
 

Abstract— Several projects have tracked the movement of 

swimmers in pools using body worn inertial measurement units. 

In swimming, inertial sensing is subject to large amounts of drift 

and accumulated error which can only be corrected for after a 

complete length has been swum. In this article, we present a new 

method for tracking swimmers by detecting variations in the 

magnetic field caused by the structure of pools. This method is 

complementary to inertial positioning, as it allows the direct 

extraction of position without requiring post-processing, and 

unlike inertial sensing which loses accuracy over time, magnetic 

field tracking becomes increasingly accurate towards the end of a 

length.  

 
Index Terms—Magnetic field measurement, Swimming 

 

I. INTRODUCTION 

echnology is commonplace in elite swim training and 

research, most commonly video capture, but also body 

mounted inertial measurement units (IMUs) [1]–[5], tethering 

of  swimmers to speed detector reels [6] and pools with 

embedded networks of sensors [7], [8].  

Excluding tethered systems, which restrict swimmers’ 

freedom, most systems are essentially non-realtime, in that 

swimmers swim whilst their performance is recorded and then 

analysed afterwards.  

A few IMU based systems have demonstrated real-time 

feedback to swimmers of body rotation and arm movement 

[5], [9], or stroke rate [10]. Using smartphones with inertial 

sensors, and cheap waterproof cases makes it possible to 

create systems using commodity hardware for applications 

such as games which respond to swimming strokes [11].  

Most technology is not easily available to non-elite 

swimmers: Augmented pools are extremely expensive, video 

recording is not allowed in most pools, tethering is not 

compatible with shared pool use. IMUs have a major 

accessibility advantage in two respects, firstly, they are 

unobtrusive and can easily be used in public pool sessions, and 

secondly, inertial sensing suitable for sports analysis is widely 

available in the form of consumer smartphones [12]. However, 

for real-time feedback to swimmers, IMUs have a major 
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limitation, which is that the drift that accumulates over time 

from sensor errors means that they are unable to provide real-

time position measurements. It is possible to correct for this 

once a full length has been swum, and estimate position and 

velocity [13], [14], but this removes the ability to respond in 

real-time to a swimmer’s movements.  

This article presents a drift-free method for determining 

swimming position in real-time, by sensing variations in 

magnetic field strength over a swimming pool. The algorithm 

is evaluated using the sensors of a Google Nexus 4 

smartphone. We believe that a combination of this tracking 

with inertial sensing may provide the basis for a wide range of 

swimmer aware real-time feedback systems. 

The tracking system is evaluated with reference to position 

measurements taken from synchronised video recordings of 

swimmers, to demonstrate that it provides a drift free position 

measurement which is possible to calculate in real time. 

II. MAGNETIC FIELD BASED POSITIONING 

In open outdoor spaces, the Earth’s magnetic field is locally 

constant in direction and magnitude. Indoors however the 

observed magnetic field will be perturbed by elements of the 

structure of the building, including steel beams, metal 

reinforcement in concrete and electrical currents [15], [16]. 

Whilst these perturbations cause problems for traditional 

use of a magnetometer for sensing compass direction, the 

magnetic signature of these disturbances can be detected and 

used to identify location inside a building. These magnetic 

disturbances are typically relatively constant over time, 

meaning that a single magnetic map of a building can be made 

and used for positioning at later dates [15]. 

III. MAGNETIC FIELD IN A SWIMMING POOL 

Lap swimming pools are large rectangular basins, 

surrounded by reinforced concrete. Steel bars in the reinforced 

concrete create magnetic field disturbances.  

In a lap pool, swimmers typically swim lengths in lanes 

arranged along the long axis of the pool. Most pools vary in 

depth along this axis. As such, the perturbation in magnetic 

field due to the bottom and ends of the pool varies strongly as 

a person swims along the pool and the distance from the 

bottom and ends changes. In contrast, the effect of the two 

sides of the pool is relatively constant, as the swimmer 

maintains a constant distance and orientation relative to them. 

Changing lane alters the constant value of the perturbation 

from the sides, which offsets the profile by a constant value. 

