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ABSTRACT
We combine a machine vision system that recognises emotions and
a non-photorealistic rendering (NPR) system to automatically pro-
duce portraits which heighten the emotion of the sitter. To do this,
the vision system analyses a short video clip of a person express-
ing an emotion, then tracks the movement of facial features and
uses this tracking data to analyse which emotion was expressed
and what the temporal dynamics of the expression were. The im-
age where the emotion is expressed strongest, the location of the
facial features in that image and a keyword describing the emotion
detected are passed to the NPR software. This keyword is used to
choose appropriate (simulated) art materials, colour palettes, ab-
straction methods and painting styles, so that the rendered image
may heighten the emotion being expressed. We describe the vision
and rendering systems and their combination, and provide exam-
ples of portraits produced in this emotionally aware fashion.

Categories and Subject Descriptors
H.1.2 [User/Machine systems]: Human information processing

General Terms
Automatic facial expression recognition, artificial creativity

Keywords
non-photorealistic rendering, machine vision, affective computing,
emotion detection, computational creativity.

1. INTRODUCTION
We are interested in the notion of computational creativity, in par-
ticular the question: under what circumstances (if any) is it ap-
propriate to describe the behaviour of a computational system as
creative. Visual art is a domain where human creativity flourishes,
so Non-Photorealistic Rendering (NPR) – where art materials and
artistic styles are simulated – would appear to be an ideal domain
in which to test computational models of creativity. Unfortunately,
however, NPR researchers have tended to eschew the potential for
software to act as creative collaborators in art projects, opting in-
stead to build systems whichmerely enhance the efficiency/creativity
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of users. In fact, due to its close relationship with human creativ-
ity, some authors seem almost apologetic about simulating artistic
techniques, for instance [19] state unequivocally that:

“Simulating artistic techniques means also simulating
human thinking and reasoning, especially creative think-
ing. This is impossible to do using algorithms or infor-
mation processing systems” (Page 113).

We disagree with this assessment, and we are currently building an
automated painter (called The Painting Fool) which we hope will
eventually be accepted as a creative artist in its own right. We have
taken the approach of identifying what appear to be some necessary
high-level conditions for creative behaviour, and improving The
Painting Fool to meet these conditions. One such condition is that
the software exhibits appreciation in its behaviour, and we describe
here how we have addressed the issues of the software appreciat-
ing both its subject matter and the way its rendering choices affect
the picture it produces. To start addressing these issues, we added
an expert system to The Painting Fool which takes a high-level de-
scription about either the nature of the picture to paint, or the nature
of the subject matter, and chooses from an extensive range of ab-
straction, colouring and rendering methods which – taken together
– specify an artistic style appropriate to the high-level description.

Concentrating on portraiture, we have integrated The Painting Fool
with a machine vision system which is able to detect the emotion
being expressed in short video clips of people smiling/frowning/etc.
This is achieved by automatic feature extraction, action unit analy-
sis and emotion recognition methods. The vision system passes to
The Painting Fool: (a) the [apex] image from the video clip where
the emotion is most strongly expressed, (b) the location of the facial
feature tracking points, and (c) one of six keywords which identi-
fies the emotion being expressed. We trained the expert system in
The Painting Fool in such a way that it can map the emotion key-
word onto one of a number of artistic styles which may result in the
emotion being heightened in the rendered image. For instance, if
the vision system correctly identified the keyword ‘sadness’ to de-
scribe the sitter, The Painting Fool would chose to simulate pastel
strokes with muted colours to heighten the melancholy expressed
in the portrait it painted. It would also use the feature tracking in-
formation supplied by the vision system to pay particular emphasis
to the facial features of the sitter. In this way, our contribution to
computer graphics has been to build the first (to the best of our
knowledge) automated portrait painting system which works live
from a video feed and uses both the sitter’s facial features and their
emotion to improve its output.

This paper is organised as follows. In section 1.1 we describe re-



lated work. In section 2, we describe the segmentation and ren-
dering techniques implemented in The Painting Fool and how we
trained its expert system to control these techniques. In section 3,
we describe the various stages by which the vision system deter-
mines the emotion being expressed in a video clip, and in section 4,
we describe how we combined the vision and rendering systems to
produce portraits. In section 5, we conclude and present some di-
rections for future work.

