G5BAIM – Artificial Intelligence Methods

History of Artificial Intelligence

Introduction

Although this part of the course is titled History of AI, it would not be possible to consider the topic in any depth in the time allocated.

Therefore the approach we will adopt is to look at key moments (in my opinion) which have shaped our perception of Artificial Intelligence (AI). We also consider a couple of the philosophical debates within the AI arena.

But before we start though we need to define what we understand is meant by AI, or more importantly, we need a working definition for this course.

What is Artificial Intelligence?

We could debate what AI is over the course of one or more lectures but at the end of the debate we would probably not have a definition that we would all agree upon. Therefore I will work towards a definition that we will use for this course. Of course, you can disagree with that definition but we need something on which to build.

In AIMA, four definitions are given, which are taken from recent AI textbooks (see! - even textbooks cannot agree). These definitions are re-produced here.

Systems that think like humans
Systems that think rationally

Systems that act like humans
Systems that act rationally

We can make the following observations about these definitions

· The definitions on the top row are concerned with thought processes and reasoning.

· The definitions on the bottom row are concerned with behaviour.

· The definitions on the left measure the success of the AI system against human counterparts.

· The definitions on the right measure the success of the AI system against an ideal concept of intelligence (rationality). A system is rational if it does the right thing.

In the past, all four approaches have been followed and, as you might expect, there exists tension between the top and the bottom definitions. As we shall see in a moment some of the AI arguments put forward have been trying to persuade others to accept the top or bottom half as the correct way to view AI.

The Turing Test (which we look at later) was designed to provide a satisfactory operational definition of intelligence. If you believe that a computer that can pass the Turing Test is intelligent then you believe that the definition bottom left is correct.

You may believe that for a computer to exhibit intelligence, then it must think like a human (top left). But how do humans think?

There are two possible ways we could find this out. The first is to get "inside the mind" and capture thought processes as they go by. At present this is not possible to do but who knows for the future.

A second approach is to conduct psychological experiments.

If we use this definition of AI as our working model then we are straying into cognitive science. Not a bad thing to do but for the purposes of this course we are going to avoid that.

If you believe that a computer can think rationally then you are looking at the top right definition. This approach is driven by the laws of logic. For example, given two statements (say "Socrates is a man" and "All men are mortal") we can imply further knowledge ("Socrates is mortal").

Using logic, we should be able to build systems that allow us take a description of a problem (in logical notation) and find the answer to that problem.

There are two main problems with this approach.

First, it is difficult to take a problem that is presented informally and transform it into the formal terms required by logical notation. This is particularly true when the knowledge you are representing in less than one hundred percent certain.

Secondly, solving even small problems (those with only a few initial facts) can be computationally expensive. So much so that it may become impractical to solve the problem.

Acting rationally (bottom right) means acting so as to achieve one's goals, given one's beliefs.

Acting rationally, could be considered as acting logically but, as we discussed above, this has limitations. Sometimes, it is also not wise to simply act logically. In these instances something needs to be done and almost anything is better than doing nothing. Consider if you put your hand on an electric ring (one that is glowing red hot). Logically, you might decide the best thing to do is remove the source of the heat. And this will eventually remove the burning sensation, but at what cost.

In this instance you need a reflex action (i.e. move your hand as quickly as possible) - an action that does not require complicated thought processes - do something - almost anything.

During this course we will be taking the "acting rationally" approach. We will not be a slave to it. If you want to develop this theme further then the AIMA book is based around this definition and the development of agents that act rationally. We will simply be using this definition so that we can ignore the cognitive side of AI (except in this introductory lecture) and also so that we do not have to assume that AI is only acting logically.

If you want some other definitions to whet the AI juices then consider these.

"Artificial Intelligence is the part of computer science concerned with designing computer systems, that is, systems that exhibit the characteristics we associate with intelligence in human behavior - understanding, language, learning, reasoning, solving problems and so on…"

(Barr and Feigenbaum, Handbook of AI)

"Artificial Intelligence is the study of how to make computers do things at which, at the moment, people are better"

(Rich)

"AI is the study of mental faculties through the use of computational models"

(Charniak and McDermott)

"AI may be defined as the branch of computer science that is concerned with the automation of intelligent behavior"

(Luger and Stubblefield)

History of AI

Introduction

In this section we pick out a few key aspects of AI history and some of the techniques that the pioneers used. This will give us some appreciation of the way this branch of computer science has evolved and also introduce us to some of the leading figures in the field as the subject evolved.