Fig. 1(a) shows measurements of the magnitude of magnetic 

flux density (|B| μ tesla) taken along a single lane in a 25 
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metre swimming pool by the smartphone used in our 

experiment, placed flat on the water surface and towed from 

one end to the other at constant speed. Figure 1(b) shows the 

same pool 6 months later, in a different lane in the pool, at a 

faster speed. The magnetic signature does not change over 

time or lane change, except for a constant offset due to the 

lane change. Fig. 1(c) and 1(d),1(e) show magnetic signatures 

of two other pools. The pool in Fig. 1(d) & (e) is interesting, 

as it shows a different signature when swum in opposite 

directions. All other pools tested showed the same profile in 

both directions. We believe this to be due to the movable 

depth floor of this pool, which uses two lines of scissor jacks 

beneath the floor. Perturbation of the magnetic field 

measurement for the vertical line of jacks changes depending 

on the magnetometer’s orientation relative to it, which differs 

when swimming one direction or the other, unlike orientation 

relative to bottom of a standard pool. 

 
 Fig. 1.  Magnetic profiles recorded at different pools and times  

IV. MEASURING THE MAGNETIC FIELD OF A POOL 

A. Sensing Equipment 

 
Fig. 2. Placing of the smartphone on the body 

A Google Nexus 4 smartphone is placed in a waterproof 

pouch and strapped tightly onto the central lower back of the 

swimmer using a simple waist strap and pouch. This position 

was chosen, as in previous IMU research [1], [3], [5], [13], 

[14] because it offers a predictable orientation relative to the 

base of the swimming pool, and allows orientation sensing to 

reliably detect the direction of swimming. Fig. 2.shows the 

sensor orientation. Magnetic flux is measured using the built 

in magnetometer, sampled at ‘full speed’, nominally 50hz 

(mean: 48.1hz, s.d. 1.98). The phone contains an Invensys 

MPU6050 accelerometer  & gyroscope with magnetometer 

input, but no specifications are available for the connected 

magnetometer (some limited description of the characteristics 

of Nexus 4 sensors has been extracted by Ma et al. [17]). 

B. Recording Magnetic Signature in Real Pool Conditions 

The smartphone provides a stable orientation value [17], 

created using a Kalman filter to fuse accelerometer, gyro and 

magnetometer sensors. We threshold x-axis (front-back) 

rotation at 40 degrees to detect when the person starts and 

stops swimming. 40 degrees was chosen as it is significantly 

more than the typical maximum backward tilt even in strokes 

such as breaststroke which involve bringing the head upwards. 

Orientation is also used to detect laps, by detecting a rotation 

of 180 degrees around the vertical axis at the end of the pool.  

To record the signature of a pool a swimmer swims along 

the pool on their front while kicking. This keeps the 

orientation of the sensor constant and provides a constant 

speed (unlike full stroke swimming which can involve large 

speed and orientation variations over each stroke). They do 

this for two lengths, stopping between, to acquire a signature 

in both directions. We know these were recorded at relatively 

constant speed and when each length started and ended, so we 

assume that recorded points are evenly spaced over the length 

of the pool. This gives us two signatures which vary over 

distance d along the pool, fwd(d) and back(d). Unlike indoor 

navigation projects, which mostly use complete 3 axis 

signatures (e.g.[18]), we use magnitude of magnetic flux; this 

is firstly because the major change along the pool is due to the 

change in depth as the pool base gets further away and only 

really affects the z axis, so using multiple axes does not add 

much information , and secondly because using magnitude 

makes the system more robust to rotation during swimming 

(pedestrian systems typically assume a relatively constant 

sensor orientation, which they can calibrate for [15]). 

This process has an inaccuracy because at the beginning of 

a length, the swimmer will push off, which creates a variation 

in speed at that point. There is less variation at the end of 

length, as the swimmer touches and comes into the wall whilst 

bringing their legs down quickly (as an example, we measured 

three speeds from our video ground truth data, of kicking for 

25m length, average speed:0.59m/s, speed from start to 5m: 

0.81m/s, speed from 20m to end: 0.53m/s). We correct for this 

error in a standard pool (which has the same profile in both 

directions), by creating a final signature from a combination of 

the second halves of the two signatures. The process for doing 

this is: 

1) Reverse back, to make back'. Take the midpoint of back. 

