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Abstract

In this paper we present an evaluation of several different tech-
niques for virtual object positioning and rotation on a mobile phone.
We compare gesture input captured by the phone’s front camera, to
tangible input, keypad interaction and phone tilting in increasingly
complex positioning and rotation tasks in an AR context. Usability
experiments found that tangible input techniques are best for trans-
lation tasks, while keypad input is best for rotation tasks. Implica-
tions for the design of mobile phone 3D interfaces are presented as
well as directions for future research.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

Keywords: Mobile Graphics, Augmented Reality, 3D interaction

1 Introduction

Mobile phones have become increasingly capable of interactive 3D
graphics. Featuring a CPU, full color display and in recent mod-
els; a GPU, a mobile phone is conceptually similar to a PC. This
has lead to rendering algorithms and APIs developed for graphics
workstations to be ported, though modified to compensate mem-
ory and CPU limitations. 3D application development for mobile
platforms is thus fairly similar to development for stationary ones.
While rendering algorithms have migrated, most interaction tech-
niques developed for stationary computers are not applicable for
mobile devices. For example, with mobile phones at least one of
the users hands are busy; there is reduced keyboard input capability
and the screen size is very small, limiting input and output options.
Using external input devices such as a computer mouse is not an
option; hence, we need to look at other input techniques.

In this paper we focus on the use of the keypad and phone cam-
era for 3D interaction. The main point of difference from previous
work is that for the first time we consider how a front facing cam-
era on the phone can be used for 3D AR interaction. We describe
several interaction methods using the front camera on the phone
and also provide rigorous user study results of how effective these
methods are. This work is important because it provides usabil-
ity results and design guidelines that will help others develop more
effective mobile AR and VR interfaces.

In the remainder of this paper we first review related work in the
field and describe lessons learned from previous user studies. Next
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we give an overview of the interaction techniques we have imple-
mented. Sections 4 and 5 present formal user studies comparing
these techniques in translation and rotation tasks. Section 6 con-
tains a discussion of these results and the design guidelines that can
be drawn from them. Next we describe a sample application we
have developed based on using camera input. Finally we present
some conclusions and future directions.

2 Related Work

There has been a long history of evaluating different interaction
techniques for desktop 3D graphics and immersive VR applica-
tions. For example, Beaton et al. [1987] present an early example of
3D positioning and orienting tasks on a desktop 3D user interface,
Hinckley et al. [1997] compare the usability of mouse and six de-
gree of freedom input devices for 3D graphics rotation, while [Mine
1995] describes several interaction techniques and usability study
results for immersive VR environments. Hand has produced an ex-
tensive summary of the literature for 3D interaction in desktop and
VR applications and usability study results [1997]. These papers
are useful because they provide examples of well designed usability
studies for object interaction, particularly translation and rotation
tasks.

Interaction studies have also been conducted with AR interfaces,
although there are not many that explore object manipulation. For
example, Ellis [1997] conducted an experiment to explore user’s
ability move a virtual ring over a virtual wire in an AR display with
different rendering latencies. More relevant is the work of Wither
and Höllerer [2004] which describes a user-study in an outdoor
wearable AR interface that evaluates four techniques for control-
ling a distant 3D cursor and annotating real objects. There is a need
for further AR manipulation studies, especially because AR inter-
faces are different enough from VR interfaces that usability results
from a desktop or immersive VR experiment may not apply.

Although AR interfaces have migrated to mobile phones there has
been little research on interaction techniques for mobile phone AR,
and almost no formal usability studies have been conducted. Few
AR mobile phone applications support more than simple object se-
lection and manipulation. One of the only handheld AR interaction
studies is an earlier experiment [Henrysson et al. 2005b] which
compared techniques for 3D virtual object translation and rotation.
The task involved moving or rotating a selected object to align with
a wireframe target object. The techniques compared included key-
pad input and tangible phone input. The tangible input condition
was where the virtual object was at a fixed position relative to the
phone and so moved when the user moved the phone. In the trans-
lation experiment they found that people were able to move objects
more quickly in the tangible input condition than with keypad input.
However for a 3D object rotation task the tangible input technique
was significantly slower than using keypad input, partly due to the
difficulty of constraining rotation about a specific axis with the tan-
gible technique. This suggests that tangible input is effective for
translation tasks but not for rotation.

