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Abstract

In this work we report on the progress of building a sys-
tem that enables fully automated fast and robust facial ex-
pression recognition from face video. We analyse subtle
changes in facial expression by recognizing facial muscle
action units (AUs) and analysing their temporal behavior.
By detecting AUs from face video we enable the analysis of
various facial communicative signals including facial ex-
pressions of emotion, attitude and mood. For an input video
picturing a facial expression we detect per frame whether
any of 15 different AUs is activated, whether that facial ac-
tion is in the onset, apex, or offset phase, and what the to-
tal duration of the activation in question is. We base this
process upon a set of spatio-temporal features calculated
from tracking data for 20 facial fiducial points. To detect
these 20 points of interest in the first frame of an input face
video, we utilize a fully automatic, facial point localization
method that uses individual feature GentleBoost templates
built from Gabor wavelet features. Then, we exploit a par-
ticle filtering scheme that uses factorized likelihoods anda
novel observation model that combines a rigid and a mor-
phological model to track the facial points. The AUs dis-
played in the input video and their temporal segments are
recognized finally by Support Vector Machines trained on
a subset of most informative spatio-temporal features se-
lected by AdaBoost. For Cohn-Kanade and MMI databases,
the proposed system classifies 15 AUs occurring alone or in
combination with other AUs with a mean agreement rate of
90.2% with human FACS coders.

1. Introduction

Humans interact far more naturally with each other than
they do with machines. To approach the naturalness of face-
to-face human interaction machines should be able to em-
ulate the way humans communicate with each other. Al-
though speech alone is often sufficient for communicating
with another person (e.g., in a phone call), non-verbal com-
municative cues can help to synchronize the dialogue, to
signal comprehension or disagreement and to let the dia-
logue run smoother, with less interruptions. With facial ex-

pressions we clarify what is said by means of lip-reading,
we stress the importance of the spoken message by means of
conversational signals like raising eyebrows, and we signal
comprehension, disagreement, boredom and intentions [?].
Machine understanding of facial expressions could revolu-
tionize user interfaces including ambient, automotive and
robot interfaces and has become, therefore, a hot topic in
AI and computer-vision research.

The method proposed in this paper intends to detect
atomic facial actions called Action Units (AUs) defined by
the Facial Action Coding System (FACS) [?]. FACS is the
best known and the most commonly used system devel-
oped for human observers to describe facial activity in terms
of visually observable facial muscle actions (AUs). Using
FACS, human observers decompose a facial expression into
one or more of in total 44 AUs that produced the expression
in question.

Previous work on AU detection from videos includes au-
tomatic detection of 16 AUs from face image sequences us-
ing lip tracking, template matching and neural networks [?],
detecting 20 AUs occurring alone or in combination by us-
ing temporal templates generated from input face video [?]
and detection of 18 AUs using wavelets, AdaBoost and Sup-
port Vector Machines [?]. For a good overview of the work
done on AU and emotion detection from still images or face
video the reader is referred to [?, ?]. Although many of
these methods are suitable for decoding the temporal seg-
ments of facial actions (onset, apex and offset), none do this
explicitly [?].

The system described in this work detects 15 AUs that
have a high relevance for inter-human communication.
More precisely, this set of AUs is sufficient to detect the
six basic emotions with high reliability [?]. These AUs are
first detected for every frame of an input face video. In or-
der to compare our results with those of other systems, we
also determine which AUs have been active during the en-
tire video. Besides a reliable detection of 15 AUs from face
video we propose in this work a new method to analyze the
temporal aspects of facial actions. For every AU our system
detects, we determine the duration of the temporal phases
onset, apex and offset.



To analyze a facial expression, we use 15 SVM classi-
fiers, one for every AU we wish to detect, which are trained
using features that describe the spatio-temporal relation-
ships between 20 tracked fiducial facial points. To extract
these features, we first find the face in the first frame of an
input image sequence using an adapted version of the Viola
and Jones face detector [?]. Within the localized face region
we automatically localize 20 fiducial facial points with a fa-
cial feature point detector based on Gabor wavelets and a
GentleBoost classifier [?]. After the facial points have been
located in the first frame, a tracking scheme based on parti-
cle filtering with factorized likelihoods [?] is used to track
the points in all subsequent frames of a video displaying
a facial expression. The features are then calculated from
the positions of the facial points as indicated by the point
tracker. To analyse the temporal dynamics of a facial ac-
tion, we use the same features as for the AU detection, only
now we train a multiclass SVM for every AU to distinguish
between it’s neutral, onset, apex and offset phases.

