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Abstract Hyper-heuristics are an optimization methodology which ‘search the
space of heuristics’ rather than directly searching the space of the underlying
candidate-solution representation. Hyper-heuristic search has traditionally been di-
vided into two layers: a lower problem-domain layer (where domain-specific heuris-
tics are applied) and an upper hyper-heuristic layer, where heuristics are selected or
generated. The interface between the two layers is commonly termed the “domain
barrier”. Historically this interface has been defined to be highly restrictive, in the
belief that this is required for generality. We argue that this prevailing conception of
domain barrier is so limiting as to defeat the original motivation for hyper-heuristics.
We show how it is possible to make use of domain knowledge without loss of gen-
erality and describe generalized hyper-heuristics which can incorporate arbitrary
domain knowledge.
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1 Introduction

Sörensen and Glover [1] define a metaheuristic as “a high-level problem-
independent algorithmic framework that provides a set of guidelines or strategies
to develop heuristic optimization algorithms”. The goal of hyper-heuristics is to act
as effective cross-domain search methodologies, i.e. to be applicable not only to
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instances with different characteristics from a single domain, but also across mul-
tiple problem domains. The definition of a hyper-heuristic varies considerably in
the literature: indeed, interpreting the notion of ‘searching the space of heuristics’
in full generality allows application to any heuristically-informed solution mech-
anism (e.g. the choice of pivot function used in Quicksort [2]). In this article, we
concentrate on the application of hyper-heuristics to metaheuristic search. In the
following sections, we describe how the definition of hyper-heuristics has evolved
over time. We re-visit the underlying motivation in order to highlight some popular
misconceptions and the attendant need for re-characterization.

1.1 Historical development of hyper-heuristics

One of the earliest studies in this area was an application to a job shop scheduling
problem due to Fisher and Thompson [3]. The use of scheduling (dispatching) rules
as heuristics is common in this area and the study was motivated by the idea of
“a combination of the two rules being superior to either one separately”. In the
early 1990s, Storer et al [4, 5] proposed a general approach combining heuristic-
and solution- space methods for solving sequencing problems. The authors used
job shop scheduling as a case study and argued that the proposed approach can be
“easily” applied to any scheduling objective. Fang et al. [6, 7] subsequently evolved
sequences of heuristics for constructing schedules, explaining how the proposed
approach can be “simply amended” to deal with more complex industrial open shop
scheduling problems.

The term ‘hyperheuristics’ (in unhyphenated form) was first introduced by Cowl-
ing et al. [8] as a means of deciding which low level heuristic to apply during the
search process, depending on the nature of the region being explored. This initial
definition referred only to (what has become known as) ‘selective’ hyper-heuristics,
with generative hyper-heuristics being a later development [9]. The motivation for
the use of the term ‘hyper’ comes from hypergraphs, where an edge is an n-ary rela-
tion on vertices, the analogy being that hyper-heuristic selection is performed on a
collection of operators (i.e. functions with signature Op : S→ S, for some candidate
solution representation S). Hyper-heuristic selection thus takes a list of operators,
together with a function for choosing an operator from this list and applies the se-
lected operator to an incumbent state. Mathematically, we can represent this as:

select : [Op]× ([Op]→ Op)×S→ S

select : (operators,choose, incumbent) 7→ choose(operators)(incumbent)

If, as has invariably been the case, the list of operators and the function for choosing
from them are known in advance, then the signature for select can be considered to
be S→ S, precisely that of an operator. This notion of ‘recursive composition via
selection’ [10] could equally be applied to other metaheuristic components (i.e. ac-
ceptance, termination etc), though the authors are not aware of any such approaches
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( e.g. the evolution of acceptance criteria by Hyde et al [11] was obtained via a
generative rather than selective approach).

Cowling et al. [8] stated that a hyper-heuristic approach operates at ‘a higher ab-
straction level’ than a metaheuristic and in practice this has been translated as ‘oper-
ating independently of the underlying problem domain’. To this end, Cowling et al.
[8] introduced the notion of a domain barrier between the layers of hyper-heuristic
framework and problem-domain implementation. As we explicitly demonstrate in
Section 2, this notion of domain independence can be described purely in terms of
generic metaheuristics, avoiding the rather mixed collection of concepts that has
become associated with hyper-heuristics (see also Figure 1).