In our current work we wanted to build on this and explore the new
AR interaction possibilities offered by the forward facing cameras
mounted on the front of the mobile phone. This paper is the first
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that describes the use of the front camera of a mobile phone for AR
interaction, and it is unique in that it presents comparative results
from a formal user study where two of the conditions are based on
the forward facing camera.

3 Mobile Interaction Techniques

Mobile phones are interesting for AR applications because unlike
many other AR interfaces the display and the input hardware are
connected together. So a user could provide keypad or computer
vision based input while viewing the output on the phone screen.
In our research we wanted to consider four input options:

• Keypad input

• Tangible input

• Phone Tilting detected through computer vision

• Gesture input from a camera on the front of the phone

Before describing the various implementation techniques we will
give an overview of our AR platform. It is based on an earlier cus-
tom port of the ARToolKit computer vision tracking library to the
Symbian operating system [Henrysson et al. 2005a], which is able
to run on current Symbian based mobile phones at up to 10 frames
per second. Creating the ARToolKit port involved building an op-
timized fixed point library. The performance was further enhanced
by adding frame-to-frame coherency to reduce computation load.
Filtering tracking data using double exponential smoothing (DESP)
reduced jitter inherent to ARToolKit. As a 3D graphics API we use
OpenGL ES, which is a reduced subset of OpenGL, suitable for
low-power, handheld devices.

The phone used in this paper is the Nokia 6680 (see Figure 1) which
has a 220 Mhz processor and runs a software implementation of
OpenGL ES. It has two cameras: a main camera on the back, and a
second forward facing front camera. The screen size is 178 x 208
pixels and in our application we used a video capture resolution of
160x120 pixels.

3.1 Keypad Input

In the keypad/joypad method virtual objects continuously rotate or
translate a fixed amount for each fraction of a second while the but-
tons are pressed. For each degree of freedom (DOF) we use two
buttons to increment or decrement the transformation. The trans-
lation speed is 4 mm/frame yielding a speed of about 30 mm per
second given the current framerate. The speed of rotation is 4 de-
grees per update i.e. around 30 degrees per second. Figure 1 shows
how the keypad input is used to move or translate the virtual object
along or around the x,y and z axes.

 The keypad rotates or 
translates around or along 
the two horizontal axes (x, 
z axes) 

The 2 and 5 keys rotate 
or translate around or along 
the vertical (y) axis 

Figure 1: Nokia 6680 and Keypad Input Mappings

3.2 Tangible Input

In the tangible input case a 3D object is selected by positioning vir-
tual cross hairs over it and clicking and holding down the joypad
controller. While selected, the virtual model is fixed in space rela-
tive to the phone and so is translated at the same time as the phone
is moved. Objects are deselected by releasing the joypad.

3.3 Phone Tilting Input

The third input technique explored is using the tilt of the phone to
control virtual object rotation. Phone tilting input uses computer
vision techniques to detect the tilt of the phone around two axes,
which run across the x direction of the screen and the y direction of
the screen, parallel to the front of the phone. This is done using im-
ages grabbed from the back camera of the phone and a global block
matching technique similar to that used in the TinyMotion [Wang
and Canny 2006] computer vision phone tilting code.

Our improved version uses full colour block matching, which is
significantly more robust, and also uses a post-processing stage to
allow single pixel tilting movements to be detected (in contrast to
the large block movements detected by TinyMotion). This gives
a smoother input at a rate of approximately 15 frames per second
(limited by the frame rate of the camera). The phone input method
is based on naturally occurring features captured by the phone cam-
era meaning that it will work with any camera input provided it has
enough visual texture. When we want to rotate the virtual object a
key is hit on the keypad and the ARToolKit tracking is stopped and
the phone tilting input started. This means that the phone tilt can be
detected even when the marker is not visible.

3.4 Gesture Input with Front Camera

While the user is viewing graphics content on the phone screen it
is possible to use the front camera to capture gesture input and use
this to interact with the virtual content. We have experimented with
both 2D gesture input using motion flow tracking, and 3D gesture
input using ARToolKit tracking. In this section we describe these
interaction techniques in more detail.

