G5BAIM – AI Methods

Game Playing

Introduction

In this part of the course we start to look at game playing, in particular the problems of searching when we are playing games.

The search problems we have looked at up until now assume that the situation is not going to change (for example, if we are searching for a route between two towns, the towns do not move during the search). In game playing this is not the case. If you make a move in (say) chess then your opponent is going to move next, so you cannot be certain what the board state will be after your opponents move.

This area of computer science has been studied for many years by AI researchers. Even Charles Babbage (Bowden, 1953) thought about using his analytical engine to play tic-tac-toe. And Alan Turing even devised a chess playing program (that was never implemented) (see Bowden, 1953).

These notes are largely based on the course text (Russell & Norvig, 1995) but, if you are interested in this subject there is a lot of literature available.

Brief History of Game Playing

Chess

Chess has long been the holy grail of game playing programs. Claude Shannon (Shannon, 1950), on March 9th 1949 delivered a paper at a New York conference. In it he presented his ideas as to how a computer could play chess. He spoke about the size of the search space and how deep the computer would have to look to find the next move. 

Chess has 10120 unique games (with an average of 40 moves - the average length of a master game).

Working at 200 million positions per second, Deep Blue would require 10100 years to evaluate all possible games. To put this is some sort of perspective, the universe is only about 1010 years old and 10120 is larger than the number of atoms in the universe.

Shannon also noted that analysing to a depth of 40 at a rate of one game per microsecond would take a computer 1090 years to make its first move.

In 1957 artificial intelligence pioneers Herbert Simon and Allen Newell predicted that a computer would beat a human at chess within 10 years. 

Simon admits "I was a little too far-sighted with chess, but there was no way to do it with machines that were as slow as the ones back then." In 1958, the first computer able to play chess was an IBM 704 with about one-millionth Deep Blue's capacity. 

Despite the problems of getting computers to play chess there have been steady improvements. In 1967, a program called Mac Hack started competing successfully in human tournaments. In 1983, a program called Belle attained "expert" status from the United States Chess Federation. 

In the mid-1980s, scientists at Carnegie Mellon University started the work that was to become the Deep Blue project. They used a Sun workstation that could examine 50,000 positions per second. The project moved to IBM in 1989. 

On May 11, 1997, Kasparov lost a six game match against deep blue with a score of 3.5-2.5. Two wins for Deep Blue, one for Kasparov and three ties. 

Many people see this date as the day that a computer won the world chess championship. 

To find out the latest about deep blue, take a look at IBM’s Deep Blue research page (see IBMRes).

Checkers

Arthur Samuel, in 1952 (see Samuel, 1963), wrote the first checkers program. The original program was written for an IBM 701 computer. In 1954 he re-wrote the program for an IBM 704 and added a learning mechanism. What makes this program stand out in AI history is that the program was able to learn its own evaluation function. Taking into account the IBM 704 had only 10,000 words of main memory, magnetic tape for long-term storage and a cycle time of almost one-millisecond, this can be seen as a major achievement in the development of AI.

Samuel made the program play against itself and after only a few days play, the program was able to beat its creator and compete on equal terms with strong human opponents.

It remains as a testament to Samuel that there was little more work done on checkers until Jonathon Schaeffer et. al. developed Chinook (see Schaeffer, 1996). This program uses alpha-beta search (which we consider below) and also has a database to allow it to play a perfect end game. In 1992 Chinook won the US Open and subsequently challenged for the world championship. Dr. Marion Tinsley had been the world champion for over 40 years. In that time she only lost three games. Playing Chinook she lost her fourth and fifth game but ultimately won the match by 21.5 points to Chinook’s 18.5 points. In August 1994 there was a re-match but the match ended prematurely when Dr. Tinsley had to withdraw for health reasons. As a result of this Chinook become the official world champion. Scheaffer (1996, p.447) claimed that Chinook was rated at 2814. The best human players are rated at 2632 and 2625. Chinook did not include any learning mechanisms.

