By SANJIV AUGUSTINE,
BoB PAYNE, FRED SENCINDIVER,
and SUSAN WOODCOCK

THE EDGES

Dealing with an increasingly volatile organiza-
tional environment is a serious challenge for
managers of any software development project
[11]. Traditional formal software development
methodologies can be characterized as reflecting
linear, sequential processes, and the related man-
agement approaches can be effective in develop-
ing software with stable, known, consistent
requirements. Yet most real-world development
efforts are much more likely to be conducted in
more volatile environments, as organizations
adapt to changing technology, markets, and
social conditions. Requirements for systems
must be able to change right along with them,
often at “Internet speed” [3]. Even seemingly
minor changes can produce unanticipated
effects, as systems become more complex and
their components more interdependent. Project
management approaches based on the tradi-
tional linear development methodologies are
mismatched with such dynamic systems.

Observing this tendency for software requirements
to change, Meir Lehman, writing in [9], suggested
that their underlying processes can be characterized as
“multi-level, multi-loop, multi-agent feedback sys-
tems.” Software developers have long responded to
this complexity with iterative, often ad-hoc
approaches. More recently, a host of “agile” develop-
ment methodologies, including eXtreme Program-
ming (XP) [4], Crystal, Scrum, Adaptive Software
Development, Dynamic Systems Development
Method, and Feature-Driven Development, have
sought to focus on rapid iterative delivery, flexibility,
and working code [1].

In our experience, project managers invariably fall
back on the traditional linear approaches, seeking to
reign in the increasing volatility of their projects. This
can be true even when they use agile methodologies.

it can still be organized into several smaller, organic
subteams working in parallel. The agile manager is
responsible for establishing clear roles and responsi-
bilities to ensure proper team alignment and account-
ability.

Guiding vision. CAS agents help anticipate and
adapt to changing conditions. A project vision trans-
lated into a simple statement of project purpose and
communicated to all team members has a powerful
effect on individual member behavior. In the U.S.
Army, an example of this principle is “commander’s
intent.” The Army knows its leaders are not
omnipresent; the commander’s intent is employed as
a guide for soldiers’ individual initiatives, actions, and
decisions. Even if a mission falls on the shoulders of
the lowest-ranking person, that person is still able to
carry out the mission. Likewise, agile managers guide

THE AGILE MANAGER understands the effects of the mutual

interactions among a project’s various parts and steers them in

the direction of continuous learning and adaptation.

These efforts can lead to “stable systems drag” [11] in
which organizations try to respond simultaneously to
both changing environmental conditions and to their
own increasingly obsolete legacy systems.

Projects that employ agile methodologies are com-
plex adaptive systems (CAS) [8], as discussed in the
sidebar. We have evolved a CAS-based Agile Project
Management (APM) framework, aiming to leverage
XP to steer projects to success in terms of being on
schedule and within budget while satisfying their cus-
tomers. The APM framework prescribes the six prac-
tices for managing agile development projects
discussed here:

Organic teams of from seven to nine members. Self-
organization and emergent order are due in part to
complex interactions or flows among agents. Orga-
nizing a project into organic teams implies a minor
interaction penalty in terms of communication and
coordination overhead [6]. Allowing members to join
and leave the team allows dynamic team composition
and supports adaptability to changing external condi-
tions. The team [10] maintains optimal internal
channels of communication while minimizing the
effect of an interaction penalty. Even when a project
requires a larger team of, say, more than 15 members,

86 December 2005/Vol. 48, No. 12 COMMUNICATIONS OF THE ACM

their teams by defining, disseminating, and sustaining
a vision that influences the internal models of indi-
vidual agents. The Agile Manifesto (www.agilemani-
festo.org) created in 2001 by the proponents of these
methodologies articulated a core set of values useful in
steering this vision.

Simple rules. In CAS, agents follow simple rules,
but their interactions result in complex behavior
that emerges over time. The standard XP practices
represent a set of simple rules for agile development
projects. Theyre accepted by all members of the
team at the outset, though the team can adjust or
add new practices as needed. Throughout a project,
the manager identifies practices that aren’t being fol-
lowed, seeks to understand why they’re not, and
removes obstacles to their implementation. XP prac-
tices provide simple generative rules without
restricting the autonomy and creativity of team
members.

