- and C-agents is even more
interesting, and produced some results that we did not ex-
pect. Prima facieit seems that C-agents should have an
advantage over both A-agents and D-agents, since they in-
herit the capabilities of both. However, behavioural prop-
erties of parts of an agent architecture do not simply “add
up”: while C-agents have about the same performance as
A-agents for environments with very few obstacles (up to

We found that, depending on the environment, A-agents 10), in medium-obstacle environments (over 10 and less

still do well in competition with D-agents. In environ-

8In a second group of experiments, we added an additional percep-
tual mechanism to D- and C-agents which allows them to distinguish
between static and moving obstacles, so that only static obstacles are
entered in the agents’ map. As expected, D- and C-agents did worse
than most other agents mn-environments, since many of their plans
are based on wrong assumptions about the environment, and hence do
not improve their ability to get to food. We are currently working on
an extension of the D-agents that can—to a limited extent—track moving
obstacles.

than 40) they perform worse than both A-agents and D-
agents (which beat A-agents in these environments). Only
in more crowded environments (over 40), do C-agents
perform better than A-agents. The reasons for this un-
expected “weakness” of C-agents are quite interesting.

In low-obstacle environments the affective control of
C-agents is in command most of the time and deliberative
control is rarely used (hence their similar performance to
A-agents in these environments). In high-obstacle envi-



Table 3: The average number of surviving agents in grenvironment when started with 5 agents of each kind.
R-agents A-agents PD-agents PC-agents
Env [ # | o [Con|| o | o [Con|| p | o [Con][ p [ o [Con
0,0 0.00 | 0.00 | 0.00 || 12.30| 7.32 | 454 || 0.00| 0.00| 0.00 || 5.30| 7.63| 4.73
55 0.00| 0.00 | 0.00 || 14.70| 7.06 | 4.37 || 0.00 | 0.00 | 0.00 || 2.50 | 5.76 | 3.57
10,10|| 0.00 | 0.00 | 0.00 || 14.40| 5.66 | 4.42 | 0.00| 0.00 | 0.00 || 5.66 | 3.51 | 2.74
20,20| 0.00 | 0.00| 0.00| 15.40| 6.19| 3.83 | 0.00| 0.00 | 0.00 || 2.20| 5.13 | 3.18
30,30|| 0.20 | 1.10| 0.68 || 10.63| 5.59 | 347 | 0.27| 1.46| 091 || 0.77 | 243 | 1.51
40,40 || 0.00 | 0.00 | 0.00 || 11.20| 6.03 | 3.74 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
50,50 | 0.00 | 0.00| 0.00| 7.60 | 5.23| 3.24 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00

Table 4: The average number of surviving agents in grenvironment when started with 8 agents of each kind.

R-agents A-agents PD-agents PC-agents
Env p | o [ Con p | o [Con| p | o [Con][ p [ o [Con
0,0 0.70 | 1.64 | 1.01 || 14.00| 7.16 | 4.44 || 0.00 | 0.00 | 0.00 || 3.00 | 6.13 | 3.80
5,5 0.00 | 0.00| 0.00 || 16.00| 3.29 | 2.04 | 0.00| 0.00 | 0.00 || 0.00 | 0.00 | 0.00
10,10 || 0.00 | 0.00 | 0.00 || 14.60| 299 | 1.85|| 0.00| 0.00 | 0.00 || 0.50 | 1.58 | 0.98
20,20|| 0.20 | 0.63 | 0.39 || 15.60| 2.22 | 1.38 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
30,30 0.30| 0.95| 0.59 || 13.60| 5.10 | 3.16 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
40,40| 0.00| 0.00 | 0.00 || 8.40 | 660 | 4.09| 0.00| 0.00| 0.00|| 2.30| 2.75| 1.70
50,50 | 0.00 | 0.00| 0.00| 9.00 | 5.89 | 3.65( 0.00| 0.00 | 0.00 || 0.30| 0.95| 0.59

ronments the alarm is triggered very often, hence plan-
ning is active most of the time and a C-agent uses its de-
liberative mechanism to move towards food rather than
its reactive “scent following”, which is less efficient-the
performance of the C-agent here is similar to that of the
D-agent.