The widely-cited definition due to Burke et al. [12] of “(meta-)heuristics to
choose (meta-)heuristics” has the stated motivation of “raising the level of gen-
erality at which optimisation systems can operate”. The authors contemplate that
many businesses, particularly small ones, are interested in “good enough, soon
enough, cheap enough” solutions to their problems. Given the high cost of devel-
oping problem-specific methods, this highlights the need for a general, easy-to-use,
yet robust approach for ‘providing near optimal solutions’. The intention was that
the domain barrier represents the separation between different levels of expertise,
i.e. practitioners would be responsible for implementing only solution representa-
tions and naı̈ve ‘knowledge-poor’ (and hence presumably often randomized) heuris-
tics for each new problem domain, with researchers tasked with devising hyper-
heuristics which work well across domains.

Ross et al. [13, 14] defined a hyper-heuristic as a search method which com-
bines simple heuristics to solve a range of problems satisfactorily. They evolved
bin-packing rules using a Learning Classifier System [13] which learns which low
level heuristic to use at a given decision point. Ross [9] provided a similar definition
as Soubeiga [15] introducing hyper-heuristics as “heuristics to choose heuristics”
and combining multiple heuristics to compensate for individual weaknesses. In a
foundational paper on generative hyper-heuristics, Ross [9] further proposed hyper-
heuristics as a special form of genetic programming, with a function set consisting
of existing heuristics. In this study, the aim in hyper-heuristic design is presented as
finding a “fast, reasonably comprehensible” approach, repeatedly able to produce
high quality solutions. Qu et al. [16] proposed a tabu search approach to examina-
tion timetabling and graph colouring problems, indirectly acting on the candidate
solutions via a mixture of graph-colouring heuristics. Two cross-domain heuristic
search competitions, CHeSC 2011 and 2014 were performed using the HyFlex se-
lective hyper-heuristics framework [17], which provided an implementation of six
problem domains.

A recent definition of hyper-heuristic which is probably the most commonly-
used is provided by Burke et al. [18] as “a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems”. A more
concrete definition adopts the terminology of the ‘Algorithm Selection Problem’
(ASP) [19] to describe hyper-heuristics as ‘a mapping from features to algorithms’.
A rich research area that has historically been more overtly influenced by the ASP
than hyper-heuristics is the field of algorithm portfolios [20, 21]. Recent work in this
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field includes ‘Dynamic Algorithm Portfolios’ [22] which chooses from a subset of
available algorithms, applying them simultaneously to a problem instance until the
fastest algorithm solves it.

In principle, the adoption of the ASP would allow the gamut of machine learning
techniques to be applied to hyper-heuristics, but in practice the features made avail-
able for learning by selective hyper-heuristics have been limited. In contrast, the
input to generative hyper-heuristics is (necessarily) domain-specific, and the only
general framework supporting generative hyper-heuristics which we are aware of is
TEMPLAR [23]. Chakhlevitch and Cowling [24] specifically argue the importance
of limited problem domain information in achieving cross-domain generality for se-
lective hyper-heuristics. Moreover, they further state that a hyper-heuristic would
ideally be informed only of the number of low level heuristics for a given problem
domain and objective value of a given solution. A variant of the strict notion of do-
main barrier due to Woodward et al [25] has been perpetuated via HyFlex as a de
facto standard.

As can be seen from the above, the definition of hyper-heuristic has evolved
considerably over time. As a result, there is relatively little clear consensus on what
the essential mechanisms of a hyper-heuristic actually are. Figure 1 is a feature
diagram of various concepts historically associated with (selective) hyper-heuristics.
The concepts which are non-obvious (or otherwise not covered above) are:

· Heterogeneous operators: The ability to treat different operators in a uniform
manner in the hyper-heuristic layer. For example, with a permutation represen-
tation, the ability to mix e.g. 2-opt with transpositions.
· Selection a posterioi versus a priori: whether or not an operator must be applied

(to the current incumbent solution) before it can be chosen. Metaheuristics are
traditionally, ‘apply then choose’, e.g. choose the first- or best- improving. The
a priori case is when an operator is chosen via some mapping based on its
features and the search trajectory.