Physical Symbol System Hypothesis

Newell and Simon (1976) attempted to define intelligence in such a way that it could be replicated on a computer. Much of the work done in AI is based upon their definition. They define a physical system as

A physical system consists of a set of entities, called symbols, which are physical patterns that can occur as components of another type of entity called an expression (or symbol structure). Thus, a symbol structure is composed of a number of instances (or tokens) of symbols related in some physical way (such as one token being next to another). At any instant of time the system will contain a collection of these symbol structures.

Besides these structures, the system also contains a collection of processes that operate on expressions to produce other expressions; processes of creation, modification, reproduction and destruction.

A physical symbol system is a machine that produces through time an evolving collection of symbol structures. Such a system exists in a world of objects wider than just these symbolic expressions themselves.

Newell and Simon then state

The Physical Symbol System Hypothesis (PSSS). A physical system has the necessary and sufficient means for general intelligent action.

The PSSS is only an hypothesis. There does not seem to be any way to prove or disprove it using logic. Therefore, we are faced with using empirical evidence and computers allow us to do this relatively easily.

ELIZA

Eliza (Weizenbaum, 1966) was one of the first AI programs and, at the time, it impressed the people who used it.

The name Eliza was chosen as “it” could learn to talk increasingly well as did Eliza of Pygmalion fame.

You asked Eliza questions and she (it?) responded.

Here is a sample script from an Eliza session

Person
:
Men are all alike.

ELIZA
:
In what way?

Person
:
They’re always bugging us about something or other.

ELIZA
:
Can you think of a specific example?

Person
:
Well, my boyfriend made me come here.

ELIZA
:
Your boyfriend made you come here?

Person
:
He says I’m depressed much of the time.

ELIZA
:
I am sorry to hear that you are depressed.

Person
:
It’s true. I am unhappy.

ELIZA
:
Do you think coming here will help you not to be unhappy?

Person
:
I need some help, that much seems certain.

ELIZA
:
What would it mean to you if you got some help?

Person
:
Perhaps I could learn to get along with my mother.

ELIZA
:
Tell me more about your family

Eliza was based on a set of rules that it used to match the left hand side of the users input. Here are some examples of the rules that ELIZA used

(X me Y)
(
(X you Y)

(I remember X)
(
(Why do you remember X just now?)

(My {family-member} is Y)
(
(Who else in your family is Y?)

(X {family-member} Y)
(
(Tell me more about your family)

By looking at these rules you can see how some of ELIZA’s responses in the sample script were generated. You should also be able write down some more rules if you have the inclination.

If ELIZA is able to match two or more rules then its response will be chosen at random. This adds to the illusion that ELIZA has some understanding.

In addition, some of the rules have no left hand side. In effect, they will match with anything that the user types in. These rules can be used when no other rules match. This can lead to a response such as

Can you elaborate on that for me?

Or

That is very interesting. Why do you say that?

Eliza was designed to work with different “scripts.” That is, the program could talk about different topics depending on the rules (script) it was given. Weizenbaum decided to use a psyhotherapist in the first instance as many responses are simply re-phrasing (or turning around) what the patient has said. Therefore, it was quite easy to implement – rather than trying to get Eliza to hold a discussion on (say) politics.

There have been reports of people becoming so dependent on Eliza that the author eventually had to withdraw its use.

Another story tells of the author’s secretary using Eliza when he entered the room. The secretary asked her boss to leave until she had finished her conversation.

The author also considered putting in a module that recorded peoples conversations. This was greeted with accusations that Weizenbaum was spying on their secrets and innermost thoughts.

In fact, such an impact did the program have that some psychiatrists saw it as a means of allowing the profession to deal with many more patients. There was talk about using Eliza as a front end with the most serious patients would be referred to a human psychiatrist. Despite Weizenbaum’s insistence that the program did not understand the patient’s problems, some in the profession still did not believe him.

And, all this about a program that is simply text matching and cannot be considered as having any understanding.

