AI Methods

Hill Climbing

Introduction

As we have seen with other search methods, one of the main problems is the size of the search space.

Although this part of the course is going to look at “modern” search techniques the same problems with the size of the search space still exist. If it were not for the fact that search spaces are so large (and grow so quickly) then we could simply carry out an exhaustive search and be done with it.

But, as well as the problem of large search spaces there are also some other problems which we will consider now before we look at some search methods that try to address these issues.

To demonstrate the problem we will look at implementing a simple (but sometimes effective) search method.

Hill Climbing

Hill Climbing Algorithm

In these discussions we will assume we are trying to maximize a function. That is, we are trying to find a point in the search space that is better than all the others. And by "better" we mean that the evaluation is higher. We might also say that the solution is of better quality than all the others.

There is no reason why we should not be trying to minimise a function but it makes for easier reading if we assume we are always trying to maximise the function rather than keeping having to remind ourselves than we could be minimising or maximising.

The idea behind hill climbing is as follows.

1. Pick a random point in the search space.

2. Consider all the neighbours of the current state.

3. Choose the neighbour with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighbouring states are of lower quality.

5. Return the current state as the solution state.

We can also present this algorithm as follows (it is taken from the AIMA book (Russell, 1995) and follows the conventions we have been using on this course when looking at blind and heuristic searches).

Function HILL-CLIMBING(Problem) returns a solution state

Inputs:
Problem, problem

Local variables:
Current, a node

Next, a node

Current = MAKE-NODE(INITIAL-STATE[Problem])

Loop do

Next = a highest-valued successor of Current
If VALUE[Next] < VALUE[Current] then return Current
Current = Next
End

You should note that this algorithm does not maintain a search tree. It only returns a final solution.

Also, if two neighbours have the same evaluation and they are both the best quality, then the algorithm will choose between them at random.

Problems with Hill Climbing

The main problem with hill climbing (which is also sometimes called gradient descent) is that we are not guaranteed to find the best solution. In fact, we are not offered any guarantees about the solution. It could be abysmally bad.

Imagine that you are in the Alps and you want to find the highest peak. You parachute into the Alps but when you land you are in thick fog. Undeterred you start moving upwards. Eventually, you come to a point where you cannot move upwards anymore.

You reason that you have found the highest peak.

Of course, that is not necessarily the case. There might be many other higher peaks around you but you cannot see them because of the fog.

And this is exactly the same problem with hill climbing. When we reach a position where there are no better neighbours, it is not a guarantee that we have found the best solution. In fact it could be one of the worst solutions. In terms of the Alps analogy we might be standing on a small hillock instead of at the top of the mountain range.

Therefore, the solution that hill climbing returns may not be that good.

We can represent the problem we have just described on this diagram.

[image: image1.png]evaluation

current
state

You can see that we will eventually reach a state that has no better neighbours but there are better solutions elsewhere in the search space.

The problem we have just described is called a local maxima.

One solution to this problem is to conduct a multi-start hill-climb. This consists of a series of hill climbing searches, each one starting at a random point in the search space.

The best result is saved from all the searches and is returned as the best solution.

But, unless we look at all possible solutions we are still not guaranteed to find to global optimum.

Another type of problem we may find with hill climbing searches is finding a plateau. This is an area where the search space is flat so that all neighbours return the same evaluation.
If a search hits this type of problem the usual solution is to conduct a random walk until you find an area that starts to give better quality solutions (or you may find that no neighbours are ever of better quality - in which case we can assume we are on the top of table top mountain!)

References

· Russell, S., Norvig, P. 1995. Artificial Intelligence A Modern Approach. Prentice-Hall

� EMBED PBrush ���

C:\My Documents\Training & Courses\Lecture Courses\AIM\Nott Handouts\Hill_Climbing.doc
© Graham Kendall - 29/07/99 - Page 3 of 1

[image: image2.png]evaluation

current
state

_950083341