Free and open access to information. In CAS, infor-
mation about plans, progress, objectives, and organi-
zation is the catalyst for adaptation by each member
of a project team. The richness of the interaction
among team members depends largely on their open-
ness to the exchange of information. For an agile team

COMPLEX ADAPTIVE SYSTEMS

The CAS concept is derived from the mathematical science of complexity. Complex systems are nonlinear, open, dynamic.

In nonlinear systems the value of the whole cannot be determined by the sum of the parts. An open system interacts with its

environment, receiving inputs and providing outputs, but does not control it. A dynamic system changes and evolves its

behavior in response to its inputs. Order emerges through the interaction among the system’s parts as they evolve (within the

larger system) in response to the changing environment.

CASs are therefore composed of semiautonomous agents that seek to maximize some measure of fitness by evolving or

adapting to changes as they occur. Local, often simple, rules guide the interaction among the agents and result in the sys-

tem’s global behavior [7].

An ant colony is an example of a CAS. Individually, ants have primitive brains yet collectively run surprisingly sophisticated

and efficient operations. Using a few simple rules of logic without central direction, they find food, build and maintain their

nests, tend to their young, and respond to attacks [2].

to adapt, information must be open and free-flowing.
In the APM world, information flows freely and team
members benefit from the power of knowledge no
matter what its source.

Light touch management style. With traditional
approaches, everything is viewed through the prism of
control—of change, risk, and, most important, peo-
ple. Elaborate methodologies, tools, and practices
have evolved to manage an out-of-control world. But
tools fail when neat linear tasks don't easily accommo-
date dynamic processes and when neat schedules
require frequent updating to reflect changing circum-
stances.

Imposing more and more control, managers may
forget their own original purpose—creating order. In
such cases, they may come to believe that more con-
trol leads to more order. Unfortunately, this view
doesn’t account for the uncertainties inherent in the
real world. Skilled professionals don't adapt well to
micromanagement, and tools and techniques quickly
reach their limits when not used appropriately. Man-
agers realize that increased control doesnt yield
increased order, accepting their own inability to
know everything in advance while relinquishing
some control to achieve greater order.

Adaptive leadership. An agile project team balances
on the edge of chaos—a concept from complexity
theory. Systems with too much structure are too
rigid, while systems without enough structure spiral
into chaos. Leading a team by nurturing small
organic teams, establishing a guiding vision, estab-
lishing simple rules, championing open information
exchange, and managing with a light touch is chal-
lenging enough. There’s also the risk of a team veer-
ing into chaos. Nonlinear behavior can be either
positive or negative in a project context, and controls
placed on the system by well-intended managers can
produce unintended outcomes.

Adaptive leadership employs “systems thinking” to
understand a project’s internal forces. For example,
events are understood in terms of their patterns, or
the common elements that recur in diverse circum-
stances. Systems archetypes reflecting common types
of problems help identify the unintended and coun-
terintuitive consequences of actions when cause and
effect arent closely related in time and space. The
agile manager understands the effects of the mutual
interactions among a project’s various parts and steers
them in the direction of continuous learning and
adaptation. An adaptive APM-based framework

includes several practices:

* The ability to manage and adapt to change;

* A view of organizations as fluid, adaptive systems
composed of intelligent people;

* Recognition of the limits of external control in
establishing order; and

* An overall humanistic problem-solving approach
that:

— Considers all members to be skilled and valuable
stakeholders in team management;

— Relies on the collective ability of autonomous
teams as the basic problem-solving mechanism;
and

— Minimizes up-front planning, stressing instead
adaptability to changing conditions.

Following them helps make managers adaptive lead-
ers, setting direction, establishing simple rules for
the system, and encouraging constant feedback,
adaptation, and collaboration.

APM CasE STuDY

In 2002, as part of an eight-member advisory imple-
mentation team in a Fortune 50 financial services
company, two of the authors (Augustine and Payne)

87

COMMUNICATIONS OF THE ACM December 2005/Vol. 48, No. 12

led the recovery and stabilization of a large mission-
critical product-development project involving a
team of more than 120 IT and services professionals
in multiple locations. Though the project began
with a skilled team and clear mandate, project-deliv-
ery challenges emerged from the complexity of such
a large team in what was for the organization a crit-
ical business endeavor. At the time we were con-
sulted, the project was already several months
behind schedule, along with frustrated customers
and dispirited developers.