If you want to try an “ELIZA session” there are several programs around and there is a web based version at

http://www-ai.ijs.si/eliza/eliza.html

You might also like to read (Weizenbaum 1993). This book is written by the author of Eliza. The book is really an explanation of how computers work and what they can and cannot do but he does discuss Eliza as well as AI topics.

MYCIN

MYCIN (Shortliffe, 1976) is an AI program that diagnoses infectious diseases. It is considered as one of the first expert systems as it was attempting to replicate the doctors knowledge in a computer program.

MYCIN uses backwards reasoning (see below) to work backwards from the patients illness to the possible cause.

To do this it uses rules of the form

“If the organism has a certain characteristic as determined by the lab results, then it is likely that the organism is x.”

But, as you can see from the above statement, MYCIN uses the idea of assigning probabilities to its diagnoses. This is called a certainty factor and it is an indication as to how much confidence we have in the conclusion of the rule given the evidence that was presented. There are other complications in that certainty factors have to be combined to give an overall certainty factor

A typical MYCIN rule looks like this

If:
(1) the stain of the organism is gram-positive, and

(2) the morphology of the organism is coccus, and

(3) the growth conformation of the organism is clumps,

then

there is suggestive evidence (0.7) that the identity of the organism is staphyloccus

These rules are obviously in an English like syntax. The MYCIN program was written in LISP and the above rule would be coded as follows

PREMISE:
($AND
(SAME CNTXT GRAM GRAMPOS)

(SAME CNTXT MORPH COCCUS)

(SAME CNTXT CONFORM CLUMPS))

ACTION:
(CONCLUDE CNTXT IDENT STAPHYLOCOCCUS TALLY 0.7)

With an expert system such as MYCIN it is difficult to measure its performance exactly due to the inherent complexity of the problems and the “fuzziness” that exists in the decision making process.

Probably the best measure is to test the system against human experts using real-world problems.

In 1982 MYCIN took part, with human medical experts in ten selected meningitis cases. In scored higher than all the humans (Buchanan, 1982).

The development of MYCIN is important for several reasons

· It demonstrated that expert systems could be used for practical, real-world problems.

· It was the test bed of features such as an explanation facility, automatic acquisition of data and intelligent tutoring.

· It demonstrated the feasibility of the expert empty shell. MYCIN separated the knowledge base from the inference engine which meant that the main parts of the expert system could be re-used with a different knowledge base.
The shell produced by removing the medical knowledge was called EMYCIN (Empty-MYCIN).

If you compare MYCIN with something like DENDRAL (an expert system that analysed organic compounds to determine their structure), you can see the difference. DENDRAL was a “one off” system. All its knowledge was “mixed in” with the software that comprised the system. Therefore, it was not easy to build another expert, that as an expert in another domain, based on the DENDRAL model.

XCON/R1

XCON/R1 is one of the most cited expert systems. It was developed by DEC (Digital Equipment Corporation) and was a system that ensured the customer was supplied with all the components and software that was needed to make up the specified computer system that they had ordered.

This is not as easy as it sounds. Building a bespoke computer system means that every system is different and, as such, needs different components and software. For example, if a customer orders a disc drive then DEC has to ensure that the customer also receives the disc controller and the relevant cables.

As a single system can be built from thousands of separate components, it was not easy for a human to ensure that the customer had everything he/she needed to build the system.

XCON/R1 was an expert system that did this job automatically. It saved DEC millions of dollars a year and raised the profile of expert system to a level that had not been seen before.

Forward and Backward Chaining

Forward and backward chaining is important with regards to AI. The two techniques are described here as you will often come across then in the AI literature. Although we will not explicitly use the terms in this course they are still being used in the techniques we implement.

Assume you are trying to get from Nottingham University to Kendal in the Lake District. You have two ways of approaching this problem. You can start at Kendal (in the planning sense) and work your way back to Nottingham. This is known as backward chaining as you are moving backwards from the goal position to the initial position. It is also sometimes called a goal driven search.

Of course, in a problem such as this, you would normally forward chain (move from the initial state to the goal state) as it is more logical for you to do it that way. This is sometimes known as a data driven search.

Which search method you use depends on the problem.

You use backward chaining when

· Goal has been given or is easy to formulate (you cannot backward chain unless you have a goal to start off with)

· There is a large branching factor. That is each level of the search tree has a large number of children (we will be looking more closely at this in a later lecture)

· The data to the problem is not given (so we cannot start with the data and forward chain to a goal).