3.4.1 2D Gesture Input

This input method tracks a finger held in front of the phone, by
using a simple frame-differencing tracking method. This relies on
the fingertip creating a large difference between frames when it is
moved in front of the front camera.

Two key assumptions are made in this tracking method. Firstly that
the background will be relatively stable, or only change globally
(such as when a light is turned on or off). Secondly, that the user
will use only their dominant hand to control the interface. In our
test applications, we allow the user to choose left or right handed
use of the interface.

With these assumptions, it is generally known what range of angles
the finger is going to be entering the field of view of the front cam-
era from. Thresholds are used to detect when the scene is static, or
changing globally, both of which do not create input. When move-
ment is detected, the knowledge that the finger will be coming from
the left or right of the view (depending on handedness) is used in
order to calculate which parts of the frame difference are created by
the fingertip.

The finger tracking method is robust in most situations, including
when the camera is also pointing at the user’s face. It may fail if
used with an extremely active background, such as if used when on
a train with the camera pointing out of the window. This data as to
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the position of the fingertip, is used in conjunction with a ”clutch”
button on the phone, to give the application 2 dimensions of move-
ment information with a resolution of approximately 100x100 pix-
els.

When the 2D tracking is activated by pushing a key on the keypad,
the main camera video is frozen and a second smaller video win-
dow is activated to show the front camera view and give the user
feedback about the tracking performance. A small red dot is shown
over the user’s finger as it is being tracked (see figure 2).

Figure 2: Front Camera Gesture Input with 2D Finger Tracking

3.4.2 3D Gesture Input

When interacting with 3D data it is desirable to have a 6 DOF inter-
action device, since this allows an optimal trajectory in rotation and
translation space. The frame-difference approach described above
is limited to two-dimensional input and requires the user to switch
modality to access the third rotation axis.

In order to provide higher input dimensionality we use ARToolKit
tracking of a small marker attached to the user’s fingertip (see fig-
ure 3). With marker tracking we can easily emulate markerless 3D
fingertip tracking, currently unavailable on mobile phones. While
it is possible to switch cameras between each frame, it is too slow
for interaction and the cameras need a few consecutive frames to
set the white balance. Instead the user switches cameras with the
push of a button as in the frame-difference approach.

Figure 3: Front Camera Gesture Input with ARToolKit Marker

The front camera has a limited image quality and thus sets a lower
limit for how small a marker can be, given the intended motion
range of the finger. We found that a marker size of 15 mm was re-
quired for the tracking to work. This means that the marker will be
visible from behind and thus it will obscure more than the fingertip
alone. As in the frame-based approach the user is provided a small
video image of the front camera view superimposed over the main
camera view. When the marker is successfully tracked it is overlaid
with a blue cube in the front camera view. This is so the user can
use peripheral vision to confirm successful tracking while focusing
on the main interaction task.

When used for translation, the tracking starts directly when the user
switches to using the front camera. In this interaction mode there is

a one to one mapping between the motion of the finger and the mo-
tion of the manipulated object. Thus the field of view of the front
camera is a limiting factor. Greater motion can be achieved by using
a clutching motion and temporarily switching back to view mode.
Only the motion of the finger relative to the phone is recorded, not
the motion of the phone relative to the marker defining the global
coordinates. If the phone is moved significantly during interac-
tion, potential confusing discontinuities will occur when returning
to viewing mode.

We also implemented an ArcBall rotation technique where position
and motion of the finger were mapped to a virtual sphere enclosing
the object to be rotated. This is a preferred technique in desktop 3D-
applications using a 2D mouse as input device. However it turned
out to be far too complex on the phone. It was dismissed as unsuit-
able after informal testing and the 2D gesture input method used for
object rotation instead.

In order to evaluate how effective these various interaction tech-
niques could be in mobile phone AR interaction tasks, we con-
ducted a formal user study of 3D input techniques across the vari-
ous interaction methods. The user evaluation was conducted in two
separate experiments to enable us to separately consider how well
the interaction techniques work for translation and rotation tasks.