𝑝𝑡𝐵𝐴𝐶𝐾 =
𝑙𝑒𝑛

2
 

2) Find the point ptFWD in fwd which corresponds to ptBACK 

by minimising the squared difference over a sliding window of 

length w = len/4, vertically offsetting fwd for each possible 



value of ptFWD based on the assumption that if ptFWD and ptBACK 

refer to the same point in the magnetic profile the profile 

should be equal there (Equation 1). This corrects for the case 

where a swimmer may swim up in one lane and back in 

another, so back’ will have a constant magnetic offset in 

comparison to fwd. Equations (1-3) describe this process. 

𝑣𝑑𝑖𝑓𝑓(𝑜𝑓𝑠) = (𝑏𝑎𝑐𝑘′(𝑝𝑡𝐵𝐴𝐶𝐾) − 𝑓𝑤𝑑(𝑝𝑡𝐵𝐴𝐶𝐾 + 𝑜𝑓𝑠) (1) 

𝑠𝑞𝑑𝑖𝑓𝑓(𝑜𝑓𝑠)= 

             ∑ (𝑏𝑎𝑐𝑘′(𝑥) − 𝑓𝑤𝑑(𝑥 + 𝑜𝑓𝑠) − vdiff(ofs))
2

𝑥=𝑝𝑡𝐵𝐴𝐶𝐾+
𝑤
2

𝑥=𝑝𝑡𝐵𝐴𝐶𝐾−
𝑤
2

 

 (2)  

𝑝𝑡𝐹𝑊𝐷 = 𝑝𝑡𝐵𝐴𝐶𝐾 + min
−𝑤<𝑜𝑓𝑠≤𝑤

𝑠𝑞𝑑𝑖𝑓𝑓(𝑜𝑓𝑠) (3)  

We create a combined signature from the first half of back’ 

and the section of fwd from ptFWD to the end (Fig. 3). This 

signature consists only of points where the swimmer was in 

the more stable second half of each length, so does not include 

points recorded during initial accelerations of each length.   

 
Fig. 3.  The acceleration at the start of a length causes the start of the profile to 

be compressed. The recorded forward and backward magnetic signatures are 

combined to make a single signature which avoids this inaccuracy. 
 

Fig. 4 shows how the combined profile is not warped by 

initial acceleration. The dashed line is an example of a profile 

recorded by swimming (shown smoothed by sliding mean 

over 1m for clarity), against magnetic points sampled from the 

same pool using a video based ground truth position. 

  
Fig. 4.  Swim recorded signature against video aligned magnetic points. 

V. ACQUIRING A ROBUST MAGNETIC SIGNAL FROM A 

SWIMMER DURING FULL STROKE SWIMMING  

Detecting pool position by matching the magnetic signature, 

requires a high quality magnetic magnitude measurement. To 

be useful, this must be acquired whilst the swimmer is 

swimming whatever stroke they desire to perform. Compared 

to flat swimming, swimming full strokes induces significant 

noise which requires compensation. 

A. Characteristics of swimming induced sensor noise 

Magnetometer error caused by reinforcement in concrete is 

a ‘soft iron’ error, in that the iron in the reinforcement distorts 

the earth’s magnetic field (in contrast to a ‘hard iron’ error, 

where an electric or magnetic component actively generates its 

own magnetic field) [19]. This causes a magnetometer error 

that varies depending on the orientation of the magnetometer 

relative to the source of the error. This error cannot be 

calibrated for because it is from a source external to the 

magnetometer [19], further to this, variation in the magnitude 

of that error is essentially what we are measuring. Because the 

reinforced concrete grids are essentially planar, and the 

swimmer is always directly above the floor plane, when 

swimming flat, the induced error does not change depending 

on direction in the pool (similarly at either end, the induced 

error from the end of the pool is constant). In this work, we do 

not consider other sources of magnetic field perturbations such 

as electronic devices in the pool area, or the field generated by 

the smartphone itself, as these are unlikely to be significant as 

those caused by the large quantity of metal embedded in a 

typical pool structure. 

When collecting the pool signature, swimmers were told to 

swim flat on their front and kick so their orientation relative to 

the floor of the pool stays constant. However, when swimming 

a full stroke, the swimmer may rotate their body away from 

flat significantly. This is not a problem with breaststroke or 

butterfly, as angular changes are relatively small. However, 

when swimming front crawl, there is a significant side to side 

body rotation, between 40 to 70 degrees from horizontal for a 

competent swimmer [20]. This causes significant noise as the 

swimmer rotates, as seen in Fig. 5.  