The paper is organized as follows. Section?? describes
the automatic feature extraction including face detection
(section??), facial point localization (section??), facial
point tracking (section??) and the final feature extraction
(section??). The classification schemes for AU detection
and temporal analysis are described in sections?? and??,
respectively. The datasets used in our experiments are de-
scribed in section??, while the experiments themselves are
described in section??. Finally, section?? provides the
conclusions and discusses to future directions of our re-
search.

2. Automatic facial feature extraction

2.1. Face detection

To detect the face image in a scene we make use of a
real-time face detection scheme proposed in [?], which rep-
resents an adapted version of the original Viola-Jones face
detector [?]. The Viola-Jones face detector consists of a
cascade of classifiers trained by AdaBoost. Each classifier
employs integral image filters, which remind of Haar Ba-
sis functions and can be computed very fast at any location
and scale. This is essential to the speed of the detector. For
each stage in the cascade, a subset of features is chosen us-
ing a feature selection procedure based on AdaBoost. The
adapted version of the Viola-Jones face detector that we em-
ploy uses GentleBoost instead of AdaBoost. It also refines
the originally proposed feature selection by finding the best
performing single-feature classifier from a new set of filters
generated by shifting and scaling the chosen filter by two
pixels in each direction, as well as composite filters made
by reflecting each shifted and scaled feature horizontally
about the center and superimposing it on the original. Fi-
nally the employed version of the face detector uses a smart

Figure 1: Fiducial facial points that will be tracked.

training procedure in which, after each single feature, the
system can decide whether to test another feature or to stop
and make a decision. This way the system retains informa-
tion about the continuous outputs of each feature detector
rather than converting to binary decisions at each stage of
the cascade.

2.2. Facial point detection

The method that we use for fully automatic detection of
20 facial feature points (see Fig.??) plus the irises and the
center of the mouth in a face image, uses Gabor-feature-
based boosted classifiers as proposed in [?]. The method
(see Fig.??) assumes that the input image is a face region,
such as the output of the detection algorithm explained in
section??. The input face region is then divided into 20
regions of interest (ROIs), each one corresponding to one
facial point to be detected. The irises and the medial point
of the mouth are detected first. A combination of heuristic
techniques based on the analysis of the vertical and hor-
izontal histograms of the upper and the lower half of the
face-region image achieves this. Subsequently, the detected
positions of the irises and the mouth are used to localize 20
ROIs. An example of the localized ROIs for points B, I and
J is depicted in Fig.??(b).

The employed facial feature point detection method uses
individual feature patch templates to detect points in the rel-
evant ROI. These feature models are GentleBoost [?] tem-
plates build from gray level intensities and Gabor wavelet
features. Recent work has shown that a Gabor approach for
local feature extraction outperformed Principal Component
Analysis, Fisher’s Linear Discriminant and Local Feature
Analysis [?]. This finding is also consistent with our ex-
perimental data that show that the vast majority of features
(over 98%) selected by the utilized GentleBoost classifier
were from the Gabor filter components rather than from the
gray level intensities. The essence of the success of Gabor
filters is that they remove most of the variability in image



Figure 2: Outline of the fiducial facial point detection
method. (a) Face detection using Haar feature based Gen-
tleBoost classifier; (b) ROI extraction, (c) feature extraction
based on Gabor filtering, (d) feature selection and classifi-
cation using GentleBoost classifier, (e) output of the system
compared to the face drawing with facial landmark points
we aim to detect

due to variation in lighting and contrast, while at the same
time being robust against small shift and deformation [?].

For each facial point a feature vector is extracted from
the 13x13 pixels image patch centered at that point. This
feature vector is used to learn the pertinent point’s patch
template and, in the testing stage, to predict whether the
current point represents a certain facial point or not. The
feature vector consists of the gray level values of the image
patch and of the responses of 48 Gabor filters (8 orienta-
tions and 6 spatial frequencies, 2:12 pixels/cycle at 1/2 oc-
tave steps) taken at every pixel of the image patch. Thus,
169x49=8281 features are used to represent one point.