4 Experiment One: Translation

There were 12 subjects that took part in the experiment (10 men, 2
women, aged 19 to 40). They had all tried mobile AR demonstra-
tion software before and some of them had taken part in a manipu-
lation user study two years before. Figure 4 shows a subject taking
part in the user study.

4.1 Experimaental Task

To test the interaction techniques described in the previous section
we conducted a study in which users tried to position virtual blocks
in an AR interface. The subject sat at a table in front of a piece of
paper with a number of ARToolKit tracking markers printed on it.
They were given a Nokia 6680 mobile phone running the AR test
software. When the user looked through the phone display at the
ARToolKit marker they saw a virtual ground plane with a virtual
block on it and a wireframe image of a second same sized target
block which was translated in the x, y and z direction relative to the
solid block (see figure 4). The goal of the task was to move the solid
virtual block until it was positioned entirely inside the wireframe
block. At each frame update, an error vector was calculated by
taking the offset between the current block position and the target
position. The block is regarded to have been placed correctly if the
length of the error vector is less than 8 mm. When this occurs the
virtual block will change colour showing the task is complete. The
user wasn’t allowed to move the tracking marker. The translation
task used the following input methods:

A: Keypad input

B: Gesture input using the front camera with an ARToolKit marker

C: Virtual object attached to phone

For each user the order of the conditions was counterbalanced to
ensure that there was no learning effect. For each condition the sub-
ject was allowed to practice with the input technique until they felt
comfortable with it. In each condition the subjects had to perform
five translation tasks with target objects being placed at different
locations. There were two tasks which could be accomplished by
moving the block in only one direction (the one degree of freedom
task). One task could be completed by moving the virtual block in
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Figure 4: Experiment setup. The Virtual Translation Task

two directions (the two degree of freedom) and the remaining two
tasks required the user to move the object in all three directions.
This was so that we could study how the dimensionality of the task
affected the user performance.

For each of the trials we measured the time it took the user to com-
plete the task. After finishing each condition, users completed a
subjective survey with questions about how intuitive the interface
was to use, how enjoyable it was, and how accurately they felt they
could move the virtual block. After all three conditions are com-
pleted, the user was give a further subjective survey which asked
them to compare between conditions and rank them in order of how
intuitive the interface was etc.

The experimental task was based on the task used for the earlier
manipulation studies [Henrysson et al. 2005b], but in this case we
have added a gesture input condition and also compare the effect in-
creasing the complexity of the task has on the results, by increasing
the number of directions that the blocks must be moved along.

In this experiment we would expect that as the user has to move
the block over more directions (increasing DOF) then it should take
longer in the keypad condition. However, with both the tangible
input and the finger gesture input the user can seamlessly move
the virtual object in more than one direction at once, and so we
should find little difference in performance time between tasks. The
gesture input condition has a smaller range of motion possible than
the tangible input case, and so should be expected to take more
time, due to the user’s finger moving out of the front camera field
of view and having to be moved back into the camera view.

So in terms of performance we can predict that the keypad condi-
tion will perform worse as the task complexity increases, that the
gesture and tangible input will not vary much between tasks as the
complexity changes, and that the tangible condition will be faster
on average than the gesture condition. It is difficult to predict which
conditions the user will prefer, but the gesture and tangible condi-
tions will have more novelty value compared to the keypad input
and so may be rated more enjoyable.

4.2 Results

There was a significant difference between task performance time
both across the three input conditions and for the keypad condi-
tion, across tasks. Figure 5 shows the average time to complete the
tasks for each condition and across each task as they become more
complete. There are several things obvious from the graph. As pre-
dicted, in the keypad input condition as the task required motion in
more directions it took longer. In both the gesture input and tangible
input case there is little difference in task time (within the standard
error) as the tasks got more complex. The tangible input case per-
formed better than the other conditions apart from the keypad input

condition in the simple one degree of freedom case when it was just
as good.
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Figure 5: Average Time (s) Per Task vs Degrees of Freedom

Looking at the time taken against degrees of freedom, a two factor
ANOVA (condition, DOF) found a very significant effect of both
interface type (F(2,33) P=0.01) and degree of freedom (F(2,33),
P=0.028), however it did not show an interaction between the two
factors (F(2,2,99), P = 0.3). Analysing the 3 degree of freedom re-
sults alone, showed a significant difference between the interface
types, (F(2,33), P=0.03).