1.1 Related work
There is a great deal of work related to both emotion detection and
non-photorealistic rendering, and we cover only the most relevant
here. Our vision system analyses facial expressions by first recog-
nising which facial muscles are activated. These facial muscle ac-
tions are defined by the Facial Action Coding System (FACS) as
Action Units (AUs, see section 3). In the area of automatic AU
recognition, a number of successful approaches have been pro-
posed fairly recently. Previous work includes detection of 16 AUs
using lip tracking, template matching and Artificial Neural Net-
works (ANNs) [20], detecting 20 AUs occurring alone or in combi-
nation by using temporal templates generated from input face video
[23] and detection of 18 AUs using wavelets, AdaBoost and Sup-
port Vector Machines [2]. Our AU analysis system can detect the
most AUs (22), with equal or greater classification accuracy than
these other systems. The problem of basic emotion detection itself
is older than the AU recognition problem and many researchers
consider it to be solved under the constrained conditions that ap-
ply for our system (i.e., posed expression, frontal-view, controlled
lighting, and little head motion). Recent work on emotion detec-
tion has used ANNs [7], Support Vector Machines (SVMs) [1, 2],
and Bayesian Networks [25]. Kotsia and Pitas have recently pro-
posed a method that uses geometric features and multiclass SVMs
to detect both AUs and emotions [12]. For a thorough overview
of the work done on AU and emotion detection from still images
or face video, see [13, 21]. Facial expression temporal dynamics
(e.g., the timing and duration of facial actions) have been shown to
be a critical factor for the interpretation of human behaviour [21].
Despite this, very few projects have been undertaken to explicitly
analyse the temporal dynamics of facial expressions with machine
vision techniques. The only existing works are described in [23].

The Painting Fool system performs image segmentation and sim-
ulates the usage of artistic media. These are very standard non-
photorealistic rendering techniques, so we refer the reader to stan-
dard textbooks such as [19]. There are a number of projects which
combine machine vision with painting programs. For instance, the
program described in [3] uses face detection tools to identify the lo-
cation of facial features in portraiture, and then highlights these ar-
eas during the rendering process. Similarly, [4] use image salience
in still images to determine important regions of images in order
to produce the rendered image with emphasis in these places. The
work that resembles ours most is that of [18]. In that paper, the au-
thors propose a system that analyses video data of users to guide the
painting style employed. Their system attempts to detect AUs first,
and to map the AUs to an emotion description. In contrast to our ap-
proach, they do not attempt to recognise the six basic emotions but
instead use Russell’s 2-dimensional pleasure/arousal model. This
approach limits the number of possible effects that the painting
sub-system can employ. Also, the authors base their approach on
FACS, but no experimental results for their AU or emotion recog-
nition sub-systems are reported. A major difference between their
project and ours is that their aim was to investigate a novel human-
computer interaction method, whereby the emotion of the user of a

graphics package can be used to control that package to paint non-
portrait images. In contrast, we used emotion detection to enable
the system to paint an improved portrait of the sitter/user.

2. THE PAINTING FOOL NPR SYSTEM
The Painting Fool is a non-photorealistic rendering (NPR) system
which is given a digital image which may or may not have been
annotated with the boundaries of scene-elements within the image
(for instance, the user might choose to provide details of where the
eyes, nose and mouth of a person are in a digital image). The Paint-
ing Fool produces an artistic rendering of the image in a two-stage
process. Firstly, it segments the entire image and separately seg-
ments the scene-elements producing a list of segmentations, as de-
scribed in 2.1. Secondly, it takes each shape in each segmentation
and renders it with simulated art materials such as acrylic paints,
pastels, pencils, etc., as described in 2.2. We do not claim that our
NPR techniques are particularly novel. However, we provide de-
tails of them in order to describe the parameters which guide the
process that have been used to train an expert system for choosing
artistic styles, as described in 2.3.