Selection
Heterogeneous

operators
Knowledge-poor

operators
Learning

generalization

Domain
independent
hyper-layer

a priori Within instancea posteriori None Cross instance Cross domain

Selective Hyper-heuristic

Fig. 1: Concepts historically associated with selective hyper-heuristics

Despite the diversity of concepts associated with hyper-heuristics, the authors are
aware of only a few attempts to consolidate them. It is also interesting to note that
some conceptual and formal approaches that might reasonably be included under the
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wider notion of ‘heuristics to select or generate heuristics’ (e.g. [26, 27]) have not
historically been considered to be part of the literature. As discussed above, selective
hyper-heuristics can be shown to be an instance of the well-known ‘Composite’
design pattern [10], a mechanism used by the HYPERION framework [28, 29] to
allow the same source code to express both metaheuristics and hyper-heuristics.
The widely-cited classification scheme due to Burke et al [30] is generalized by
Swan et al [31] to allow any combination of selective/generative and online/offline
to co-exist and interoperate at runtime within the same architecture.

1.2 Effectiveness in new domains

It has been observed that not only the design of a selective hyper-heuristic but also
the choice of predefined low level heuristics influences its performance [32]. To the
best of the authors’ knowledge, there are no applications of selective hyper-heuristic
for which the use of only ‘knowledge poor’ low-level heuristics is competitive with
the state-of-the-art. In practice, state-of-the-art low level heuristics have therefore
made their way into the domain implementations for improved performance, e.g. in
several of the problem domains implemented by HyFlex [17].

This indicates that (selective) hyper-heuristic research has become disconnected
from the original motivation, failing to provide solutions which are ‘good enough,
cheap enough’ (and in general certainly not the ‘near optimal’ solutions which were
originally hoped for). Due to the artificially-restricted notion of the domain barrier,
devising and using selective hyper-heuristics is currently no less labour-intensive
than simply using some generic metaheuristic framework (detailed reasons for this
are given in Section 2). For researchers, it surely is clear that the application of ma-
chine learning (e.g. [33]) is necessary to avoid cross-domain generalization being
obtained via laborious manual ‘generate and test’. However, the de facto domain
barrier restrictions mean that even the elaborate machine learning techniques that
have been employed in selective hyper-heuristics tend to make use of limited in-
formation. There is therefore a need to move from this restrictive interface to one
which:

· Enables more expressive (i.e. feature-rich) hyper-heuristics.
· Allows state-of-the art knowledge to be easily incorporated into a new problem

domain model by less-experienced practitioners.

To achieve this, it is necessary to disentangle approaches which have become
prevalent from the goals they sought to achieve. This is particularly important since
none of the concepts of Figure 1 suffice to fully-characterize the many publications
with ‘hyper-heuristic’ in the title. To reiterate: applying hyper-heuristics would be of
interest to practitioners (e.g. in industry) if this avoids the need for labour-intensive
modelling of a specific problem domain. However, metaheuristic search is already
a computational intelligence success story in this respect: approaches such as simu-
lated annealing, tabu search, genetic algorithms and swarm optimization yield good
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(and often state-of-the-art) results in a wide range of problem domains. The mini-
mal requirement for domain modelling using these techniques is very small, needing
only a choice of solution representation, solution quality measure and one or more
operators for perturbing/recombining solutions.

Depending on the available modelling budget, the sophistication of domain
knowledge can range from the very naı̈ve (e.g. potentially infeasible solutions; ran-
domized operators, quality measure that does not yield a search gradient) through to
a highly-informed combination of state-of-the-art techniques. The important point
relative to selective hyper-heuristics is that, in this case, practitioners retain the op-
tion to increase the competence of the framework layer as required. In the next
section, we show how the popular conception of selective hyper-heuristics can be
viewed as a (somewhat uninformed) special case of generic metaheuristics.