After each condition the users were asked the following four sub-
jective questions:

1. How easy was it for you to move the block?

2. How accurately could you move the block to?

3. How quickly could you move the block?

4. How enjoyable was it to use the application?

Each of these questions were answered on a Likert scale of 1 to 7,
where 1 = not very easy, 7 = very easy, etc.

Figure 6 shows a graph of the subjective survey results across the
three conditions.
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Figure 6: Subjective Ratings for Each Interface

As can be seen, due to the large variance in average values there is
little difference between the conditions. Analysing the subjective
results using a single factor ANOVA we found no significant dif-
ference in responses to any of the four survey questions, although
the results for question 1, (How easy it was to move the block?),
was tending towards significance (F(2,30) = 3.03, P = 0.06). This
implies that it would be useful to run the experiment again with a
larger subject pool.

After completing all of the tasks, subjects were also asked to rank
the three conditions in order according to the following criteria:
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1. How easy was it for you to move the block?

2. How accurately could you move the block to?

3. How quickly could you move the block?

4. How enjoyable was it to use the application?

Conditions were ranked in order from highest (1) to lowest (3). Fig-
ure 7 shows the average ranking values across conditions. Using
a Friedman Test to compare between the average ranking scores
across conditions we found no significant differences between the
user’s rankings in response to each question.
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Figure 7: Mean rankings for each interface

Interestingly enough, condition C, the Tangible Input condition,
was almost always ranked second by the subject with the other
conditions split between first and third. Table 1 shows the aver-
age ranking results for each question and the standard deviation, as
can be seen the standard deviation on the results for condition C,
tangible input, is much lower than the other conditions. This im-
plies that users either really liked or really disliked the keypad or
gesture input method.

A (KeyPad) B (Gesture) C (Tangible)
Avge StdDev Avge StdDev Avge StdDev

Q1 2.09 1.04 1.82 0.98 2.05 0.30
Q2 1.91 1.04 2.18 0.98 1.91 0.30
Q3 2.36 0.92 1.73 1.01 1.91 0.30
Q4 2.27 1.01 1.82 0.87 1.91 0.53

Table 1: Average Ranking Results for Each Condition

4.3 Discussion

It was interesting to observe users while they performed the task.
As expected, many of them had found the keypad input easy to use
as they were familiar with the input technique. Conversely many
of the subjects found the gesture interaction frustrating and time
consuming. This was mainly due to the limited range of motion
that could be tracked by the camera. Several users made comments
about wishing that the phone front camera had a larger field of view
and that the tracking was more robust.

There were some interesting phone behaviours also observed. In the
keypad condition several users preferred to hold the phone steady
with one hand while pressing the buttons with the other. In the
finger input condition, where this was not possible, some users ac-
cidentally moved the phone itself, which made the object move in
an unintended way. This is an inherent limitation of this kind of
two handed physical interface, which could possibly cause issues
for users with reduced mobility, or who find it hard to coordinate
two handed activities.

The subjective test results were interesting, as they demonstrated
that despite two of the interface methods being novel to the users,
they were good enough for them to use. The subjects felt the nei-
ther of the gesture and tangible input methods were felt to be sig-
nificantly worse than the keypad input.

It is also notable that users did not perceive the gesture input as be-
ing slower than the other input methods, despite its performance in
the timed tests. It is not clear why this occurred. One possible sug-
gestion is that users were continuously actively interacting during
this task and so didn’t notice the longer time, whereas in the keypad
condition, the user just had to hold the button down and wait while
the object is moving.

5 Experiment Two: Rotation

5.1 Experiment Task

The rotation experiment was similar to the translation experiment,
although involving rotation of objects rather than translating them.
It was performed with 13 subjects, 1 female and 12 male. Each
user performed a set of 5 timed tasks, in 3 different user interfaces.
A training task was also provided in each user interface, which the
user was allowed to repeat until they were confident with the inter-
face. Interfaces were tested in all possible combinations of order-
ing, to avoid learning effects.