 
Fig. 5.  Side to side rotation causes error in the recorded magnetic signal. 

B. Rotation Error Correction 

Whilst these errors clearly relate to the sine of the 

orientation signal, a combination of differing and slightly 

unpredictable sensor delays on the commodity hardware 

meant that attempts to create an independent component 

analysis algorithm for this signal failed. Similarly, whilst the 

frequency of the swimmer rotation is high compared to the 

overall changes in magnitude, the irregularity of the rotation 

meant that low pass filtering did not create a suitably clean 

signal; low pass filters also created an unacceptable level of 



delay for a real time system. 

Instead, an adaptive error model is used to correct for these 

errors, and to create a signal that is close to the reference 

signal recorded when flat. This model is based on the 

following assumptions: 

1. The output only needs to be a relative magnetic 

field value, so absolute value is not important. The 

tracking algorithm is also robust to slight 

magnitude errors. 

2. The error being corrected for is caused by side to 

side rotations in the stroke, which primarily affect 

the X and Z axes of the sensor. Whilst all strokes 

affect the Y axis slightly, we measured typical total 

rotational ranges of 100-140 degrees side to side 

swimming crawl, versus approximately 15 degrees 

front-back in breaststroke and less in crawl.  

3. The error is primarily caused by rotation relative to 

planes (floor, walls), so the axes of any soft iron 

error will be parallel to the axes of the pool itself. 

4. The magnetic field error changes more slowly than 

the swimming induced error. 

 

In order to error correct for rotation error, the following 

algorithm is used: 

Firstly, take the raw magnetometer magnitude value: 

𝑚𝑎𝑔(𝑡) = √𝑀𝑥(𝑡)2 + 𝑀𝑦(𝑡)2 + 𝑀𝑧(𝑡)2 . (4)  

This recorded value includes two possible sources of error, 

soft and hard iron distortions. Hard iron distortions cause a 

constant offset to be applied for each axis. Soft iron distortions 

cause the axes to be distorted by an ellipsoid, which in general 

can be at an arbitrary angle to the axes [19]. Due to 

Assumption 3, it is possible to assume that the ellipsoid will 

be axis aligned when the swimmer is flat. Assumption 2 

means that we only need to consider effect on X and Z axes.  

This means that given correct scaling (sx, sy) and offset (ox, 

oy) factors, a normalised version of the recorded magnetic 

field can be used which will be stable in x/z axis rotation. 

𝑚𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) = √(𝑠𝑥𝑀𝑥(t) + 𝑜𝑥)2 + 𝑀𝑦(𝑡)2 + (𝑠𝑧𝑀𝑧(t) + 𝑜𝑧)2 (5) 

To calculate these scaling and offset factors, a scoring 

function 𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑖𝑓𝑓 is used on a history buffer of magnetic 

field values to evaluate different factors. 

𝑜𝑓𝑓𝑠𝑒𝑡𝑑𝑖𝑓𝑓(𝑡) = ∑(𝑚𝑛𝑜𝑟𝑚𝑎𝑙(𝑖) − 𝑚𝑛𝑜𝑟𝑚𝑎𝑙(𝑖 − 1))
2

𝑡

𝑖=1

  

 (6) 

This function is based on Assumption 4, as it assumes that a 

better scaling and offset factor will create lower short term 

variance in the signal. This measure is used rather than a 

conventional variance to prioritise short-term fluctuation from 

rotational error over slower underlying field changes. 

To optimise scale and offsets, the following algorithm is 

used: 

1. At the beginning of each length, scale and offsets 

are set to one and zero respectively.  

2. As sensor points are received, a circular history 

buffer 4 seconds long is used to record the full 

magnetometer vector. Once this buffer contains 

more than 1 second of data, the scale and offsets 

are optimised by stepped descent, recalculating the 

mnormal vector for each modification to 

scale/offset and scoring it using the offsetdiff 

function to find if it is better than the current value. 