2.1 Segmenting Images
The segmenting of images is controlled by eight parameters, in-
cluding the image scale ims, the number of segments ns, and the
smallest segment allowed ssa. Before segmentation begins, the
image is scaled by a factor of ims, and at the end of the process,
the result is scaled back by a factor of 1/ims. Segments are grown
from the top left-hand pixel in the image, adding new pixels if their
colour difference with respect to the first pixel in the segment is
less then a threshold ndt and starting a new segment otherwise.
Segments containing fewer than ssa pixels are merged with a larger
neighbouring segment, which is chosen as the neighbouring seg-
ment with the closest colour match. Following this, the smallest
segments are continually merged with larger ones until only ns re-
main. Each remaining segment is smoothed and abstracted. To
smooth the boundary of a segment, the points within a circle of ra-
dius 8 pixels centred on each boundary pixel are added to the seg-
ment, which increases its size. To abstract the edges of segment,
a path around the boundary of the segment, and paths around each
hole in the segment, are determined using a back-tracking search.
The upper and lower abstraction distances (lad and uad) param-
eters then come into play. Segments are ordered in terms of the
number of elements they contain and we useL to represent the area
of the largest segment andM to represent the area of the smallest.
For a given segment, t, the abstraction distance for t is calculated
as: a(t) = lad + ( r−M

L−M
)(uad − lad). Traversing the boundary

of t, every a(t)-th pixel is added to a set of defining points for
that boundary. A path is then plotted which passes through each
defining point for the boundary and hole curves of a segment. The
path can either be formed of straight lines or a Bezier curve, as
per the es parameter. Note that the use of an abstraction distance
proportionate to the size of a segment enables the larger segments
to be more heavily abstracted than smaller segments, which helps
preserve detail while still allowing abstraction to occur. A final pa-
rameter control whether holes are allowed in each segment (ha).
In Fig. 1, we present four example segmentations. We see the ef-
fect of using abstraction levels proportionate to the segment size in
segmentation C, where the flower detail is left fairly intact, but the
background is abstracted. Note that combinations of the eight pa-
rameters (ims, ns, ssa, ndt, lad, uad, es and ha) are used by the
expert system to define various segmenting styles, as described in
section 2.3 below.



Figure 1: Example segmentations of a flower image.

2.2 Rendering Segmentations
The output from the segmentation process is an ordered list, S, of
segments. Each segment is described by (a) its boundary path and
paths around each hole (b) the defining points for the boundary
path and paths around each hole (c) the original segment colour,
and (d) a label describing the scene-element from which the seg-
ment came. Looking at the operation of the rendering process from
the top down, at the highest level of description, The Painting Fool
renders multiple painting layers. Each painting layer is produced
by rendering every segment in S in turn. Each segment may be
rendered multiple times in layers, and each layer may concentrate
on outlining the segment or filling the segment. In either case, the
rendering is achieved through multiple curves being drawn. Each
curve is composed of a number of strokes, which simulate the usage
of natural media such as pencils or acrylic paints. Below, we de-
scribe these processes from the bottom up (from strokes to painting
layers), highlighting the parameters which control each process.

Rendering strokes. Strokes form part of a curve. The curve de-
termines the path for the stroke, the orientation of the brush, and
the base colour C for the stroke. The stroke is simulated using a
straight line of n pixels (p1, . . . , pn) in the given orientation and
centred on the first point of the path. Each pi effectively simulates
a bristle in a brush. The line is swept along the curve, maintain-
ing its orientation and keeping the path point at its centre. There
are 17 parameters that describe the effect of the stroke, such as the
brush size, tapering and transparency proportions, friction proba-
bility and colour and shade variability. Without going into detail,
these enable The Painting Fool to simulate acrylic/oil paint strokes
in addition to pencils, chalks, charcoals and pastels. In Fig. 2, we
present 12 strokes simulating pencils/charcoals and paints.

Rendering curves. The rendering of the outline of a segment or the
filling of its body is achieved by rendering a series of curves. The
path of each curve is determined by the particular segment ren-
dering process being employed, and rendering a curve is subject
to 5 parameters, including the stroke length min slmin and max
slmax, the stroke length variability slv and the stroke backtrack
proportion sbp. To render the curve, a baseline stroke length L is
chosen which is between slmin and slmax and is proportionate
to the size of the segment being rendered. The curve is then split
into strokes sequentially, taking slv and sbp into account. That
is, the first stroke length F is randomly chosen within the range
L± slv ∗L, then the next stroke starts at curve point F ∗ (1− sbp)
and its length is chosen similarly, etc. If the eas parameter is set

Figure 2: Example pencil/charcoal/paint rendering strokes.

to end-points, each stroke will be replaced by a straight line from
the start to the end points of the stroke. If this parameter is set to
gradient instead, each stroke will be replaced by a straight line in
the direction of the gradient to the mid-point of the stroke. Once
the curve has been split into strokes, the orientation of the brush is
calculated to be in the direction of the line which is perpendicular
to the straight line between the start and end points of the stroke.
Each stroke is then rendered as above.