In each rotation task, users were presented with a solid object which
was initially placed at an angle relative to an identical wireframe
object. The task was to rotate the solid object so that it coincided
with the wireframe one. When the object was rotated correctly,
the object turned yellow, to show that the correct position had been
reached, and the task ended. The tasks were designed so as to get
progressively harder, this was done by rotating the object away from
the target position on an increasing number of axes. The first one
required only rotation about a single axis to complete (1 DOF), the
second required rotation about 2 axes (2 DOF) and the final task
used successive rotations on all 3 rotation axes (3 DOF). Figure 8
shows the rotation task.

After each interface condition, the users were asked the same ques-
tions as asked in the translation experiment and were again an-
swered on a Likert scale of 1 to 7, bad to good. After the user
had experienced all conditions, they were then asked to rank the
conditions in order, based on the same four factors, unstructured
user comments were also sought at this point.

The time taken for each user to complete the task was automatically
recorded, along with the longitude and latitude error for every quar-
ter of a second during the task, in order to record how users reached
to the final configuration.

Figure 8: Virtual Rotation Task

The rotation task used the following input methods:

A: Keypad input
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B: Finger tracking using the front camera

C: Phone tilt tracking

5.1.1 Keypad input

The keypad input used the joypad, plus the 2 and 5 buttons, in order
to rotate the model around 3 axes. Joypad input caused rotation
about the horizontal axes (x,z) and the 2 and 5 key input caused
rotation around the vertical axis (y).

5.1.2 Finger Tracking

In tilt mode, the joypad centre button was used as a ”clutch” but-
ton, to take control of the object. When it was pressed moving the
user’s finger in the two dimensions of the screen in front of the front
camera would make the virtual object rotate around the two hori-
zontal axes. While the object was being grabbed, the AR tracking is
paused, so the object remains on screen at all times, and a ”shadow”
is shown, behind the current frame, so the user can see how far they
have moved the object. A secondary clutch (on the 5 button) was
used to twist around the vertical axis.

5.1.3 Phone Tilt Tracking

In tilt mode, the joypad centre button was also used as a ”clutch”
button. When this was pressed, tilting the phone forwards or side-
ways caused the AR object to rotate. As with the Finger Tracking,
while the object was being grabbed, the AR tracking is paused, and
a ”shadow” is shown behind the current frame so the user can see
how far they have moved the object. A secondary clutch (on the
5 button) was used in order to perform twisting around the vertical
axis. This was because the tracking method used for the tilt tracking
could not reliably detect this movement.

5.2 Results

There was a significant difference in the time taken between con-
ditions to complete the rotation task, and also within conditions as
the complexity of the task increased. Figure 9 shows the average
times to complete the tasks for each condition.
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Figure 9: Virtual Rotation Task Time (s) and Degrees of Freedom

As can be seen the keypad input is the quickest of the three input
conditions, and the with front camera conditions (B and C) the time
to complete the task increased as rotations about more axes were
needed. A two factor ANOVA (input condition, task DOF) was
performed and found a significant difference in results across inter-
face type (F(2,30) = 14.36, P < 0.001) and across task complex-
ity (DOF) (F(2,30) = 27.52, P < 0.001). There was also a nearly
significant interaction between the two factors (F(2,2,90) = 2.37,
P=0.06).

The results of the subjective survey after each condition are shown
in figure 10. In response to all of the questions the keypad input
was felt to be better than the other input conditions. A one factor
ANOVA across the conditions found a significant difference in re-
sponses to all the questions. Table 2 shows the average responses
and the ANOVA F and P values.
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Figure 10: Mean subjective scores

A B C F val P val
Q1 5.93 2.92 4.54 16.7 <0.001
Q2 5.85 2.69 3.92 23.9 <0.001
Q3 5.23 2.77 4.62 13.8 <0.001
Q4 5.00 3.31 4.31 5.9 <0.01

Table 2: Average Subjective Scores and ANOVA Result

However the post hoc testing of combinations of interfaces showed
none of them to be significant to 95% confidence, except for the
finger interface being significantly different from the keypad in the
perceived accuracy question. This warrants further exploration.