More recently (Kumar, 2000) developed a checkers program that “learnt” how to play a good game of checkers. The program started knowing just the rules of the game so that it could make legal moves. The program was allowed to evolve by creating a population
 of games that competed against one another, with the best games surviving and being adapted in some way before competing again. The adaptation was done using a neural network with the weights on the synapses being changed by an evolutionary strategy. The best program was allowed to compete against a commercial version of checkers and it beat it 6-0. The program got called Anaconda due to the way it put a strangle hold on its opponents.

I actually saw this program as the CEC conference at which the paper was presented. It challenged anybody who cared to play it – and remain undefeated throughout the duration of the conference.

Minimax

As I said above, the problem with playing games is that there is another agent (he/she/it) involved that is trying to thwart your every move. Your objectives are in direct opposition.

In 1944, John von Neumann co-authored a book (Neumann, 1944) which outlined a search method called minimax, as it tries to maximise your play, whilst minimising your opponents.

In order to implement minimax you need some way of measuring how good (or bad) your positions is. This is often called a utility function.

Take a look at this game tree


This is a “made up” game, but we can make some observations about it.

Firstly, let’s assume that we have generated the full game tree so, starting from the initial state, this represents the entire search space for the game. Of course, this is not a serious game but anything larger and we would have trouble drawing the entire search tree (even for something like tic-tac-toe).

The game starts with the computer making a move, A, which allows the game to move to states B and C. The opponent is now allowed to move and could move to states D, E, F or G. Finally, the computer makes a final move and we reach the eight terminal states shown.

Once we have expanded all the search tree we can decide who has won the game and we can assign each terminal state a value showing which player won.

We will assume that a negative value represents a win for the opponent and a positive value represents a win for the computer (we could, I suppose have a zero value for a draw, but we have not bothered in this tree).

Once we reach this position we know, with absolute certainty, who will win the game if we follow a particular branch through the search tree. The aim for the computer is to decide at any point which branch is the correct one to take. That is, we want to force the opponent into taking moves that will ultimately lead the computer to win. And this is what minimax allows us to do.

Once we have generated the complete search tree we can backtrack up the tree assigning values to nodes based on the player whose turn it is to move. The computer will be trying to maximise the value at any given node and (we assume) the opponent will be trying to minimse the value at any given node. If we assume the worst and give our opponent credit for what he/she/it will do then we can assume they will always play a perfect game and minimse the value at a given choice point.

If you look at the search tree you can see that the values have been propagated back up through the tree based on whose turn it is to play and whether they are trying to maximise or minimise at that point.

Once we have created the complete game tree, the computer player is now able to play the perfect game. At each node it just moves to the next node that has the highest value. If you follow the game through you will find that the computer will win as it will start with move B. We assume the opponent will move to E (i.e. it is trying to minimise) and we will take the move that gives us a victory with a value of 1.

Of course, there is a flaw in this argument as the computer gets two moves to the opponents one. This is not really fair is it!? But, without drawing an even bigger game tree, we can’t show a complete game and, as we shall see, in a moment this is irrelevant anyway.

It is also worth mentioning at this point that, in the context of game search trees a move by each player is often referred to as a ply. So, a typical game is two ply, which represents one move by each player. So, the search tree above is 1½ play.

So, lets’ look at a larger example (taken from Luger, 1998). The game we are going to consider is called nim. We start with a pile of tokens. At each move the player must divide the tokens into two non-empty, non-equal piles. So, a pile of seven tokens can be divided into piles of 6-1, 5-3 and 4-3 but not 3-3.

The complete search tree for this game can be shown as follows.


To make things (appear!) fair, we will let MIN go first. At every leaf node we assign a value to each position of one, if the play has resulted in a win for MAX and zero if the play has resulted in a win for MIN (the various turns are shown on the left). These values are then propagated up the tree in the same way we did before.