In the training phase, GentleBoost feature templates are
learned using a representative set of positive and negative

Figure 3: Positive and negative examples for training point
B. The big white square represents the 9 positive samples.
Eight negative samples have been randomly picked near the
positive samples and another 8 are randomly chosen from
the remainder of the region of interest.

examples. As positive examples for a facial point, we used
the set of points within the 3x3 pixels region centered on
the manually labeled true point. For negative training ex-
amples we used two sets of points. The first set consists
of 8 points randomly displaced at a 2 pixels distance from
the positive examples. The second set of negative examples
consists of 8 points randomly displaced in the remaining
area of the ROI (see Fig.??). In the test phase each pixel
in the ROI is filtered first by the set of 48 Gabor filters de-
scribed above. Then, we use a sliding window approach
in the ROI to obtain a GentleBoost response for every con-
tained pixel, representing a measure of similarity between
the 49-dimensional representation of the current test tem-
plate with the learned feature point model. After scanning
the entire ROI, the position with the highest response is se-
lected as the location of the facial feature point in question.

2.3. Facial point tracking

The positions of the facial feature points in the first frame
of an image sequence are automatically found using the
method described in section??. The positions in all sub-
sequent frames are determined by a tracker that utilises Par-
ticle Filtering with Factorized Likelihoods (Pffl) [?]. Pffl is
an extension to the Auxiliary Particle Filtering theory intro-
duced by Pitt and Shephard [?], which in turn is an exten-
sion to classical particle filtering (Condensation) [?]. The
Pffl has been initially proposed by Patras and Pantic in [?].

The main idea of particle filtering is to maintain a par-
ticle based representation of thea posteriori probability
p (α | Y ) of the stateα given all the observationsY up to
the current time instance. This means that the distribution
p (α | Y ) is represented by a set of pairs{(sk, πk)} such
that if sk is chosen with probability equal toπk, then it is
as if sk was drawn fromp (α | Y ). In the particle filtering
framework our knowledge about thea posterioriprobabil-



ity is updated in a recursive way. Suppose that at a previous
time instance we have a particle based representation of the
densityp (α−|Y −), that is, we have a collection ofK par-
ticles and their corresponding weights (i.e.

{(

s−k , π−
k

)}

).
Then, the Condensation Particle Filtering can be summa-
rized as follows:

1. DrawK particless−k from the probability density that
is represented by the collection

{(

s−k , π−
k

)}

.

2. Propagate each particles−k with the transition proba-
bility p (α|α−) in order to arrive at a collection ofK
particlessk.

3. Compute the weightsπk for each particle as follows,

πk = p (y | sk) (1)

Then normalize so that
∑

k πk = 1.

This results in a collection ofK particles and their corre-
sponding weights (i.e.{(sk, πk)} which is an approxima-
tion of the densityp (α|Y ).

The Condensation algorithm has three major drawbacks.
The first drawback is that a large amount of particles that
result from sampling from the proposal densityp (α|Y −)
might be wasted because they are propagated into areas with
small likelihood. The second problem is that the scheme ig-
nores the fact that while a particlesk = 〈sk1, sk2, ..., skN 〉
might have low likelihood, it can easily happen that parts of
it might be close to the correct solution. Finally, the third
problem is that the estimation of the particle weights does
not take into account the interdependencies between the dif-
ferent parts of the stateα.

Particle filtering with factorized likelihoods [?] attempts
to solve these problems in one step, given the case that
the likelihood can be factorized, that is in the case that
p (y|α) =

∏

i p (y|αi). It uses a proposal distributiong (α)
the product of the posteriors of eachαi given the obser-
vations, that isg (α) =

∏

i p (αi|y), from which we draw
samplessk. These samples are then assigned weightsπk,
using the same proposal distribution. We now findπk and
sk as follows:

1. Propagate all particless−k via the transition probability
p (αi|α

−) in order to arrive at a collection ofK sub-
particlesµik. Note, that whiles−k has the dimensional-
ity of the state space, theµik have the dimensionality
of the partitioni.