2 Popular notion of the domain barrier

Fig. 2: A popular conception of selective hyper-heuristics

The de facto conception of selective hyper-heuristics (e.g. as exemplified by
Hyflex [17]) is shown in Figure 2. Here the notion of ‘heuristic’ is restricted to
that of ‘operator’, i.e. a perturbation of a candidate solution. Hyflex operates as fol-
lows: the hyper-heuristic solver maintains a list of heuristics [o1, . . . ,on] and a list of
solutions [s1, . . . ,sm]. The heuristic value of a solution sk is given by e(sk). At each
iteration, the solver chooses three integers i, j,k such that the solution in slot k is re-
placed by the result of applying operator i to solution j. This is the characterisation
given by Woodward et al [25] as:
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Sel : N×N×N→ R (1a)
Sel : (i, j,k) 7→ e(oi(sk)) (1b)

with solution k having first being replaced by oi(s j) as a side-effect. The only in-
formation available to the solver in making this choice is the fitness value/execution
time resulting from operator application (and any memoisation of such informa-
tion from previous iterations). Problem-specific information is hidden in the belief
that the generality of the hyper-heuristic will be lost. This can be considered as a
‘lowest-common-denominator’ approach to generality.

It should be immediately clear that this formulation is too restrictive to allow
many popular metaheuristics to operate hyper-heuristically (not least) because of
the following common requirements:

1. The ability to compare solutions for domain-specific equality. This arises since
solution representations are only visible to the hyper-layer as integer indices.
The result is that even such elementary techniques as ‘breadth-first search’ can-
not be expressed.

2. The ability to determine those parts of a solution that have been changed by a
heuristic. This is a common requirement in tabu-style approaches (e.g. making
recently-perturbed permutation indices tabu in the TSP).

3. The ability to detect and react to constraint violations (e.g. infeasible solutions)
at the framework level.

The inability to test for equality also precludes approaches such as reactive tabu
or breakout local search [34, 35], which explicitly maintain equality-based solution
histograms in order to determine when a diversification strategy should be triggered.

For clarity, we now make explicit the difference between metaheuristics and se-
lective hyper-heuristics (as defined by the ‘traditional’ Hyflex-style domain barrier).
Consider a generic framework for a local search metaheuristic shown in Listing 1.
The framework is parameterized by the type S of solution representation and the
type F denoting the features to be memoized in the search history. [T ] denotes a
list of elements of type T and operators Op are functions S→ S. The memoized
features are used for decision-making during the selection process and are obtained
via a mapping f eatures : Op×S×S→ F .

S s e a r c h ( incumben t : S , o p e r a t o r s : [ Op ] , h i s t o r y : [ F ] ) {
whi le ( n o t f i n i s h e d ( incumbent , h i s t o r y ) ) {

Op op = s e l e c t O p ( incumbent , o p e r a t o r s , h i s t o r y ) ;
S incoming = op ( incumben t ) ;
incumben t = a c c e p t ( incumbent , incoming )
h i s t o r y . u p d a t e ( f e a t u r e s ( op , incumbent , incoming ) ) ;

}
re turn i ncumben t ;

}

Listing 1: Generic local search meta- or hyper- heuristic
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To instantiate this framework as a metaheuristic (e.g. simulated annealing for the
TSP), we put:

· S as a permutation.
· [Op] as any desired perturbations e.g. transpositions, 2-opt etc.
· selectOp as uniform random selection.
· accept as Metropolis-Hastings.
· Feature type F to be the empty set (in this particular case).

To instantiate this framework as a Hyflex-style hyper-heuristic, we put:

· S as an integer in the range [0,m).
· Op as an integer in the range [0,n).
· selectOp as e.g. choice function [36].
· Feature type F to be (Op,S,S,R), given by (i, j,k,e(sk)) from Eq. (1a), above.

It should be clear that the same arguments as given above apply to any other meta-
heuristic, population-based or otherwise. Hyflex-style selective hyper-heuristics can
therefore be seen as a special case of a metaheuristic in which solutions and oper-
ators are mapped onto opaque integer indices at the framework level. It should be
clear from the fact that the framework level is already generic in terms of solution
representation, that there is absolutely no requirement for this degree of opacity: we
can instantiate the hyper-heuristic framework with arbitrary solution and operator
types, thereby eliminating the above issues (equality of states etc) associated with
the opaque handles of Hyflex. In addition, such types can provide much greater util-
ity without loss of generality, e.g. the ability to decompose a solution into parts to
act as finer-grained tabu attributes.