It can be seen that, if we let MIN go first we can guarantee that we (MAX) will win (of course, if we made ourselves act first then MIN could guarantee a win for itself). This is obvious from the search tree as at level 0 (the top of the tree) the minimum value is 1. That is, MIN cannot minimise the value to zero, which shows it is going to ultimately lose (assuming we play correctly!!).

Another way to convince yourself that this MAX is guaranteed to win is to follow the bold arrows. These are the search paths that lead to MAX winning. You can see, on each of these paths that when it is MIN’s turn to move it cannot move to a position where the state is labelled with a zero.

The problem with the minimax procedure outlined above is not practical for games of any size as we cannot calculate the entire game tree in order to find out the terminal values so that we can propagate them back up through the tree.

Therefore, the problem we have is that we have to be able to decide a value for each node that reflects our position of winning from that point. The only way to do this is to use an heuristic evaluation. For our purposes, we will assume that we have a heuristic function that returns a single value that reflects the probability of winning from the current position. Note, that this is different to the heuristic values we have looked at previously. In search problems where we are searching for a goal our heuristic value represents an estimate as to how close we are to the goal. In game playing we are estimating the chances of winning from a given position. It is not a percentage of us winning – but can be seen as such.

Digression

Of course, we have the problem of trying to work out a suitable evaluation function. A common method is to capture all the features that we think might be important and then use a linear function to combine them using different weights for each feature. We still have the problem of what the weights should be. An obvious method is either to get the program to play against itself and adjust the weights based on the outcome of the game. This weight adjustment can be done in a variety of ways. In the Kumar paper (Kumar, 2000) mentioned above they used a neural network that was able to play checkers and the weights were stored in the synapses and these were adjusted using a gaussian distribution. Barone (2000), used a similar method (gaussian) to adjust weights when he developed a program that learnt how to play poker.

Work at The University of Nottingham (Kendall, 2000) has developed a chess playing program that adjusts the weights using a gaussian distribution but the standard deviation parameter was set based on feedback on how far the population of solutions were apart from each other. This work was a third year project and a paper has now been submitted to an international conference (CEC 2001, Congress on Evolutionary Computation, COEX Center, Seoul, Korea, May 27-29, 2001).

Some of these projects may be described in more detail in G5BAIM (Artificial Intelligence Methods).

End of Digression

Fixed Depth Minimax

If we have an evaluation function then we can apply a minimax procedure using a fixed depth. This means we expand the tree to a given depth (which is normally based on time available). Once we have the tree, we evaluate the positions, using the evaluation function, and then propagate those values back up the tree in the usual way. Once our opponent makes their move, the search tree is generated again in order to decide which move to make next.

One of the problems with this limited look-ahead is known as the horizon problem. An example (from Luger, 1998) probably makes this easier to explain. Assume that you are playing chess and your evaluation function is based on the number and values of the pieces you have on the board. Your look-ahead may give you an opportunity to take one of your opponents rooks; and this give s a good evaluation function. However, if you had looked ahead another n ply you would have seen that your opponent is sacrificing their rook so that they can capture your queen.

One solution to this problem is to further expand promising nodes so that you can look over the horizon. However, of course, this means you cannot explore other paths and you still do not get rid of the horizon problem as there will always (well, nearly always) be other paths to explore.

Another problem with a fixed depth look-ahead is that only quiescent positions should be evaluated (that is positions which do not exhibit wild swings in the evaluation function). To take the same example as above, if our evaluation function simply considers material advantage in chess then positions which look at favourable captures are not quiescent. In these circumstances, we can look-ahead until quiescence is reached. This is often referred to as a quiescence search.

Alpha-Beta Pruning
The problem with minimax is that we expand every node down to a certain depth even though, in certain cases we are wasting our time. To combat this a procedures known as alpha/beta (it is called this for historical reasons) pruning has been developed. It was probably invented by John McCarthy and further details can be found in (Pearl, 1984).

Whereas minimax searches to a fixed depth, using breadth first search, alpha-beta pruning uses a depth first search. In doing so it maintains two variables, (and (. (, which is associated with MAX can never decrease and (, which is associated with MIN can never increase.