2. Evaluate the likelihood associated with each sub-
particleµik, that is letλik = p(y|µik).

3. DrawK particless−k from the probability density that
is represented by the collection{(s−k , λikπ−

k )}.

4. Propagate each particles−k with the transition proba-
bility p (αi|α

−) in order to arrive at a collection ofK
sub-particlessik. Note, thatsik has the dimensionality
of the partitioni.

5. Assign a weightπik to each sub particle as follows,
wik = p(y|sik)

λik
, πik = wik

P

j
wij

. With this procedure,

we have a particle-based representation for each of the
N posteriorsp (αi | y). That is, we haveN collections
(sik, )πik, one for eachi.

6. Sample K particles from the proposal function
g (α) =

∏

i p (αi | Y ). This is approximately
equivalent to constructing each particlesk =
〈sk1...ski...skN 〉 by sampling independently eachsik

from p (αi | Y ).

7. Assign weightsπk to theK samples as follows:

πk =
p (sk|Y

−)
∏

i p (sik|Y −)
(2)

The weights are normalized to sum up to one. With this,
we end up with a collection{(sk, πk)} that is a particle-
based representation ofp (α|Y ). Note that at the numerator
of eq.?? the interdependencies between the different sub-
particles are taken into consideration. On the contrary, at
the denominator, the different sub-particles are considered
independent. In other words, the re-weighting process of
eq.?? favors particles for which the joint is higher than the
product of the marginals.

2.4. Feature extraction

The particle filtering scheme results for every image se-
quence in a set of pointsP with dimensionsn ∗ 20, where
n is the number of frames of the input image sequence. For
all pointspi, wherei = [1 : 20] denotes the facial point, we
compute first two features for every framen:

f1 (pi) = pi,y,n − pi,y,1

f2 (pi) = pi,x,n − pi,x,1
(3)

that correspond to the deviation of respectively they and
the x coordinate from the related coordinates at the first
(expressionless) frame. Then, for all pairs of pointspi,
pj ,i 6= j we compute in each frame the features

f3 (pi, pj) = ‖pi − pj‖
f4 (pi, pj) = f3 (pi, pj) − ‖pi,1 − pj,1‖

(4)

where the norm in equation (??) is theL2 norm. Finally,
we compute the first temporal derivativedf/dt of all above
defined features, resulting in a set of 840 features per frame,
Fn.



3. Facial Action Unit Analysis

3.1. Action Unit recognition

The classification of facial actions is a three-step process.
First, we use a boosting algorithm to select the most impor-
tant features, thus reducing the problem space and increas-
ing the classification rates [?]. Next we use Support Vector
Machines to classify the facial actions in every frame. Fi-
nally, we decide which facial actions took place across the
entire image sequence by applying a dynamically learned
threshold.

Boosting algorithms such as GentleBoost [?] or Ad-
aBoost are not only fast classifiers, they are also excellent
feature selection techniques. In our study, we have ex-
perimented with two different boosting techniques: Gen-
tleBoost and a simplified AdaBoost. Both algorithms use
the line between the cluster centers of positive and negative
samples of one feature as weak classifier. So, for 840 fea-
tures (see section??), we have 840 weak classifers. An ad-
vantage of feature selection by GentleBoost is that features
are selected contingent on the features that have already
been selected. In feature selection by GentleBoost, each
feature is treated as a weak classifier. GentleBoost picks
the best of those classifiers, and then boosts the weights on
the examples to weight the errors more. The next feature
is selected as the one that gives the best performance on
the errors of the previous feature. At each step, the chosen
feature can be shown to be uncorrelated with the output of
the previous features. In the utilized simplified implemen-
tation of AdaBoost, we do not reweigh the distribution of
the samples after each weak classification. In this way we
get a simple ordering of the most important features, where
the significant features may still be highly redundant. To
select the final number of features to use, we apply a wrap-
per feature selection method. We iteratively evaluate a Sup-
port Vector Machine (SVM) with the firstk ∈ 1 . . . 840 fea-
tures selected by either GentleBoost or simplified AdaBoost
and choose the number of features for which the SVM per-
formed best.