Figure 11 shows the average subjective rankings across the same
four questions as asked in the translation experiment. Using a one
factor ANOVA we found a significant difference in the average
rankings, except for Q4: How enjoyable was it to use the appli-
cation? Table 3 shows the ANOVA results. All the subjective rank-
ings, except for the measure of how enjoyable the interfaces were
to use, showed 95% significance between conditions (using a Fried-
man test), with keyboard being best, followed by tilt and finger.
However, the ranking as to how quick they were (figure 11) showed
no significant difference between keyboard and tilt input, which is
supported by the timing results. Enjoyment showed no significant
differences between interfaces, with the keypad and tilt interfaces
being particularly similar.
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A B C F val P val
Q1 1.15 3.00 1.85 120.3 <0.0001
Q2 1.08 2.85 2.08 66.5 <0.0001
Q3 1.46 2.92 1.62 32.7 <0.0001
Q4 1.85 2.38 1.77 2.3 0.12

Table 3: Average Subjective Ranking Scores and ANOVA Results

5.3 Discussion

It is clear from this testing that the keypad input proved easiest for
subjects to use. The keypad task times were significantly faster than
the tilt and gesture input conditions and users felt that it was easier
to use and more accurate. This may have been partly because it was
easy for users to mentally map keypad input onto rotation about the
desired axis.

The finger tracking interaction mode was difficult for users to work
with. The major limitation of the finger tracking was the range of
view of the front camera, which is designed for video-telephony, to
display the head of the user. This meant that in order to rotate the
object a large distance, the users had to clutch and rotate multiple
times.

Several users mentioned that they had trouble with the coordination
required for the finger input method due to having to use both hands
at once; one hand on the clutch button, and the other to perform
the rotation. Two of the users also mentioned that they found it
hard to move their hand accurately in empty space, with no way to
feel how far they were moving it. This caused problems with the
users causing rotations on a different axis from the one they were
attempting.

An example of the problems with accuracy can be seen in figure 12,
which shows the error in rotation around the vertical axis and one of
the horizontal axes was reduced during one successful completion
of task 5. This was the task that required rotation about all three
axes for completion. The keypad input constantly reduces error
on both axes until it reaches the correct point, producing a nice
diagonal line to the origin. The tilt input reduces error on one axis,
then rotates around the other axis until correct. However, the finger
input takes a more haphazard approach to the target position, with
several accidental rotations.

0 

0.5 

1 

1.5 

2 

2.5 

0 1 2 3 
Horizontal Rotation Error 

Vertical Rotation Error 

Tilt 
Finger 
Keyboard 

t=0 

target 

Figure 12: User Error

There was one final problem with finger input, which was that it
could be affected by the room lighting. For example, a bright light
source located above and behind the user could cause their head and
fingers to be a black silhouette, meaning that the tracking algorithm

could not detect any difference between the finger and the head
when the finger moved in front of the face. This was a real problem
for one participant, who held the phone at a different angle to the
majority of participants and ended up having to turn around in order
to avoid the light source.

Use of tilting for rotation was approximately as fast as the keypad
input in the 1 DOF rotation task and was around half the speed in
the other more complex tasks. Figure 9 earlier in the paper showed
the rise in time taken to perform the task, as the tasks became harder
(as measured by the number of axes which were used to rotate the
object away from the final position). It is interesting to see that for
finger tracking, as the tasks became harder, the time scaled roughly
linearly, whereas for tilt and keypad tracking, the times became
slightly worse than the simplest task, but not extremely so. How-
ever, the computer vision system used in this test for the tilt input
had a major limitation, which was that it could not detect when the
phone was twisted around the axis centred on the front of the phone.
Several of the users mentioned this limitation being a problem for
them, and one of the users was observed trying to twist the phone
repeatedly during the tasks, despite being shown that it could not
detect this during the practice task. Arguably, the fact that it per-
formed at a similar level to keyboard input even with this limitation
suggests that with twist detection embedded in the main interface
this method has the potential to be faster than pure keyboard input.