Rendering segment layers. As previously mentioned, each segment
may be rendered a number of times, with each layer rendered on
top of the previous one. We have implemented one method for
rendering the outline of a segment and five for rendering the body.
Each method has its own control parameters and effectively defines
a set of curves which are rendered as above. The outline renderer
simply takes the boundary of the segment and the boundary of each
hole and turns them into appropriate curves. The segment renderers
which fill the body of the segment are controlled by the following
parameters: the parallel line overlap plo, the wobble distance wd
and radius wr, the coverage cov, the boundary decrease bd and de-
crease steps bds, and the boundary movement bm. The parallel
line fill renderer splits the interior of the segment into a series of
parallel lines of width equal to the brush size, which overlap with
each other by plo pixels. Each parallel line is specified by a set
of points along the line which are of distance wd apart. Each of
these points is moved randomly to within a radius of wr from their
original position. Then, a Bezier curve is drawn through the points,
to produce a wobbly line. With the random line fill renderer, the
segment is filled by randomly choosing pairs of points within the
segment and drawing a straight line between them until cov of the
area of the segment has been covered. Each line is subject to a wob-
ble factor, as dictated by wd and wr. With the decreasing circle fill
renderer, the segment is filled by drawing its outline, then reducing
its boundary by moving each defining point bd places along the line
which is perpendicular to the gradient of the segment boundary at
that point. This is repeated bds times, or the parameter can specify
that it runs to completion, i.e., fills the segment. The star line fill
renderer starts at a random point on the segment boundary, then
draws a line (subject to wobble factor) to the centre of the segment.
It then moves bm points around the segment boundary and repeats
this, until a full loop has been achieved. Some examples of segment
fillers are given in Fig. 3.

Rendering painting Layers. The Painting Fool renders painting lay-
ers (the entire set of segments) multiple times in succession. Be-
fore it begins each painting layer, it first alters the segmentation,
subject to these parameters: the number of colours noc, palette
constraints pc, colour assignment method cam, the segment order-
ing, and segment shape transformations. Each segment is supplied
with the original colour arising from the image. This can be used



Figure 3: Examples of different segment filling styles.

to determine the rendering colour of the segment via a map onto a
user-defined colour palette in a number of ways. Firstly, thenoc pa-
rameter describes the maximum number of different colours which
will appear in the rendering, and the pc parameter indicates which
colours in the palette are allowed (e.g., only the top 10% in terms
of saturation). Given a particular segment S, as dictated by cam,
one option is for the palette colour closest to that of S to be as-
signed, and then optionally the brightness of this colour adjusted to
the brightness of the original colour. Alternatively, colours can be
assigned randomly from the palette, or could be equally distributed
(so that all colours in the palette appear in the rendering). After seg-
ments have been assigned a colour, they are re-ordered within the
segmentation. This is typically by segment size, so that the smaller
segments are rendered on top of the larger segments. Finally, the
user can specify a set of shape transformations (e.g., rotate, scale,
stretch) for the segments to undergo. In particular, the entire seg-
mentation can be scaled, rotated or stretched.

2.3 An Expert System for Artistic Styles
As we have seen, there are a large number parameters which can
be altered to change the way The Painting Fool operates. We have
stored sets of parameters which describe the segmentation and ren-
dering methods in cross-referencing XML files. These determine
the artistic style The Painting Fool will employ in a session, i.e., its
level of abstraction, the colour palette and natural media it simu-
lates, and its painting style. We have organised collections of pa-
rameter settings for the various processes undertaken by The Paint-
ing Fool. For instance, there are around 50 different collections
of settings for pencil drawings, and a similar number for paints.
We have fewer collections for pastels, chalks, charcoals and pens,
but in total there are around 150 different rendering setups avail-
able. In addition to the parameter settings themselves, The Painting
Fool allows the specification of style files for segmenting, render-
ing, shape transforms and colour mapping. These dictate condi-
tions under which certain parameter settings are to be chosen. For
instance, the user might specify in a segmentation style file that
the scene-elements representing the eyes of a person in an image
should each have 100 segments, whereas the nose should have only
20 segments, etc. Taken together, these style files constitute an
artistic simulation knowledge-base.