Support Vector Machines (SVMs) have proven to be very
well suited for classification tasks such as facial expression
recognition because, in general, the high dimensionality of
the input feature space does not affect the training time,
which depends only on the number of training examples.
They are non-linear, generalize very well and have a well-
founded mathematical basis. The essence of SVMs can be
summarized in three steps: maximizing the hyperplane mar-
gin, mapping the input space to a (hopefully) linearly sep-
arable feature space and applying the ’kernel trick’ to the
results of the first two steps. In the remainder of this paper,
α denotes the Lagrange parameters that describe the sepa-
rating hyperplane in a SVM.

Maximizing the margin of the separating hyperplanew

results in a high generalization ability. In words, it is the
problem of finding the hyperplane that maximizes the dis-
tance between the support vectors andw. This involves
finding the nonzero solutionsαi of the Lagrangian dual
problem, which is a quadratic programming problem and
can be solved efficiently. Having found the support vector
weightsαi and given a labeled training set〈x, y〉 the deci-
sion function in input space is:

f (x) = sgn

(

m
∑

i=1

αiyi 〈x, xi〉 + b

)

(5)

whereb is the bias of the hyperplane,〈a, b〉 is the inner prod-
uct ofa andb andm is the number of training samples. Of
course, most real-world problems are not linearly separable
in input space. To overcome this problem, we map each in-
put samplex to its representation in feature spaceΦ (x) in
which we can apply our algorithm for finding the maximal
margin hyperplane. Maximizing the margin and evaluating
the decision function both require the computation of the
dot product〈Φ (x) , Φ (xi)〉 in a high-dimensional space.
These expensive calculations are reduced significantly by
using a Mercer kernelK, such that

〈Φ (x) , Φ (xi)〉 = K (x, xi) (6)

The patterns which we want to detect using our maximal
margin classifier do not need to coincide with the inputx.
We may as well apply our decision function (??) directly on
Φ (x). Substituting (??) for the inner product, the decision
function in feature space directly becomes

f (x) = sgn

(

m
∑

i=1

yiαiK (x, xi) + b

)

(7)

To detect 15 different AUs occurring alone or in combina-
tion in an input image sequence, we used 15 separate SVMs
to perform binary decision tasks using one-versus-all parti-
tioning of the data resulting from the feature extraction and
selection stages described above.

3.2. Facial action dynamics

A facial action, in our case an AU activation, can be in
any one of four possible phases: (i) the onset phase, where
the muscles are contracting and the appearance of the face
changes as the facial action grows stronger, (ii) the apex
phase, where the facial action is at its peak and there are
no more changes in facial appearance due to this particular
facial action, (iii) the offset phase, where the muscles arere-
laxing and the face returns to its neutral appearance and (iv)
the neutral phase, where there are no signs of activation of
this particular facial action. Often the order of these phases
is neutral-onset-apex-offset-neutral, but other combinations



Figure 4: Temporal analysis of Action Unit 12 (smile).
Shown are the four most informative features for AU12.
The yellow shaded area depicts the period manually labeled
as onset, the green area depicts the apex phase and the or-
ange area depicts the offset phase.

such as multiple-apex facial actions are possible as well. As
every facial action can be divided into these four temporal
segments, we consider the problem to be a four-valued mul-
ticlass classification problem .

We used a one-vs-one approach to multiclass SVMs (mc-
SVMs). In this approach, we train a separate specialized
sub-classifier for every combination of classes, resultingin
this case in

∑C−1
i=1 i = 6 sub-classifiers (C = 4 being

the number of classes in our multiclass problem). When
a new test sample is introduced to the mc-SVM, every sub-
classifier returns a prediction of the class, and a majority
vote is cast to determine the final output of the mc-SVM.
Again, we first use boosting feature selection techniques to
determine which features will be used for training and test-
ing the sub-classifiers.