3 The need for ‘domain-independent domain knowledge’

As explained in the previous section, if one adopts the prevailing notion of the do-
main barrier, then the minimal responsibilities of a practitioner in implementing
some new domain are precisely the same irrespective of whether they wish to use
metaheuristics or hyper-heuristics. In fact, they are considerably worse off with the
latter approach: if search quality is unsatisfactory, then there is no means of ‘in-
jecting further domain knowledge’ at the framework level as can be done with a
metaheuristic. What is therefore needed is a hyper-heuristic approach which can
operate on much richer domain knowledge.

To illustrate the extent to which this is possible, it is useful to consider the dis-
tinction between ‘analytic’ and ‘empirical’ knowledge. We define the former to be
information which is given a priori (or otherwise formally derived from) the prob-
lem description and the latter to be that derived from the solution trajectory. The
de facto conception of hyper-heuristics is that they can only make use of empirical
knowledge at the framework level. The empirical features exposed by HYFLEX are:

· Objective value arising from applying oi(sk).
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· Execution time for operator application.
· Integer handle of an operator.

Given this limited set of features, it is difficult to learn useful information even
within a domain. Handles denoting operators have no persistent meaning across
problem domains and the possibilities for cross-domain learning are therefore even
more limited. While it is encouraging to see that extensions to the de facto con-
ception of the domain barrier have recently been proposed [37], it is possible to go
much further than this, as we now demonstrate.

A recent machine learning approach of Asta and Özcan [33] (in which linkage
between operators is estimated via tensor factorization) is perhaps representative of
the limits of what might be learned from the kind of empirical information described
above. In contrast, in many cases we do not need to mine information of this form
from the solution trajectory: we already have it as prior knowledge. Consider the
ability to reason algebraically about operators. For example, it is well known that
transpositions of permutations are self-inverse, so it is wasteful to apply the same
transposition in succession. This is of course an extremely simple example: there
is no limit to the kinds of exploitable analytic information we might devise. As a
more general example, any sequence of operators (of any sort, as long as they have
signature S→ S) forms an algebraic structure known as a monoid under concate-
nation. This monoid structure can be represented by equations between operators
that describe which sequences always lead back to their starting state (irrespective
of the specific start state). As shown by Swan et al [38], it is often possible to use
this algebraic relationship between operators to derive a set of rewrite rules. These
rewrite rules allow any sequence of operators to be reduced a priori to its minimal-
length equivalent, thereby eliminating redundancy (i.e. cycles) in the state-space
graph. In particular, this is an example of cross-domain analytic knowledge: Swan
et al apply this to the Quadratic Assignment Problem, but the equational description
of the associated monoid structure could be used in any problem which operates on
permutations.

While this cannot be achieved hyper-heuristically with a HYFLEX-style formula-
tion, making the additional information (in this case the monoid equations) available
to a hyper-heuristic solver has absolutely no cost in terms of generality: a solver
which is incapable of acting on such information can simply ignore it. The chal-
lenge is therefore to exploit such information without loss of generality as ‘domain-
independent domain knowledge’. Although the notion of being able to operate on
arbitrary features has always been implicit in the ASP1, the vast majority of work in
selective hyper-heuristics has been concerned with the limited feature set described
above.

The need to move away from such unnecessary restrictions then leads immedi-
ately to considerations of knowledge-representation, which have fortunately been
well-studied in the wider AI community for many years. Two examples of existing
hyper-heuristic systems which can (in terms of their architectural principles) incor-
porate arbitrary domain knowledge are the blackboard system of Swan et al [31]

1 and to a less overt degree implied in early work on hyper-heuristics (e.g. [12])
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and the multi-agent system of Martin et al [39]. Although aspects of their architec-
tures differ, they both have the ability to associate competent, representation-aware
algorithms (known as ‘knowledge sources’ or ‘agents’, respectively) with heteroge-
neous sources of information, and it is this which allows these frameworks to op-
erate across domains. The actual association process (which is precisely a mapping
from features to algorithms) might range from the relatively trivial (e.g. a dictionary
of key-value pairs indicating that a particular algorithm is competent to operate on
permutation representations) to more specialized condition-action patterns induced
from any source of information (analytic or empirical) that the agent is able to rec-
ognize. In the next section, we discuss the use of constraint satisfaction as a generic
vocabulary for expressing domain-independent domain knowledge.