To use this knowledge base as an expert system, we have also en-
abled the mapping of keywords onto particular collections of style
files. For instance, the keyword ‘happy’ maps onto a vivid colour-
ing style and a slapdash acrylic painting style. With specific em-
phasis on building an expert system for portrait painting, to popu-
late the knowledge base, we undertook a project to build an online
gallery of images called Amelie’s Progress. To do this, we took
22 still images from the film “Amelie”, each depicting a close-up

shot of the actress Audrey Tatou expressing an emotion. Each pho-
tograph was hand annotated with the regions containing the eyes,
the eyebrows, the nose, the mouth, the hair, the entire face, any
clothing, and any areas of background. We then experimented with
around 50 distinct artistic styles, applying each to the 22 original
images. In each case, if we felt that the style was able to occa-
sionally enhance the emotion expressed in the picture, we tagged
the style with one of six keywords (anger, disgust, fear, happiness,
sadness or surprise). From the pictures produced using the artistic
styles, we hand-curated the gallery by choosing the 222 portraits
we felt were the most aesthetically pleasing and/or emotive. Af-
ter the production of this gallery (which can be viewed online at
www.thepaintingfool.com), we achieved full automation
in the process. As described in the next sections, to do this, we
employed a machine vision system to supply all the required in-
formation, namely a suitable image of the sitter, the emotion they
were expressing and the positions of their facial features.

3. FACIAL EXPRESSION ANALYSIS
The goal of our emotion detection software is to recognise the emo-
tion displayed by the sitter. This can be one of six basic emotions:
anger, disgust, fear, happiness, sadness or surprise. Ekman et al.
postulated that these six basic emotions are universally performed
and recognised [11]. Following the works by Ekman et al. [6] we
will use the Facial Action Coding System (FACS) to analyse what
facial muscle actions are being made and use this information to de-
cide which emotion is shown. FACS is the best known and the most
commonly used system developed for human observers to describe
facial activity in terms of visually observable facial muscle actions.
Using FACS, human observers decompose a facial expression into
one or more of 27 defined AUs that produced the expression in
question. Ekman et al. have shown that it is straightforward to
recognise which expression of emotion was displayed if we know
what AUs were activated during that expression. In the system pre-
sented here, we will use geometric features computed from tracked
facial point data to detect 22 AUs that have a high relevance for
inter-human communication. (That is, this set of AUs is sufficient
to detect the six basic emotions with high reliability [7]). We will
then use neural networks to map detected AUs to an emotion.

Recently, we have proposed a system that is capable of analysing
both the morphology of an expression (i.e. determine which AUs
were present) as well as the temporal dynamics of an expression [23].
For each AU that is found to be active in a video, we find exactly
when the facial action starts, when it reaches its peak, when it starts
to return to neutral and when it has returned to its neutral phase. We
use this knowledge to find the frame in a video in which the emo-
tion is displayed the most intensely. This frame is then sent to The
Painting Fool, together with information on which emotion was
recognised and the location of the facial points in that apex frame.
The Painting Fool then uses this information to paint the portrait
in an emotionally enhanced way. In the following subsections, we
will describe how this facial expression analysis method works.

3.1 Automatic feature extraction
The features we use to detect AUs and their temporal segments are
extracted by a fully automatic method consisting of, consecutively,
face detection, facial point detection, facial point tracking and the
calculation of geometric features. These features are used to train
and test the classifier combination described in section 3.2. We will
now describe each feature extraction subsystem in some detail.

To detect the face in a scene we make use of a real-time face de-



Figure 4: Outline of the facial point detection system.

tection scheme proposed in [8], which represents an adapted ver-
sion of the original Viola-Jones face detector. The Viola-Jones face
detector consists of a cascade of classifiers trained by AdaBoost.
Each classifier employs integral image filters, which allow Haar
Basis functions to be computed very fast at any location and scale.
This is essential to the speed of the detector. For each stage in
the cascade, a subset of features is chosen using a feature selec-
tion procedure based on AdaBoost. The adapted version of the
Viola-Jones face detector that we employ uses GentleBoost instead
of AdaBoost, which has been shown to be more accurate and con-
verges faster [9]. Also, at each feature selection step (i.e., for every
feature selected by AdaBoost), the proposed algorithm refines the
feature originally proposed by GentleBoost. The algorithm creates
a new set of filters by placing the original filter and slightly mod-
ified versions of the filter at a two pixel distance in both the x and
y-direction.