To resuscitate the project, we implemented XP
nested within APM. We organized six development
teams by general business functionality and used a
SWAT team (concept from the Crystal Orange
methodology [5]) to integrate code across teams at
iteration end. To accommodate legacy code without
extensive unit tests, we maintained a separate quality
assurance (QA) team. We used APM practices to
manage and coordinate all the teams. Following com-
bined release planning, we conducted individual
release planning for each of them. We initiated two-
week iterations of software delivery, devoting the first
to retrofitting unit tests for major sections of legacy
code. At iteration end, the QA team and the SWAT
team together integrated code and fixed minor
defects. Users then conducted acceptance testing,
while the QA team performed more rigorous manual
testing.

A lack of shared understanding of the projects
goals was a major issue in terms of delivering cus-
tomer value. We thus established a guiding vision to
serve as an internal model for all project team mem-
bers, entrusting the task to a newly created project
office (PO) that included all 15 of the company’s
business and technical project managers. It conducted
release planning and translated an existing release
document into an XP release plan representing the
major requirements for each release iteration and
embodying the specifics of the guiding vision. The
PO presented it at iteration planning meetings, as
well as at the daily standup meeting, reviewing it
weekly to accommodate changes.

We replaced the existing project-delivery process,
establishing the XP practices and values as simple
rules for all 120 team members. We then initiated
overall XP training, followed by intensive breakout
training sessions tailored to each subgroup. To over-
come the team’s collective inertia, we began two-week
iterations within a few days of completing the train-
ing. We then placed XP process mentors on each
team to inculcate XP values and bolster our applica-
tion of XP. We also held several bootstrap training ses-
sions to reinforce XP practices.

88 December 2005/Vol. 48, No. 12 COMMUNICATIONS OF THE ACM

Before beginning our work on the project, infor-
mation was restricted to a select few senior managers.
Our aim was to make information available to all.

That's why we did the following:

* Collocated four of the six development teams in a
single development bullpen area; despite the
physical limitations, it proved invaluable in pro-
moting information sharing;

Used a war room dedicated to the project for

both impromptu and formal meetings;

* Used a large whiteboard in the main bullpen area
to radiate information [4]; design diagrams jos-
tled for space with action items from the daily
standup meetings, while important announce-
ments also found their way there due to the
board’s convenience and effectiveness;

* Embraced the XP one-team concept; project
members all had to recognize they were on the
same team working toward the same goal;

* Employed pair programming to open up and
share information;

* Employed the daily standup meeting as yet

another way to disseminate information to team

members; and

Employed the weekly PO meeting as an informa-

tion-sharing forum for both business and techni-

cal managers.

Before we arrived, managers responded to schedule
slippage and frustrated customers by micromanaging
developers. Schedule pressure dictated long hours.
This and hasty integration periods contributed to
low-quality code. We thus negotiated (with the com-
pany’s senior management) a delicate balance, so
developers would no longer be required to work sus-
tained overtime. Many managers took on a new style;
instead of creating, allocating, and micromanaging
tasks, they gave their individual team members greater
autonomy to determine which tasks had to be done
while demanding demonstrable results at the end of
each iteration. To keep the project on schedule and

budget, they also had to do the following:

* Maintain close communication through weekly
meetings and regular on-site interaction;

* Keep close watch on progress, implementing
project tracking three times per iteration;

* Implement process reflections every three or four
iterations to fine-tune processes;

e Earmark the first iteration for focusing on the
new process while adapting to iterative delivery;

* Address meeting overload by introducing agendas
to give structure to the meetings; and

* Adapt XP practice implementation, so when
legacy code precluded continuous integration, a
basic build running all unit tests was reimple-
mented as a nightly build.