4. Utilized dataset

For the AU detection study we have used data
from the commonly used Cohn-Kanade facial expression
database [?]. This database consists of gray scale record-
ings of subjects displaying six basic expressions of emotion
on command. The part of the database that is available from
the authors upon request consists of a total of 487 gray scale
recordings of 97 subjects. From a total of 45 AUs, 15 AUs
can be recognized based upon the motion of the 20 facial
feature points (see Table.??). The subset of the database
that we use for our AU detection validation study consid-
ers the 15 AUs in question and consists of 153 image se-
quences of 66 subjects. These image sequences were sub-
sequently AU coded frame by frame by two experts, based
on the available AU event coding that is provided together
with the Cohn Kanade database.

One drawback of the available Cohn-Kanade database,
is that the image sequences stop once the facial expres-
sion shown reaches its apex phase. Therefore it is not
suitable for temporal analysis. To evaluate the proposed

method for AU temporal analysis, we use the MMI-Facial
Expression Database [?] for the temporal analysis. The
pertinent database contains over 800 face video sequences
recorded in true color, starting and ending in the neutral
phase with a full temporal onset-apex-offset pattern in be-
tween. The database has been developed as a web-based
direct-manipulation application, allowing easy access and
easy search of the available images.

5. Experiments

5.1. Action Unit Detection

For the training of our fully automatic AU detector, we
use features that result from tracking manually initialized
facial points. We then test the trained system using features
resulting from tracking the automatically localized feature
points. The performance for every AU is evaluated sepa-
rately using the previously mentioned 153 image sequences
of 66 subjects from the Cohn-Kanade database, using a 66-
fold person independent leave-one-subject-out cross vali-
dation (cv) scheme. To avoid over-fitting to our training
data and thus increase the generalization performance of
our system, we employed within each fold of this 66-fold
outer cv loop a three fold inner cv-loop to obtain the opti-
mal SVM parameters and select the optimal features using
GentleBoost. In this inner cv loop we randomly split the
training data of the outer loop in two, one part to train the
GentleBoost and SVM classifiers, and the second part to
test the trained classifiers on. Again, to increase general-
ization we split the dataset per image sequence, so that all
samples from one image sequence are either in the training
set or in the test set. This process is repeated three times
to achieve more stable results for the parameter values and
feature selection. We train our SVMs using a radial ba-

sis frequency kernelk (x, y) = exp
(

−
‖x−y‖2

2σ2

)

. Thus,

the three parameters to optimize are the kernel widthσ, the
penalty parameterC, and the number of boosting selected
features to include. All features have been normalized to
have zero mean and a standard deviation of one.

We evaluated two different boosting techniques as fea-
ture selectors; simplified AdaBoost and GentleBoost. Ta-
ble?? part A shows the results of the AU recognition study
using the simplified AdaBoost while part B shows the re-
sults using GentleBoost. As the results clearly show, the
simplified AdaBoost outperforms GentleBoost as a feature
selector when used on our data. The results for our fully
automatic AU detection method are encouraging. For in-
stance, Valstar et al reported an average classification rate
of 95% using a similar method [?], but while using manual
initialization of various facial points.



Table 1: Action Unit recognition results using simplified
AdaBoost (part A) and GentleBoost (part B) selected fea-
tures and Support Vector Machine classifiers