However, in medium-obstacle environments the af-
fective and deliberative control do not complement each
other, but rather “compete” with each other in such a way
that the resultant behaviour is of no advantage to the C-
agent. As with A-agents, when the energy level is high,
the influence of the affective hunger state keeps the agent
from approaching food aggressively. As the agent's en-
ergy level falls, it will eventually move towards food. How-
ever in C-agents, the “small detour” imposed by the plan-
ning system in order to move the agent safely around ob-
stacles is less efficient than the straightforward reactive
control of A-agents, which follow smell gradients (like
D-agents, C-agents are required to stay further than the
imminent collision range from the obstacle, rather than
just not hit it as with A-agents). In medium obstacle envi-
ronments, A-agents have few alarms/collisions, since the
sonar vectors give relatively good information about the
location of obstacles in uncluttered environments. Only if
an A-agent’s “desire” for food is very strong, can the vec-
tor gradients lead the agent too close to obstacles, thereby
triggering the alarm. Otherwise, the A-agent will be able
to manoeuvre around obstacles without bumping into them,

start makes up for the “small detour” imposed by follow-
ing the plan, to the extent that they outperform A-agents
(and hence C-agents) in these environments.

These results show that the integration of control mech-
anisms which are advantageous in different environments
can lead to new weaknesses which are difficult to pre-
dict from the behavioural descriptions of the individual
mechanisms. And while such extensions, which can be
viewed as “specializations” from an evolutionary point of
view, might lead to better adapted individuals for some
environments, it can “backfire” and reduce the individ-
ual’s fitness for others. Hence, evolutionary trajectories
that lead to such integration of different mechanisms will
have to take place in special environments.

5 Discussion

Our experimental studies have shown that the success of
the agents as measured by their ability to survive depends
on various environmental parameters. In some environ-
ments, A-agents are more likely to survive for a given
time period than D-agents, while in other environments
the D-agents are more likely to survive. We can clearly
see that the affective states that guide A-agents are pow-
erful control mechanisms, which allow large groups of A-
agents to coexist in certain environments (as they reduce
the competition for food). The advantages of such mech-

with the result that they are faster than C-agents. In medium2niSms, however, are outweighed by the disadvantage of

obstacle environments, the D-agents compensate for the
excessive caution of their plans by aggressively seeking
food, rather than waiting until they are hungry. This early

not being able to navigate efficiently around obstacles in
crowded environments.
We are currently investigating different affective states,



Table 5: The average number of surviving agents in @renvironment when started with 5 A-agents and 5 D-agents, and
5 A-agents and 5-C agents, respectively, for a food rate of 0.125

A-agents D-agents A-agents C-agents
Env p | o [Con| p | o | Con p | o [Con| p | o [Con
0,0 13.00| 2.31| 1.43| 3.80| 529| 0.00|| 10.30| 6.48 | 4.02| 7.20 | 496 | 3.08
5,0 12.30| 7.89 | 489 | 5.00| 6.45| 400|| 590 | 7.62 | 4.72| 11.40| 9.70 | 6.01
10,0|| 990 | 7.29| 452 | 6.10 | 6.97 | 432 || 890 | 7.23 | 4.48| 8.00 | 6.67 | 4.13
20,0 6.20 | 7.22 | 448 | 8.20| 6.92 | 429 | 9.80 | 432 | 267 | 2.70 | 4.37| 2.71
30,0 450 | 5.08| 3.15| 7.20| 6.36 | 3.94 || 9.40 | 5.93| 3.67| 3.40 | 4.25| 2.63
40,0 3.20 | 5.16| 3.20| 6.40| 481 | 298| 3.30 | 435| 296 | 6.70 | 5.72 | 3.54
50,0 0.50 | 1.58 | 0.98| 8.10| 5.47 | 3.39 | 3.60 | 474 | 294 | 3.60 | 4.06 | 2.52
60,0 0.70 | 221 | 1.37| 3.20| 4.32| 267 | 1.20 | 257 | 1.59| 3.20 | 3.74| 2.32
70,0 0.00 | 0.00| 0.00| 1.20| 257 | 159 0.00 | 0.00| 0.00| 1.10 | 2.02| 1.25
80,0 0.00 | 0.00| 0.00| 0.70| 1.64| 1.01 | 0.00 | 0.00| 0.00| 0.40 | 0.84| 0.52

such as a “higher order” affective state that measures the
frequency of alarm triggerings within a given time inter-
val and allows agents to “retreat” from what this mecha-
nism implicitly assumes to be a “dangerous” area. Fur-
thermore, A-agents with the ability to distinguish what

causes their alarm mechanism to be activated could have

two such states, one for “competition among agents”, and
one for “area crowded with obstacles”. Preliminary ex-
periments, however, show that while there might be some
advantage for such extended A-agents over regular A-
agents, this advantage does not outweigh that of being
able to produce “safe routes to food” as in the case of
the D- or C-agents.

So the question remains whether planning (such as re-
alised in D-agents), and thus deliberative control, does in-
deed mark a significant evolutionary improvement over
mere “affective” control in more than a few special en-
vironments. Obviously, more experiments are needed to
confirm such a conjecture.

We believe that the above theoretical and experimen-
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