Along with the PO, other useful innovations
included:

* The XP practices, which many developers
adopted enthusiastically;
* A release plan that emerged as the shared guiding
vision;
* An XP “bills of rights” [4] for developers and cus-
tomers alike, clarifying roles and responsibilities;
* A light-touch management style; for example,
when executive management mandated a sudden,
major GUI change involving several hundred
pages of GUI code, a motivated developer sponta-
neously wrote scripts that automated changes to
hundreds of files. The team finished the iteration
ahead of schedule, impressing the business team
and senior management while boosting developer
confidence;
A light touch among the management team. As
the release date drew near, a business manager
stepped forward to direct the entire team through
the steps, both business and technical, of a readi-
ness review; and
A palpable project heartbeat reflecting the activi-
ties of the team members. Analysts buzzed and
developers quickened the pace of their code writ-
ing toward iteration end when the SWAT and
QA teams took over.

Some team managers also had to deal with a num-

ber of difficulties:

* Communicating the higher-level guiding vision
(objectives, strategy) to everyone;

* Maintaining organic teams, even as senior man-

agement tended to add staff when dealing with

schedule slippage;

Suffering added stress (for conventional man-

agers) in the agile environment;

Recognizing that the light touch is ineffective with

unmotivated and unproductive team members;

Having to reinforce the simple rules; developers

struggled with simple design in light of the large

legacy code base;

Dealing with the daily standup meeting, which,

while useful for the exchange of information, was

complicated by the size of the team and the

cramped facilities; and

* Addressing the resentment of some senior devel-

opers toward the egalitarian nature of XP and
APM, causing them to passively resist changes,
despite the project’s adaptive leadership.

CoNCLUSION

Our previous experience managing projects taught
us the difference between the assumptions of APM
and the assumptions of traditional project manage-
ment. By viewing an agile project as a CAS and
adopting a leadership-collaboration model, we were
able to develop a management framework with prac-
tices encapsulating agile methodologies (such as XP).
Using the framework and scaling XP, we could thus
lead the recovery and stabilization of a large mission-
critical, product-development project, steering it to
completion in five months in terms of schedule, bud-
get, customer satisfaction, and business value. ©

REFERENCES

1. Abrahamsson, P., Warsta, J., Siponen, M., and Ronkainen, J. New
directions in agile methods: Comparative analysis. In Proceedings of the
25th International Conference on Software Engineering (May 3-10,
2003), 244-254.

2. Anthes, G. Ant colony IT. Computerworld (2001); www.computer-
world.com/softwaretopics/software/appdev/story/0,10801,61394,00.
html.

3. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., and Slaughter, S.
Is Internet-speed software development different? IEEE Software 20, 6
(Nov.—Dec. 2003), 70-77.

4. Beck, K. eXtreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, 1999.

5. Cockburn, A. Agile Software Development. Addison-Wesley, Reading,
MA, 2001.

6. DeMarco, T. The Deadline: A Novel About Project Management. Dorset
House, New York, 1997.

7. Dooley, K. A nominal definition of complex adaptive systems. The
Chaos Network 8, 1 (1996), 2-3.

8. Highsmith, J. Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems. Dorset House, New York, 2000.

9. Lehman, M. Rules and tools for software evolution planning and man-
agement. Annals of Software Engineering 11, 2 (2001).

10. Miller, G. The magical number seven, plus or minus two: Some limits
on our capacity for processing information. The Psychological Review 63
(1956), 81-97; www.well.com/user/smalin/miller.html.

11. Truex, D., Baskerville, R., and Klein, H. Growing systems in an emer-
gent organization. Commun. ACM 42, 8 (Aug. 1999), 117-123.

SANJIV AUGUSTINE (sanjiv.augustine@ccpace.com) is practice
director for lean-agile consulting at CC Pace, a financial services
consulting company in Fairfax, VA.

BoB PAYNE (bobpayne@webdc.com) is CEO and founder of
Electroglide, Inc., a consulting firm in Washington, D.C.

FRED SENCINDIVER was an assistant professor of management
science at George Washington University’s Ashburn, VA campus and
passed away before the final version of this article was completed.
SUSAN WOODCOCK (susan.woodcock@ccpace.com) is vice
president for strategic services at CC Pace, a financial services
consulting company in Fairfax, VA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0001-0782/05/1200 $5.00

COMMUNICATIONS OF THE ACM December 2005/Vol. 48, No. 12 89