You use forward chaining when

· There are many potential goals

· It is difficult to form a goal (or we will not know a goal until we see it)

· The branching factor is low.

In the lecture we looked at a problem of trying to find out if you were a direct descendant of Isaac Newton. We decided that backward chaining was better for this problem given the (unrealistic) assumption that everybody has three children.

Strong and Weak Problem Solving

Like forward and backward chaining we will not explicitly refer to strong and weak problem solving in this course. But we will be using these techniques and as the terms are used in the AI literature it as well to describe what they are.

Weak problem solving is a technique where we just search for an answer to a problem without having any knowledge of the problem.

Think again about the problem we described above where we need to get from Nottingham University to Kendal. We'll assume the start and end points of our journey are the railway stations. We could provide the program with a list of towns that have train stations along with a list of towns that it is possible to travel to and from using the train.

A weak problem solving method would simply start at Nottingham (assuming forward chaining) and explore the search space until one of the towns it reached was Kendal. In doing this we might have gone via Portsmouth but as the search has no knowledge of what it is trying to do this is perfectly acceptable.

A strong problem solving technique would have some domain knowledge. For example, it might explore stations North of Nottingham first as the knowledge we give the problem is that Kendal is North of Nottingham.

Or we might tell it that the straight line distance between the two towns is 180 miles and any route must not exceed that by a certain percentage.

The benefit of strong problem solving methods is that they are often quicker and can lead to better solutions. The downside is, is that they are problem specific. If we change our destination to London then we need to change the problem as London is South of Nottingham, not North.

General Problem Solver (GPS)

GPS (Newell and Simon, 1963) was the first AI program to exploit an idea called Means-End Analysis.

The idea behind Means-End Analysis is that it is often appropriate to use forward and backward chaining within the context of the same problem. Using such an approach we could solve separate parts of the problem and, eventually, bring all the parts together into one solution.

The main idea behind means-end analysis is that it identifies differences between the initial state and the goal state and then tries to find an operator that will move from the initial state to the goal state. If an operator cannot be found then the problem is reduced to sub-problems and these sub-problems are solved using the same idea.

You can appreciate that means-end analysis can be applied recursively.

Like many other AI techniques, GPS (and means-end analysis) uses a set of rules but it also uses a difference table.

Consider the following problem. We have a room with a table in it. The table has two objects on top of it. We want to move the table and the objects to another room. Before we can move the table we need to move the two objects. We’ll assume that a robot will do the work for us.

The operators available to the robot might be as follows.

Operator
Preconditions
Results

PUSH(obj,loc)
At(robot,obj)
AND

Large(obj)
AND

Clear(obj)
AND

ArmEmpty
At(obj,loc)
AND

At(robot,loc)

CARRY(obj,loc)
At(robot,obj)
AND

Small(obj)
At(obj,loc)
AND

At(robot,loc)

WALK(loc)
None
At(robot,loc)

PICKUP(obj)
At(robot,obj)
Holding(obj)

PUTDOWN(obj)
Holding(obj)
NOT Holding(obj)

PLACE(obj1,obj2)
At(robot,obj2)
AND

Holding(obj2)
On(obj1,obj2)

The difference table might be defined as follows

Push
Carry
Walk
Pickup
Putdown
Place

Move Object
(
(

Move Robot

(

Clear Object

(

Get Object on Object

(

Get Arm Empty

(
(

Be Holding Object

(

Given the operators and the difference table we can now start (or the robot can) to solve the problem.

The main difference between the initial state and the goal state is the location of the desk. To reduce this difference we must move the desk and, looking at the difference table, we can see that we can either PUSH or CARRY the desk.

Assume we choose to carry the desk. We need to check that the pre-conditions of the operator are satisfied. There are two of these. One specifies that the robot is at the desk. The other specifies that the desk is small. We can take steps (pun intended) to ensure that the robot is at the desk but we cannot make the desk “small” (we are assuming it is classified as large) as there is no operator that allows us to reduce the size of the desk.

Therefore, we are forced to look at the PUSH operator.

So, our main goal is to PUSH the desk. But to do this we need to ensure we satisfy the pre-conditions of the PUSH operator.