Take a look at this search tree.


Assume we have evaluated, using depth first search down to node I. This means we can maximise node D to a value of 6. If we now continue the search we will eventually evaluate node J and assign it a value of 8. At this point we do not need to evaluate K (or any of its siblings); for the following reasons.

· Node E already has a value of at least 8 (as MAX is trying to maximise this value so it cannot take on a smaller value).

· Node E is already greater than node D and, as MIN will be trying to minimise these two values, it is always going to choose D over E.

· Therefore, we can cut off the search at this point (shown an the diagram).

Similarly, we can cut of the search from node G downwards.

· Having evaluated F to 2, C cannot be more than this value (as C is trying to minimise).

· B is already greater than 2.

· Therefore, MAX is always going to prefer B over C, so we cannot cut off the rest of the search below C.

· The improvements we can get with alpha-beta searching depends on the problem being considered and the order in which the nodes are expanded. At worst, it will perform the same as minimax (i.e. no pruning will be possible). At best, alpha-beta pruning can effectively double the search space.

References

· Barone, L & While, L. 2000. Adaptive Learning for Poker. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), July 10-12 2000, Las Vegas, Nevada

· Bowden, B. V. 1953. Faster Than Thought. London: Pitman

· IBMRes. http://www.research.ibm.com/deepblue/meet/html/d.3.html

· Kendall, G and Whitwell, G. 2000. An Evolutionary Approach for the Tuning of a Chess Evaluation Function using Population Dynamics. Submitted to CEC 2001, Korea

· Kumar, C. and Fogel, D. B. 2000. Anaconda Defeats Hoyle 6-0: A Case Study Competing an Evolved Checkers Program against Commercially Available Software. In Proceedings of Congress on Evolutionary Computation, July 16-19 2000, La Jolla Marriot Hotel, La Jolla, California, USA, pp 857-863.

· Luger, G. F. and Stubblefield, W. A. 1998. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 3rd ed. Addison Wesley

· Neumann, J., Morgenstern, O. 1944. Theory of Games and Economic Behaviour
· Pearl, J. 1984. Heuristics: Intelligent Strategies for Computer Problem Solving. Reading, MA: Addison-Wesley

· Russell, S., Norvig, P. 1995. Artificial Intelligence A Modern Approach. Prentice-Hall

· Samuel, A. L. 1963. Some Studies in Machine Learning using the Game of Checkers. In Computers and Thought, ed E. A. Feigenbaum and J. Feldman. New York: McGraw Hill

· Schaeffer, J. 1996. One Jump Ahead: Challenging Human Supremacy in Checkers, Springer, Berlin

· Shannon, C. E. 1950. Programming a computer to play chess. Philosophical Magazine [Series 7] 41:256-275

Max





Max





Min





Opponent Move





Computer Move











Terminal Nodes





-8





-3





2





-7





1





-5





-5





4





-3





2





1





4





-3





1





1





C





B





G





F





E





D





A





MAX





MIN





MAX





MIN





MAX





MIN





2-1-1-1-1-1





2-2-1-1-1





3-1-1-1-1





2-2-2-1





3-2-1-1





4-1-1-1





3-3-1





3-2-2





1





2





8





5





M





L





K





I





J





H





Max





Max





Min





Opponent Move





Computer Move











6





2





>=8





6





4-2-1





5-1-1





4-3





5-2





6-1





7





1





1





1





1





1





0





1





0





0





1





0





1





0





0





2





6





6





C





B





G





F





E





D





A





(





(








� The terms population and surviving are considered more fully in G5BAIM (AI Methods). They have their roots in evolutionary programs (such as genetic algorithms and evolutionary strategies). The terms are only included in these course notes for completeness and these algorithms will not be examinable in G5AIAI (Introduction to AI).





C:\My Documents\Training & Courses\Lecture Courses\G5BAIM\Nott Handouts\Game Playing.doc
© Graham Kendall - 25/02/01 - Page 8 of 8