The method that we use detects 20 facial feature points in a face
image. To do so, it uses Gabor-feature-based boosted classifiers as
proposed in [24]. The method, outlined in Fig. 4, assumes that
the input image is a face region, such as the output of the face de-
tection algorithm explained above. In this face region, the irises
and the medial point of the mouth are detected first. A combina-
tion of heuristic techniques based on the analysis of the vertical
and horizontal histograms of the upper and the lower half of the
face-region image achieves this. Based on these three points and
anthropomorphic relations, the input face region is divided into 20
regions of interest (ROIs), each corresponding to a facial point to
be detected. For each pixel in the ROI, a feature vector is computed
that consists of the grey values of the 13x13 patch surrounding the
pixel and the responses to 48 Gabor filters (8 orientations and 6
spatial frequencies, 2:12 pixels/cycle at 1/2 octave steps). This fea-
ture vector is used to learn the pertinent point’s patch template and,
in the testing stage, to predict whether the current point represents
a certain facial point or not. Next, to capture all facial motion, we
track the detected points through all frames of the input video. The
algorithm we used to track these facial points is Particle Filtering
with Factorised Likelihoods (PFFL) [15]. We used the observation
model proposed in [16], which is both robust against variations in
lighting and able to cope with small deformations in the template.
This polymorphic aspect is necessary, as many areas around facial
points change their appearance when a facial action occurs (e.g. the
mouth corner in a smile). The facial point tracking scheme results
for every image sequence with n frames in a set of points P with
dimensions 20 ∗ 2 ∗ n. The facial points are registered first within
each image sequence to remove rigid head motion. Next all facial

point sequences are registered with respect to a pre-defined ‘nor-
mal’ face, to remove variations in head shape between subjects.

Now that we have a set of registered tracked facial points, we can
compute our facial action features. For all points pi ∈ P , the
first two features are simply its x and y position. We compute the
features f1 and f2 for every frame n:

f1(pi , t) = pi,x,t (1)
f2(pi , t) = pi,y,t (2)

For all pairs of points pi , pj ,i $= j, in each frame we compute:

f3(pi , pj , t) = ‖pi,t − pj,t‖ (3)

f4(pi , pj , t) = arctan

„

pi,y,t − pj,y,t

pi,x,t − pj,x,t

«

(4)

Feature f3 describes the distances between two points pi and pj ,
and feature f4 describes the angle that the line connecting pi with
pj makes with the horizontal axis. The features f1 and f2 are
computed for all points piεP , while the features f3, and f4 are
computed for all possible combinations of points. The features
< f1 . . . f4 > contain only information about the positions of the
facial points at a given instance in time. No information about their
relation to a neutral frame, or about the rate of change of the values
of these features is known. To capture this temporal information,
we create a new set of features based on the single frame based
features described above. First, we compute features that describe
how much the feature values have changed, relative to their value
at the neutral frame: δ(x, t) = xt −x1 where x is a time sequence
and xt its value at time t.

To determine the rate of change of the feature values at a given
time instance t, we compute their first derivative with respect to
time. Because we are working with discrete data, this becomes:
d(x,t)

dt
= v(xt−xt−1) where v is the frame rate of the correspond-

ing recording and we use this definition to compute the features:

F =< f1(t) . . . f4(t), δ(f1, t),

. . . δ(f4, t), d(f1, t)/dt . . . d(f4, t)/dt > (5)

This brings the total feature dimensionality to 1260.

3.2 Action Unit analysis
To detect whether an AU is active in a given video, we first detect
AU activation frame-by-frame. This is done using a gentleSVM
classifier. In this classifier setup, we first use GentleBoost to select
the subset of most relevant features. This subset is then passed
on to a SVM which learns the non-linear function that indicates
when an AU is present for a given video frame. We train a separate
gentleSVM classifier for each of the 22 AUs we wish to detect.

If any of the frames in a video is found to contain an AU, the video
is passed on to the temporal segment recognition subsystem which
determines exactly when a facial action starts, when it reaches its
peak and when it returns to its neutral state. It does so by classi-
fying for each frame whether it is in the neutral phase, the onset
phase, the apex phase or the offset phase. Hence, we consider this



Figure 5: Outline of the Action Unit detection and temporal
dynamics analysis system.

problem to be a 4-class classification problem. This temporal seg-
ment recognition process also removes any spurious AU activation
detection results, e.g. when a single frame accidentally was classi-
fied to contain an AU that was not really there. If, after recognition
of the temporal segments, any frame of a video is non-neutral for a
specific AU (i.e., the AU is in its onset, apex or offset phase), we
say that the video contains that AU. An overview of this system is
presented in Fig. 5.