Scales are modified by 0.01 per step, within a 

range of (-0.95,1.05). Offsets are modified by 0.1 

per step, within a range of (-5,5) T. Up to 10 

improvement steps are carried out for each 

magnetic measurement (at 48.1±1.98hz as above). 

Scale and offset factors are reset on a per length basis. This 

is because in practice the correct factor will change 

significantly over multiple lengths, even between two lengths 

in the same direction, it is hypothesised that this may be due to 

changes in equipment temperature due to uneven temperature 

in the water or sensors warming up, sensor attempts at 

automatically calibrating, which fail in such high magnetic 

error surroundings, changes in sensor orientation due to slight 

posture changes, or other un-modelled factors.  

Fig. 6 shows an example result from this optimisation. 

 
Fig. 6.  Recorded magnetic signal with rotation induced noise removed. 

VI. MAGNETIC SIGNATURE TRACKING 

The magnetic tracking algorithm uses as input the error 

corrected magnetic history for the current length. This is 

matched against the signature to acquire position at 0.1m 

resolution once per 10 magnetometer points (i.e. at 5HZ). 

The algorithm used is a dynamic programming algorithm in 

which at each timestep the recent history of sensed magnetic 

field strength is compared against areas of the magnetic 

signature which it plausibly could represent, with plausibility 

defined by the output of previous time steps and constraints on 

how fast swimmers can realistically move. It is inspired by 

Dixon’s on-line dynamic time warping algorithm [21], but 

uses a regional matching window for each point, and ongoing 

cost is simplified to simply a true/false plausibility vector. 



A. Generation of Signature Matrix 

 
Fig. 7.  Each row in the signature matrix contains a subset of the full pool 

signature (row 250). Each row is offset so the last value in the row is zero. 

When the pool signature is captured, the system generates a 

signature matrix SM of fixed dimensions 249x250 using (7) 

below (where len is the full length of the recorded signature, 

the implementation uses linear interpolation for intermediate 

values of the signature vector),  

𝑆𝑀(𝑟, 𝑑) = signature (𝑑 ×
𝑟

250
) − signature(𝑙𝑒𝑛 ×

𝑟

250
) (7) 

Each line of the matrix takes a subset of the complete pool 

signature from the start to a proportion of the way along the 

pool (Fig. 7), and offsets values by the last value in that row, 

so that it always ends with a zero. 250 points are used to 

acquire 10cm accuracy in a standard 25 metre pool. 249 rows 

are used to avoid template rows generated from a single point. 

Matrix generation is done once per pool signature 

recording, so is not performance critical. Generation of the 

signature matrix allows for fast matching of recorded 

magnetic data against all possible positions in the pool profile 

using vector & matrix operations. 

B. Per Length Initialisation 

At the beginning of a length, a plausibility vector is 

initialised; this is a Boolean vector of length 249, initially set 

to true for all points. The plausibility vector is true for points 

which it is plausible that the person may be at in the current 

time step. The initial time step occurs at 0.4 seconds from the 

detection of swimming starting, when 3 points of history data 

have been collected. 

C. Per frame tracking 

TABLE I 
DEFINITION OF VARIABLES AND CONSTANTS 

Name Description 

sigsteps=10 Number of signature steps per metre 

smin = 0.25×sigsteps Minimum speed (signature steps per second) 

smax = 3×sigsteps Maximum speed (signature steps per second) 

dt Time step since last frame (seconds) 

t Time since beginning of length (seconds) 

PLBt Plausibility vector at time t before tracking 

(Boolean vector) 

PBAt Plausibility vector at time t after tracking 

len Number of points in magnetic history vector 

The algorithm assumes a minimum and maximum 

swimming speed of 0.25 m/s and 3 m/s respectively, chosen to 

range from extremely slow to well above world record speed. 

Table I shows the variables and constants used. 