There is another limitation to tilt input which is inherent to the input
mode, which is that tilting the phone also tilts the screen. This may
cause problems performing extreme tilts accurately, as the screen
becomes hard to see. However, in practice this did not seem to be
a problem for most users. Keyboard input worked reliably under
all conditions. However, some of the participants expressed frus-
tration with having to wait for it to turn the object around. Several
users suggested that the tilting method was more satisfying to use
for them because they were constantly doing something during the
rotation process.

Arguably if tilt interaction could be made more efficient, it would
also be more satisfying than the keyboard interaction. Tilt interac-
tion also integrates well with the ’tangible’ interaction mode used
in the first study.

6 Design Implication

These user study results expand on the earlier manipulation study
[Henrysson et al. 2005b] by using exploring the use of the front
camera for gesture input, tilting for rotation and examining a set
of tasks of different complexity. Like that study these results con-
firmed that tangible input can be more effective than keypad input
for object translation, while the keypad should be chosen for object
rotation. In mobile AR interfaces that involve object translation and
rotation it seems that it would be more intuitive for users to split in-
put techniques between tangible input and keypad methods.

However the results from the tilting technique for object rotation
are encouraging and for simple rotations produce results as good as
with the keypad input. For object rotation about one axis it makes
sense to use tilting input, especially if other tangible input methods
are being used for the object translation.

The front camera gesture input is interesting, but seems that it will
need more work before it can be used for quick and accurate virtual
object placement. In particular the problem of limited interaction
volume will need to be addressed, perhaps by using a front camera
with a wider field of view. However, there are a number of inter-
esting applications that could be implemented using 3 DOF input
from the front camera.
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7 Sample Application

As a sample application to explore the properties of the front cam-
era input we developed a simple 3D paint application (Figure 13).
The paint consists of cubes dropped each frame and at a position
defined by a 3D cursor. Interaction is identical to that of transla-
tion using finger input with an ARToolKit marker, except now the
user must release the switch button and press the joypad button to
drop cubes. In this way the user can use the three degree of free-
dom (x,y,z) position information of the finger tracked by the front
camera to drop cubes into the 3D AR space.

The current mapping of the finger position in camera coordinates
into scene coordinates is indicated by a blue cube, acting as the 3D
cursor. We use the rule of thumb for the relation between marker
size and tracking distance and thus define the cursor to be at the
near clip plane when the distance to the marker is equal to ten times
its width. The finger can then be moved towards the camera until
the marker covers the camera image.

Figure 13: 3D Painting Using 3D Input

Cubes - with same size as the cursor - are dropped continuously
while the joypad button is pressed. The number of cubes is limited
to 200 and after the last one is drawn the first is simply moved to
the current cursor position. The 3D cube placement allows the user
to create a simple virtual sculpture. We did not make a formal user
study due to the demonstrational character of the application, but
all participants doing the translation study tried the application and
then commented on the feasibility of the concept and gave feed-
back on possible improvements and other application areas. Most
users agreed that the range and quality of the tracking was the major
factor limiting the usability.

This type of application is one that is best suited to finger tracking
from the front camera because it requires a way to quickly and eas-
ily specify the 3D location of the cubes being painted into space. If
this application was implemented with keypad input it would be far
more time consuming and difficult for the users to create their 3D
artworks.

8 Conclusions and Future Work

In this paper we have compared several different techniques for 3D
object translation and rotation in a mobile phone AR environment.
In particular we explored the use of the front camera in the phone
to provide finger tracking input for virtual object translation and
orientation. Our user study results agree with the results that we
found from an earlier study, namely that tangible input techniques
provide an intuitive way to translate virtual objects in a mobile AR
interface, but that keypad input is better for rotation tasks.

However, in some cases for object rotation the tilting method per-
formed almost as well as keypad input, implying that the vision

based input methods could be tuned to provide better performance
and make them more intuitive.

In the future we would like to explore the use of a front camera with
a better field of view that will support a greater interaction volume.
We will also develop alternative mappings from phone motion and
finger input to find more intuitive ways to manipulate objects. Fi-
nally, our mobile AR studies to date have involved separate studies
of object positioning and rotation. Next we need to explore tasks
that require combined object positioning and orientation, such as
path tracking.
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