4 Cross-domain knowledge representation

We now elaborate on the desired nature of knowledge representation for use in a
hyper-heuristic framework capable of generalized cross-domain learning. Such a
generalized representation should ideally allow for the expression of problem spec-
ifications and the description of low-level heuristics, together with formal proper-
ties of those problems and heuristics. What we therefore require is a description in
a problem-independent vocabulary: such a representation would explicitly support
cross domain learning. We may then rely on analytic knowledge of widely-used
problem representations such as graphs and tensors, or reductions to well-known
problems. In principle the hyper-heuristic could access such a specification in any
detail. In this respect, a hyper-heuristic need not differ from a metaheuristic spe-
cialised to some problem domain. As discussed above, the main goal of hyper-
heuristic research is to act effectively in a newly-specified domain without relying
on the presence of optimization experts. Analytic knowledge allows us to better
achieve this by injecting richer domain knowledge into the search process. In par-
ticular, it can contain rules about operator applications which are known a priori to
result in improvement. An well-known example is the uncrossing of edges in the
TSP:

detect : f indcross

∃ segment (Ap,Ap+1) and (Ap+i,Ap+i+1) in cycle {Ai|i = 1 . . .n}
s.t.|ApAp+1|+|Ap+iAp+i+1|> |ApAp+i|+|Ap+1Ap+i+1|

action : uncross

replace (Ap,Ap+1)→ (Ap,Ap+i),(Ap+i,Ap+i+1)→ (Ap+1,Ap+i+1)

and reverse {Ap+1 . . .Ap+i}.

Such representations could also contain statements about certain relationships or
constraints which are (nearly) always satisfied. A domain expert may wish to ex-
press his experience that certain patterns never contribute to good solutions. A suit-
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able knowledge representation formalism will permit efficient handling of such ex-
pressions. One possible means of expressing cross-domain knowledge is constraint
programming, which provides a well-established means for describing such gen-
eralised problems. Constraint satisfaction problems have the advantage of being
declarative, i.e. allow the statement of constraints in an implementation-independent
manner. Specifying patterns (in various forms) is common to many constraint lan-
guages and properties of low level operators and the relationships between them can
readily be formulated in this manner. The detailed description of the workings of
those operators may still proceed in any language. This implementation may more-
over differ from one domain to another. Given an ontology of domain-independent
concepts, it is very natural to express the transferable knowledge in terms of con-
straints.

To make these issues concrete, we proceed to discuss the features of a specific
knowledge representation format. XCSP [40, 41, 42] allows expression of constraint
satisfaction problems (CSP), weighted constraint satisfaction problems (WCSP) and
quantified constraint satisfaction problems (QCSP). It allows the description of in-
stances according to characteristics such as real-world; patterned; random instances
with/without a structure or involving only boolean variables. The authors further-
more distinguish instances based on whether they are defining all constraints in
extension, partly in intension or use global constraints. Designed for expression of
general decision and optimization problems, it supports two notations: a full XML
notation compromising between human and machine readability and an abridged
notation which is much more human readable. Both notations are equivalent and
translation in both directions is possible.

The XCSP specification of a problem domain for a hyper-heuristic can therefore
contain information about problem properties and low level heuristics. Information
on low level heuristics in present hyper-heuristic frameworks include categoriza-
tions such as ‘hill climber’ and ‘population based’ [37]. As argued elsewhere in this
paper, it is possible to extend this much further: since XCSP allows for the intro-
duction of arbitrary problem and data descriptions, then in principle any information
about a low level heuristic that has been acquired should be expressible, in principle
to any detail. For example, current hyper-heuristic practice requires that determining
when it might be appropriate to call one heuristic immediately following another is
achieved empirically. In many cases, this information is already available analyti-
cally, e.g. in the manner which is exploited in the ‘Reverse Elimination Method’ of
tabu search [43].