A B

AU AU rec pre AU rec pre

1 0.915 0.821 0.939 0.869 0.768 0.860

2 0.967 0.929 0.951 0.954 0.929 0.907

4 0.889 0.868 0.881 0.869 0.809 0.887

5 0.902 0.818 0.750 0.882 0.697 0.742

6 0.941 1.00 0.786 0.941 0.970 0.800

7 0.765 0.779 0.759 0.784 0.831 0.762

9 0.915 0.840 0.700 0.830 0.520 0.481

10 0.791 0.410 0.640 0.797 0.410 0.667

12 0.961 0.972 0.875 0.928 0.972 0.778

15 0.908 0.214 0.500 0.882 0.158 0.432

20 0.869 0.556 0.652 0.882 0.556 0.714

24 0.922 0.077 1.00 0.882 0.077 0.143

25 0.941 0.979 0.929 0.863 0.915 0.869

26 0.876 0.656 0.865 0.876 0.674 0.886

27 0.961 1.00 0.806 0.954 0.920 0.821

Average: 0.902 0.728 0.802 0.821 0.680 0.717

5.2. Temporal Analysis

To evaluate the method for discerning the four temporal
segments neutral, onset, apex and offset, we used 171 sam-
ples from the MMI facial expression database and evaluated
15 mc-SVMs, one for every Action Unit we can detect us-
ing our AU detection method. Again we use a leave-one-
person-out outer cv-loop and a three-fold inner cv loop for
optimal generalization and person independence of our sys-
tem. The mc-SVMs are trained using manually initialized
tracking data and tested using the automatically initialized
tracking data. We only use image sequences that contain
the AU that the mc-SVM learns to analyze, as we intend to
apply this temporal analysis as a second stage after the AU
detector predicted that AU to be present. We adopted Ad-
aBoost as the feature selector, as the results from the AU de-
tection experiments clearly showed that for this type of data
AdaBoost outperforms GentleBoost. Besides the classifica-
tion rates for the onset, apex and offset phases, we also mea-
sured the predicted duration of a facial action relative to the
actual duration, the error in the prediction of the beginning
of the facial action (in frames) and how often a facial action
pattern was properly detected overall. These results are pre-
sented in table??. They suggest that the proposed method
achieves an excellent detection of the temporal patterns. On
average, 95.0% of the temporal patterns were detected cor-
rectly. The duration of most AUs was analysed well too.
Only for AU6 and AU7 did the system perform bad, with a

Table 2: Quantitative results of temporal analysis of facial
actions, per Action Unit. From left to right: AU, fraction
of facial action patterns found, relative duration of facial
action, time shift of facial action in frames and classification
rates of the onset, apex and offset phases.

AU Correct pat. rel. dur. shift onset apex offset

1 0.941 0.913 3.13 0.907 0.901 0.907

2 1.00 0.912 4.86 0.844 0.785 0.892

4 0.758 1.10 9.20 0.899 0.742 0.912

5 1.00 0.835 11.2 0.815 0.669 0.875

6 0.938 1.63 8.80 0.947 0.863 0.914

7 0.857 1.64 9.96 0.948 0.749 0.952

9 1.00 0.969 3.00 0.935 0.915 0.931

10 1.00 0.794 3.41 0.919 0.854 0.890

12 1.00 1.02 4.73 0.920 0.841 0.883

15 0.917 0.85 10.9 0.910 0.726 0.929

20 1.00 0.976 4.55 0.906 0.887 0.905

24 1.00 1.22 13.0 0.899 0.665 0.931

25 0.886 0.868 6.20 0.912 0.863 0.887

26 0.905 0.982 3.00 0.931 0.871 0.879

27 1.00 0.980 4.63 0.925 0.944 0.946

measurement of the duration that was over 60% off from the
actual duration of those facial actions. It seems that human
observers detect activation of these AUs not only based on
the presence of a certain movement (e.g. an upward move-
ment of the lower eyelid), but also based on the appearance
of the facial region around the eye corner (e.g. crow feet
wrinkles in the case of AU6). As such an appearance lasts
shorter than the movement of the lower eyelid, the actual
duration is much shorter than the predicted duration of the
activation.

6. Conclusion

In this paper we extended the work on automatic facial
expression analysis from face video with two new key fea-
tures that are essential to achieve our ultimate goal, that is,
fully automated fast and robust facial expression analysis
from face video. The first feature is the method for au-
tomatic localization of 20 facial feature points. With this
method we have an automatic initialisation of our facial
feature tracker. The AU detection results suggest that this
method works well compared to similar methods employ-
ing manually initialization of facial features. The second
novel feature is the detection of temporal segments of fa-
cial actions. In almost all cases we find the correct temporal
pattern. The duration of the predicted temporal behavior
of a facial action is close to the actual duration, except for
the AU6 and AU7 which have a predicted duration of over



1.6 times the actual duration, on average. As explained in
section?? and since appearance based analysis is not per-
formed by our system, only the movement of the points de-
termine the duration of the AU activation, which usually has
a longer duration than the relevant change in the appearance
of the eye corner, causing the predicted AU duration to be
longer than it actually is.

At this point we can only detect and track the facial fea-
ture points in near-frontal view imagery. In the future, we
wish to extend this to orientation independent facial feature
point detection and tracking. Another issue will be to ex-
tend this method so that we are able to detect more Action
Units.
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