1) Update plausibility vector 

At each time step, the plausibility vector is updated using 

Equation (10) below. This takes account of both the minimum 

and maximum swimming speeds, and the points which were 

marked as plausible in the previous time step and is 

constructed as follows: 

To update the plausibility vector for a time step, for each 

position to be a plausible result in this time step, it must satisfy 

two constraints:  

Global speed constraint: Is it possible that someone could 

start a length at the time they started and have got to this point 

by the current time?: 

plausglobal(𝑥) =  (𝑡 ∗ 𝑠𝑚𝑖𝑛 < 𝑥 < 𝑡 × 𝑠𝑚𝑎𝑥). (8) 

Local speed constraint: There must be a point in the 

previous time step plausibility vector that this point could be 

reached from by travelling at a speed between smin and smax: 

plauslocal(𝑥) =

    ∃ 𝑘: (𝑑𝑡 ∗ 𝑠𝑚𝑖𝑛 < 𝑘 < 𝑑𝑡 ∗ 𝑠𝑚𝑎𝑥  ⋀PLA𝑡−1(𝑥 − 𝑘)).  (9) 

The final plausibility value is a simple AND operation on 

these two boolean functions: 

PLB𝑡(𝑥) = plausglobal(𝑥) ⋀ plauslocal(𝑥).  (10) 

2) Normalise History Vector 

For each tracking frame, the magnetic history for the length 

swum so far is taken, resized to length 250, and offset by the 

final value (11) , so that it is in the same form as the rows in 

the magnetic signature matrix. Again, linear interpolation is 

used for intermediate history values. 

ℎ𝑖𝑠𝑡𝑛𝑜𝑟𝑚(𝑥) = ℎ𝑖𝑠𝑡𝑜𝑟𝑦 (𝑥 ×
𝑙𝑒𝑛

250
) − ℎ𝑖𝑠𝑡𝑜𝑟𝑦(𝑙𝑒𝑛)  (11) 

3) Score Plausible Rows 

The last 4 seconds of the history vector are then compared 

against the relevant section of every row in the signature 

matrix for which the plausibility vector PLB is true. The 

comparison uses a simple sum of squared differences (12). 

    𝑡𝑖𝑚𝑒𝑂𝑓𝑠 =
4∗250

𝑡
  

𝑠𝑞𝑑𝑖𝑓𝑓(𝑥) = ∑ [histnorm(𝑘) − 𝑆𝑀(𝑥, 𝑘)]2250
𝑘=250−𝑡𝑖𝑚𝑒𝑂𝑓𝑠  (12) 

4) Output Tracking Position 

The final output position is the one with the lowest squared 

difference to the signature array. 

𝑜𝑢𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛𝑝𝑜𝑠𝑥∈𝑃𝐿𝐵𝑡
(𝑠𝑞𝑑𝑖𝑓𝑓(𝑥)) (13) 

5) Update Plausibility Vector 

The minimum value for sqdiff is found, and a plausibility 

threshold is set as 5.0 × minimum value. The plausibility 

vector after the time step (PLA) is set based on this threshold. 

𝑚𝑖𝑛𝑉𝑎𝑙 = min𝑥 𝑠𝑐𝑜𝑟𝑒𝑓𝑛 (x) (14) 

𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑥 = 5.0 ∗ 𝑚𝑖𝑛𝑉𝑎𝑙  (15) 

PLA𝑡(𝑥) = PLBt(𝑥) ∧ (scorefn(𝑥) ≤ 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒𝑀𝑎𝑥) (16) 

VII. ALGORITHM EFFICIENCY 

A. Rotation Error Correction 

The rotation error correction uses a magnetic history buffer 

containing 200 samples (4 seconds at 50hz). As each sample 

comes in, up to 10 optimisation steps occur. These require: 



1) Calculate the magnitude of each point with offsets to X 

and Z (5 additions, 5 multiplications, 1 square root per 

point)  

2) Calculate the offset difference function (1 subtraction, 1 

multiplication per point) 

This gives a total of 200×13×10 = 26,000 floating point 

operations per optimisation step, or 1,300,000 per second, 

all of which are trivially parallelisable and vectorisable.  

B. Signature Tracking 

Without the local plausibility vector constraint, the worst 

case scenario is that the algorithm will require searching the 

full range between the fastest and slowest possible positions as 

defined by the global minimum and maximum speeds, defined 

by (17) below. Further to this, the scoring algorithm uses a 4 

second window, which means it only compares against 

selected columns of the signature matrix after 4 seconds has 

elapsed. The number of columns compared is defined by (18). 