Presently, tools are available for solving, parsing, checking of instances and so-
lutions and shuffling variables (to check robustness of solvers). Since the format
is open and has systematic parsers available, other tools may be conceived: one
might think of discovering patterns in instances or history, item set mining and con-
straint learning, which could serve to summarize XCSP descriptions and keep them
fit for use by on-line hyper-heuristics. Links between data mining and constraint
programming have been suggested before [44], and ongoing integration between
the two could support a fundamental move from pure model-based problem solving
algorithms to an integrated, data-driven approach. In this extended representation,
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instances and algorithm components (low level heuristics) would be described to-
gether with the conventional model. In a sense, this is a natural evolution, given the
decades of algorithm design guided by tests on benchmark instances. This combined
representation would describe problem, instances and history in one comprehensive
format.

All this may change our vision of how combinatorial problems are described,
with constraint languages providing models for the problem in the conventional
sense, together with information on how such problems could be solved. This infor-
mation, in the conventional hyper-heuristics paradigm, is specified in terms of low
level heuristics, but predominantly provided declaratively by the research commu-
nity.

5 Future Directions - The role of ontologies

Ontologies codify knowledge in order to drive (traditionally formalized) reasoning
processes. Their first recorded use dates back to Aristotle [45]. In computer sci-
ence, the graph-based semantic nets of Quillan and Simmons [46] and Minsky’s
frame systems provided a foundational definition of entities in terms of specializa-
tion and part/whole relations [47]. These approaches subsequently spawned a multi-
plicity of variants (e.g. [48]). The previous section framed knowledge representation
for hyper-heuristics in the vocabulary of constraint satisfaction. By expressing con-
straints as relations, such representations clearly have an equivalent representation
as graphs, hypergraphs or RDF-triples. The use of an ontology for scheduling and
routing problems can be seen in Martin et al [39, 49]. Recently, the Resource De-
scription Framework (RDF) of the Semantic Web [50] has emerged as a common
ontological basis for knowledge exchange. One important feature of web ontologies
is that knowledge can be hierarchically constructed by referencing (the definitions
for) other knowledge elements through a web-hosted URI.

What makes this relevant for hyper-heuristics is the associated support for the dis-
covery, aggregation and substitution of uniquely-identifiable knowledge elements in
the form of problem and algorithm descriptions. The goal then is that practitioner
activity moves from ‘under-the-hood’ software development to the use of tools to
hybridize pre-existing declarative specifications or else tweak constraints. Ontolo-
gies provide further support for the large-scale vision of hyper-heuristics, consist-
ing of online data repositories containing discovered rules, patterns and constraints
which describe good solution approaches. A suitable choice of knowledge repre-
sentation elements (e.g. based on XCSP as above and/or other interoperability stan-
dards such as OpenMath [51]) can form the basis of community investment in such
cross-domain learning tools. This is to be contrasted with the more isolated and
domain-specific development that typically takes place in today’s research settings.
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6 Conclusion

We have traced the historical development of hyper-heuristics and highlighted the
motivating division of responsibility: hyper-heuristic researchers are responsible for
devising methods which work well across domains, with the goal of allowing prac-
titioners to invest minimal effort in modelling a new domain. A requirement for
‘lifelong, cross-domain learning’ is strongly implied by this division of responsi-
bility: when provided with the definition of a new domain, a hyper-heuristic must
be able to produce effective solutions in this domain without significant practitioner
expertise or intervention.

As part of a wider community initiative, we therefore argue for a polar stance to
that of the prevailing view of hyper-heuristics: instead of imposing a ‘maximally re-
strictive’ interface between problem-domain and hyper-heuristic solver, we propose
that it is vital to make problem domain (‘analytic’) and solution trajectory (‘empir-
ical’) information available to the solver via some ‘universal’ knowledge exchange
format. The wider possibilities then include:

· The extension of the algorithm selection problem to include ‘analytic’ informa-
tion as part of the mapping process.
· The availability of arbitrarily rich features for machine learning approaches.
· The creation of a library of declarative descriptions of domains via a constraint

language, more easily customized for a new domain than program code.

To coordinate these varied activites, a wider community initiative is in progress to
promote an architectural vision of ‘Metaheuristics in the Large’ [52].
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32. Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. Hill climbers and mutational heuristics
in hyperheuristics. In Parallel Problem Solving from Nature - PPSN IX, volume 4193 of
Lecture Notes in Computer Science, pages 202–211. Springer Berlin Heidelberg, 2006.
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