While the temporal dynamics of a facial action can be represented
very efficiently by Hidden Markov Models (HMMs), the multiclass
classification of the features on a frame-by-frame basis is normally
done using Gaussian mixture models as the emission probabilities.
These are know not to distinguish between multiple classes very
well.

SVMs on the other hand discriminate extremely well. Using them
as emission probabilities might very well result in an improved
recognition. We therefore train a set of SVMs, one for every com-
bination of classes (i.e., temporal phases neutral, onset, apex, and
offset) and use their output to compute emission probabilities. This
way we effectively have a hybrid SVM-HMM system.

The output of a SVM is unsuitable to use directly as a probability
measure. The output h(x) of a SVM is a distance measure between
a test pattern and the separating hyper plane defined by the sup-
port vectors. There is no clear relationship with the posterior class
probability p(y = +1|x) that the pattern x belongs to the class
y = +1. However, Platt proposed an estimate for this probability
by fitting the SVM output f(x) with a sigmoid function [17]:

p(y = +1|x) = g(h(x), A,B) ≡
1

1 + exp(Ah(x) + B)
(6)

Since SVMs are binary classifiers we use a one-versus-one ap-
proach to come to a multiclass classifier. This approach is preferred
over the one-versus-all approach as it aims to learn the solution to
a more specific problem, namely, distinguishing between one class
from one other class at a time. For this pairwise classification we
need to train K(K − 1)/2 SVMs, where in our case K = 4 is
the number of temporal phases. Our HMM consists of four states,
one for each temporal phase. For each SVM we get, using Platt’s
method, pairwise class probabilities µij ≡ p(qi|orqj , x) of the
class (HMM state) qi given the feature vector x and that x belongs

to either qi or qj . These pairwise probabilities are transformed into
posterior probabilities p(qi|x) by

p(qi|x) = 1/

2

4

K
X

j=1,j "=i

1
µij

− (K − 2)

3

5 (7)

Finally, the posteriors p(q|x) have to be transformed into emission
probabilities by using Bayes’ rule

p(x|q) ∝
p(q|x)
p(q)

(8)

where the a-priori probability p(q) of class q is estimated by the
relative frequency of the class in the training data.

3.3 Emotion recognition
If the AUs that make up a facial expression are known, and we
know that the expression shown is one of the six basic emotions,
it is not hard to find the corresponding emotion. Even a simple
rule-based system would do [6]. However, rule-based systems are
not very well suited to handle uncertainty in their input, and, as we
will see in the evaluation section below, our AU detection is not
perfect. On the other hand, ANNs are known for their resilience to
input noise. In previous work we have shown that in the presence of
input noise ANNs perform better than rule-based systems in recog-
nising which emotion was shown [22]. We therefore learn a Neural
Network with 22 input neurons (one for each AU we can detect), 3
hidden layers of 22 neurons each and an output layer of 6 neurons,
one for every emotion. All neurons use the log-sigmoid evaluation
function. The training data consists of the (noisy) output of the
10-fold cross-validation results of the AU recognition sub-system.

3.4 Performance Evaluation
We have evaluated our proposed methods on 244 videos selected
from the MMI-Facial Expression Database [14], containing videos
of 22 different AUs. We have chosen this database, instead of,
for example, the Cohn-Kanade DFAT-504 dataset [10], because
the videos in the MMI-Facial Expression Database display the full
neutral-expressive-neutral pattern. This is essential, as it is this
temporal pattern of facial actions that we are interested in. The
videos were chosen so that the dataset contains at least 15 videos
of every AU we want to analyse. We show here the results of two
evaluation studies. The first study shows how well AUs are recog-
nised by our detector. In table 1 we give detailed results on the
performance of the AU activation detection sub-system. Besides
the classification rate, we provide the recall rate, which indicates
how many positive examples are retrieved from a test set, and the
precision, which indicates how confident we can be that an exam-
ple classified as positive is indeed positive. Finally, the F1-measure
combines the recall and precision to compute a single measure that
favours recall and precision equally. The temporal segments are
recognised with the following accuracy, averaged over all AUs: the
neutral phase with an F1-measure of 84.2%, the onset phase with
59.0%, the apex with 70.3% and the offset phase with 52.7%. A
detailed evaluation of the AU temporal phase recognition can be
found in [23].