𝑟𝑜𝑤𝑟𝑎𝑛𝑔𝑒(𝑡) = min (250, t × 𝑠𝑚𝑎𝑥) − min (250, t × 𝑠𝑚𝑖𝑛)(17) 

 

𝑐𝑜𝑙𝑢𝑚𝑛𝑟𝑎𝑛𝑔𝑒(𝑡) =
250 𝑡 ≤ 4

(
4

𝑡
) ∗ 250 𝑡 > 4

 (18) 

The number of comparisons between values required at a 

given time is equal to the product of rowrange(t) and 

columnrange(t). For our maximum and minimum values, 

matrix size and time step, taking a maximum of this product 

means that the maximum number of comparisons is 27777, 

which given the relatively simple calculations involved (one 

floating point subtraction, one multiplication and one addition 

per comparison) is easily within the capabilities of even low 

end smartphones (e.g. The author’s Sony Xperia M reports a 

real world throughput of 1,009,000,000 floating point 

operations for multiplication of large double precision floating 

point matrices). The scoring operations are also trivially 

parallelisable and well suited to vector operations. 

The number of comparisons in the worst case grows as the 

square of the signature matrix resolution, meaning that the 

balance between resolution and performance must be carefully 

considered. It should be noted that the magnetic signal does 

not change very quickly, so 250 points is easily able to capture 

the full range of variation in all the pools tested. 

Whilst as described above, the worst case scenario is well 

within the capability of modern mobile hardware, in practice, 

the local constraint in the plausibility vector improves the 

performance considerably, vastly reducing the search space. 

As an example, Fig. 8 shows one length of tracking, with the 

received magnetic signal on the bottom, the target signature on 

the right, and the detected position of the magnetic tracker as 

each measurement is received shown as the central black line. 

The grey channel around the central measurement shows the 

range of plausible values as each measurement comes in, 

typically 10-20 possible positions are tested (2500-5000 

comparisons), with a worst case of approximately 50 (up to 

12500 calculations). 

C. Overall Algorithm Efficiency 

As shown above, in the worst case, the algorithm shown 

here requires 1,327,000 floating point calculations per second, 

making it easily within the range of a standard smartphone 

level processor such as the 1Ghz ARM7 core used in the 

author’s Sony Xperia m. A majority of the time currently is 

spent performing rotational noise reduction; in future we 

believe it may be possible to reduce this by designing an 

algorithm to perform the error reduction at 5hz, in tandem 

with the tracking algorithm, to allow this algorithm to be 

implemented on simpler wearable sensor hardware. 

 

 
Fig. 8.  A plot of a tracking result, showing the estimated position, and the 

range of positions which are plausible position estimates for each time step. 

VIII. ACCURACY EVALUATION 

To evaluate the accuracy of the algorithm, a test was run 

with 3 swimmers, in a standard 25 metre public pool. Each 

swum 2 lengths kicking, then continued to swim front crawl. 1 

participant unfortunately managed to loosen the strap of the 

phone holder during their swim, which meant that their data 

was lost. A total of 10 lengths were recorded from the 

remaining two participants. Front crawl was chosen as being 

the stroke with the greatest amount of rotation induced noise 

in the signal. Swimmers were both male intermediate 

swimmers (swimming at a pace of 6 or 7 minutes per 400m). 

The swimmers varied their speed during the testing, between 

0.63 m/s to 1.14 m/s average speed per length. One participant 

swam parts of their lengths doing catch-up drill, where the 

swimmer uses exaggerated, slower stroke actions. 

A pool profile recorded from kicking lengths of one 

participant was used for all testing, to provide support for the 

idea that the profile is unique to the pool rather than the 

swimmer. This did not alter the results in comparison with 

using the swimmer’s own recorded profile. 



A. Video Based Ground Truth 

 
Fig. 9.  A suitable ground truth dataset was acquired with reference to the 

regular 250mm spaced (240mm + grouting) tiling on the side of the pool. 

 

To acquire a ground truth dataset, the swimming was video 

recorded. The pool used is uniformly tiled along the edge, 

with the pool edge being level to the water. Regular reference 

points on this tiling were used to create a ground truth position 

in the pool, by hand annotating features on the image and 

using a simple planar homography to measure the position in 

the pool of the belt on which the system was mounted (Fig. 9). 

This gave a ground truth measurement that is accurate to more 

than the 10cm resolution that the tracking algorithm works at. 

Overall, 5265 ground truth data points were recorded, along 

the full pool length for all lengths swum. 