· We know the desk is large so that condition is satisfied.

· We know the arm of the robot is empty (as we have not done anything yet).

· The At precondition may have to be satisfied by applying the WALK operator. This mean setting up a new sub-problem and solving that before continuing with the main problem.

· The desk is not clear, as there are two objects on it. This means setting up another sub-problem which will invoke the PICKUP operator. But doing this we violate one of the other conditions (the arm is no longer empty) so we have another sub-problem to solve.

You can see that the initial problem has already led to a number of sub-problems and these in turn lead to other sub-problems. But as we resolve each problem we are reducing the overall difference for each problem, until we get ourselves in a position where we can solve the larger problem.

The basic means-end analysis algorithm presented here does have its limitations; for example

· The order in which the differences are considered can be critical. It is better to reduce significant differences before less significant ones as this can lead to solving the less significant differences as a matter of course.

· The permutations of differences rises quickly for large problems making it impractical to consider all the differences and you also have problems where solving one difference just creates many others (we saw a simple example of that above where the arm was originally empty but picking up an object then violated that pre-condition).

· It is possible to get into an infinite loop. For example, we might clear the desk by picking up an object. But to push the desk we need to put down the object. If we put down the object on the desk we are back where we started.

Philosophical Issues
The Turing Test

One of the most difficult questions to answer with regards to AI is "How do we know when we have succeeded?" or, to put it another way "How will we know when we have created an intelligent machine?"

In 1950, Alan Turing (Turing, 1950) proposed a method for determining if machines can think. This method is known as The Turing Test.

The test is conducted with two people and a machine. One person plays the role of an interrogator and is in a separate room from the machine and the other person. The interrogator only knows the person and machine as A and B. The interrogator does not know which is the person and which is the machine.

Using a teletype, the interrogator, can ask A and B any question he/she wishes. The aim of the interrogator is to determine which is the person and which is the machine.

The aim of the machine is to fool the interrogator into thinking that it is a person. If the machine succeeds then we can conclude that machines can think.

The machine is allowed to do whatever it likes in its attempts to fool the interrogator. In 1950 Turing suggested that the machine when presented with a question such as

"How much is 12,324 times 73,981?"

could wait several minutes and then give the wrong answer.

Carrying out the above dialogue is relatively easy. A much more difficult issue is the amount of knowledge the machine would need to know in order to carry out a meaningful conversation.

Asking a question such as "Who won last nights top of the table football match?" would present real problems to a program that was not up to date on world events and Turing gives the following example dialogue that a machine would have to be capable of

Interrogator:
In the first line of your sonnet which reads "Shall I compare thee to a summer's day," would not a spring day do as well or better?

A:
It wouldn't scan.

Interrogator:
How about "winters day." That would scan all right.

A:
Yes, but nobody wants to be compared to a winter's day.

Interrogator:
Would you say that Mr. Pickwick reminded you of Christmas?

A:
In a way.

Interrogator:
Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind the comparison.

A:
I don't think you're serious. By a winter's day one means a typical winter's day, rather than a special one like Christmas.

The Turing Test has yet to be passed and some believe it never will. It is even argued that passing the Turing Test does not show that a machine is intelligent.

If a program is developed that passes the Turing Test then The Total Turing Test has also been suggested. This test includes video capabilities so that the interrogator can also test the machines perceptual abilities.

But, before we worry about passing The Total-Turing Test we still have the original Turing Test to conquer. And to do this requires that a program is able to process natural language, represent knowledge, reason about the knowledge it has and many other aspects which we regard as demonstrating intelligence.

If you are interested in The Turing Test there is an annual contest which was inspired by The Turing Test (The Loebner Prize Contest). Details can be found at

http://acm.org/~loebner/loebner-prize.htmlx

The Chinese Room

If the Turing Test was passed Turing would conclude that the machine was intelligent. John Searle argued that behaving intelligently was not enough to prove that a computer was intelligent. To demonstrate this he devised a thought experiment which he called the Chinese Room (Searle, 1980). It worked as follows.

The system comprises a human, who only understands English, a rule book, written in English, and two stacks of paper. One stack of paper is blank. The other has indecipherable symbols on them.

In computing terms the human is the CPU, the rule book is the program and the two stacks of paper are storage devices.