B. Accuracy Measurements 

TABLE II 

DESCRIPTIVE STATISTICS FOR MAGNETIC TRACKING  ACCURACY 

Statistic Value 

Absolute error mean  μabserror=0.73m 

Abs. error standard deviation σabserror=0.65m 
Correlation with ground truth r2= 0.98 

error mean μerror = 0.02m 

error standard deviation σerror = 0.98m 

Fig. 10(a) shows a plot of magnetic measurements versus 

ground truth measurements. The mean absolute error over the 

dataset is 0.73m. Fig. 10(b) shows the distribution of the error; 

71.5% of points are within ±1 metre of the ground truth data. 

This exceeds the performance of standard person worn 

magnetic tracking algorithms e.g. [15], [18], in part due to 

swimming specific constraints on initial position, velocity and 

orientation. The fact that swimming pools are strongly 

directional in their construction is also likely to be a factor, in 

that the magnetic field is not subject to large variation as a 

swimmer moves from side to side in the pool, in contrast to 

the building structure induced errors described by [15]. 

As can been seen from the diagrams, the correlation 

between the two is extremely strong (r
2
=0.98), Fig 10(c) 

shows a Bland-Altman plot [22] which demonstrates the 

algorithm performance through the length, showing that it 

actually improves in accuracy towards the end.  Table III 

shows descriptive statistics relating to this improvement. This 

improvement is in contrast to inertial sensor based systems, 

which whilst they can be accurate at the beginning of a length, 

due to drift caused by noise in the sensors become 

increasingly poor over time [13]. For this reason, inertial 

positioning systems for swimming cannot be real-time and 

need to apply correction algorithms to the inertial data at the 

end of a length when the swimmer is at a known position. 

 

 
Fig. 10.  Performance of the algorithm against ground truth measurement  

 

 

TABLE III 
PERFORMANCE AT DIFFERENT POINTS IN THE POOL 

Range from Range to μabserror σabserror 

0 5 1.11 0.81 

5 10 0.63 0.58 

10 15 0.84 0.50 

15 20 0.66 0.70 

20 25 0.47 0.47 



IX. ALGORITHM CHARACTERISTICS AND APPLICATION 

A. Potential for Combination with Inertial Tracking 

TABLE IV 
COMPARISON OF MAGNETIC AND INERTIAL TRACKING 

 
Magnetic Tracking IMU Tracking 

Resolution Low (10cm) High (<1cm) 

Output position Absolute position 
Position relative to last 

known point 

Change in position 

error over time 

Error stable or 

decreasing 

Begins low then increases 

(drift) 

Frequency Low (5hz) High (100-1000hz) 

Posture Tracking None Can estimate body position 

Table IV summarises characteristics of the magnetic 

tracking  algorithm described in this paper, contrasted against 

inertial sensor based real-time tracking. It is clear that this 

algorithm has potential for combination with an inertial 

sensing algorithm in order to create a high-resolution, low 

drift estimate of swimmer position and velocity. Magnetic 

sensing is also advantageous compared to IMU systems which 

adapt each length, such as [1], in that it is entirely per length, 

and does not assume that participants will be swimming in a 

similar manner for all lengths; this is particularly important for 

less expert swimmers, who may be swimming irregularly, but 

also potentially affects those who may be doing a lot of drill 

swimming, where swimmers perform movements designed to 

break down a small element of the act of swimming. These 

significantly change the dynamics of the swimming action, in 

a way that could potentially hinder adaptive inertial systems as 

the way a person swims can change entirely on every length. 

B. Potential Applications 

Ongoing and future work involves creating real-time audio, 

visual and vibro-tactile feedback systems for swimming. For 

these systems, knowing where in the pool a swimmer is is 

important. For example if a system is aiming to aid swimmers 

with a tumble turn, knowing that the swimmer is nearing the 

end of the pool could allow the system to create relevant 

feedback to the user, firstly to suggest breathing early, before 

they need to turn, then to aid them in initiating their turn, and 

finally to evaluate the movements of their turn. Our 

experiments with inertial sensors suggest that drift in 

integration during a length of swimming is too much for even 

such simple cueing to be practical with an inertial solution, as 

cuing may happen significantly too early or late.  
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