The system is housed in a room that is totally sealed with the exception of a small opening.

The human sits inside the room waiting for pieces of paper to be pushed through the opening. The pieces of paper have indecipherable symbols written upon them.

The human has the task of matching the symbols from the “outside” with the rule book. Once the symbol has been found the instructions in the rule book are followed. This may involve writing new symbols on blank pieces of paper or looking up symbols in the stack of supplied symbols.

Eventually, the human will write some symbols onto one of the blank pieces of paper and pass these out through the opening.

Assume that the symbols passed into the room were valid Chinese sentences, which posed questions. Also assume that pieces of paper passed out of the room were also valid Chinese sentences, which answered those questions. Searle argues that we have a system that is capable of passing the Turing Test and is therefore intelligent according to Turing. But Searle also argues that the system does not understand Chinese as it just comprises a rule book and stacks of paper which do no understand Chinese.

Therefore, according to Searle, running the right program does not necessarily generate understanding.

There were various arguments against Searle’s conclusion. One of them Searle called the Systems Reply. This argued that the system as a whole understand Chinese.

Searle’s argument was to remove all the elements the system and place the entire system inside the brain of the human. Therefore, the human would memorise all the rules and the stacks of paper.

Searle’s now argues that the only thing that can understand Chinese is the human and if you asked the human (in English) if they understood Chinese the answer would be no.

In AIMA it states that the real claim made by Searle is as follows

1. Certain kinds of objects are incapable of conscious understanding (of Chinese)

2. The human, paper and rule book are objects of that kind.

3. If each of a set of objects is incapable of conscious understanding, then any system constructed from those objects is incapable of conscious understanding.

4. Therefore there is no conscious understanding in the Chinese room.

AIMA goes on to say that the third assumption is invalid and puts this argument forward as to why.

If you believe it [item 3] and if you believe that humans are composed of molecules then either you must believe either

· That humans are incapable of conscious understanding

Or

· Individual molecules are capable of conscious understanding.

There have been various arguments for and against The Chinese Room. These have been given the names of “The xxxxxx Reply” and they are summarised below.

· The Systems Reply states that the system as a whole understands.
Searle argues that the system could be internalised into a brain and yet the person would still claim not to understand.

· The Robot Reply argues we could internalise everything inside a robot (android) so that it appears like a human.
Searle argues that nothing has been achieved by adding motors and perceptual capabilities.

· The Brain Simulator Reply argues we could write a program that simulates the brain (neurons firing etc.)
Searle argues we could emulate the brain using a series of water pipes and valves. Can we now argue that the water pipes understand? He claims not.

· The Combination Reply argues we could combine all three of the previous suggestions.
Searle argues that this does not progress the argument. As we know how the android operates Searle claims it is not carrying out strong AI

If you want to read about The Chinese Room, I would suggest you read (Searle, 1980) and (Copeland, 1993), chapter 6.

References

1. Buchanan, B.G. 1982. New Research on expert systems. In Machine Intelligence, vol. 10, ed. J.E. Hayes, D. Michie and Y.H. Pao, 269-299. Edinburgh: Edinburgh University Press.

2. Copeland, J. 1993. The Curious Case of the Chinese Room in Artificial Intelligence : A Philospohical Introduction. Blackwell
3. Newell, A. and Simon, H.A. 1963. GPS, a program that simulates human thought. Computers and Thought, ed. E.A. Feigenbaum and J.Feldman. New York: McGraw-Hill.

4. Searle, J.R. 1980. Minds, brains and programs. Behavioural and Brain Sciences, 3: 417-457, 1980.

5. Shortliffe, E.H. 1976. Computer-Based Medical Consultations: MYCIN. New York: Elsevier.

6. Turing, A.M. 1950. “Computing Machinery and Intelligence.” From Mind LIX, no. 2236, Oct. 1950 : 433-460.

7. Weizenbaum, J. 1966. ELIZA – A computer program for the study of natural language communication between man and machine. Communications of the ACM 9(1):36-44.
8. Weizenbaum, J. 1993. Computer Power and Reason. Penguin Books.

C:\My Documents\Training & Courses\Lecture Courses\G5BAIM\Nott Handouts\002 History.doc
Graham Kendall - 01/02/01 - Page 11 of 1