Table 2 shows our results for detecting emotions using our ANN
system described in section 3.3. As we can see from the table,
the emotions disgust, fear, happiness and surprise are detected with



AU Cl. Rate F1-measure AU Cl. Rate F1-measure
1 0.971 0.851 16 0.918 0.583
2 0.947 0.745 18 0.934 0.529
4 0.909 0.703 20 0.967 0.750
5 0.959 0.722 22 0.955 0.718
6 0.938 0.737 24 0.955 0.621
7 0.959 0.615 25 0.942 0.935
9 0.951 0.647 26 0.831 0.468
10 0.938 0.615 27 0.967 0.778
12 0.922 0.596 30 0.951 0.538
13 0.963 0.743 43 0.963 0.743
15 0.959 0.667 45 0.938 0.928
Avg: 0.943 0.692

Table 1: Subject independent cross validation results for AU
activation event detection after identification of the temporal
segments of AUs. Results are for 244 examples taken from the
MMI Facial Expression Database.

Emotion Cl. Rate Recall Precision F1-measure
Anger 0.915 0.500 0.539 0.519
Disgust 0.935 0.760 0.826 0.792
Fear 0.895 0.420 0.667 0.693

Happiness 0.948 0.917 0.868 0.892
Sadness 0.889 0.571 0.600 0.585
Surprise 0.974 0.938 0.938 0.938
Average 0.926 0.734 0.740 0.737

Table 2: Emotion recognition results. Emotions are derived
from automatically detected AUs using Neural Networks.

very high accuracy. The emotions anger and sadness are more dif-
ficult to recognise with this system. For sadness this is probably
because AU15, lip corners drawn down, is most important. How-
ever, as table 1 shows, AU15 is a difficult AU to recognise.

4. EMOTIONALLY AWARE PORTRAITS
To recap, we have built a non-photorealistic rendering system, and
enabled it to react to emotion keywords by choosing an appropri-
ate artistic style, and we have fully automated the process by em-
ploying an emotion detection system to provide input to the NPR
system. The context within which we tested this integrated system
was the British Computer Society Machine Intelligence competi-
tion, where AI software was demonstrated live. To produce the
most impressive demonstration, we opted for full automation, with
the demonstrators having only to start and stop a video camera into
which subjects were asked to express an emotion, for example by
smiling. The Painting Fool produces its pictures live, i.e., it renders
each stroke in real time, which can add value to the demonstration.
The full rendering process can take minutes or hours, so we chose
artistic styles for each of the emotions which would complete the
picture in around three minutes. To determine a suitable artistic
style for each emotion, we drew heavily from the expert system
developed for the Amelie’s Progress gallery, although some minor
changes were required. Below are descriptions of the artistic styles
we chose for each emotion, and in Fig. 6, we present some example
portraits for each emotion.

For anger we specified a line rather than curved segmentation style;
a colour mapping to shades of green, except for the eyes, where
shades of red were used; and a pencil rendering style which quickly
sketched the outlines of segments.
For disgust, we specified low saturation greyish colours (to indicate
rottenness); a shape transform which distorted the face by stretch-
ing it; and a decreasing-circle acrylic painting style which further
distorted the face and highlighted the facial features.
For fear, we specified a colour mapping to cool hues such as blues

and greys; a segmentation style which enlarged and emphasised the
eyes; and a pastel rendering style where a layer of white pastel was
added at the end, to produce a ghostly effect.
For happiness, we specified amapping to a very vivid colour palette,
with colours chosen randomly from the palette for each segment;
and a slapdash painting style which outlined the segments, and then
emphasised the facial features with simulated unmixed paint.
For sadness, we specified a mapping to a small palette of muted
colours; and a rendering style which used pastels to paint a first
layer, with the facial features emphasised on top with coloured pen-
cil outlining.
For surprise, we specified a segmentation style which kept the fea-
tures in tact, but abstracted the background; and a rendering style
using pencils in star line fills to suggest explosions.

Figure 6: Example portraits. Emotions expressed, from top to
bottom: anger, disgust, fear, happiness, sadness and surprise.



5. CONCLUSIONSAND FURTHERWORK
We have described a novel non-photorealistic rendering approach
which externalises many of the parameters for controlling the pro-
cess, so that an expert system of settings and style files could be
developed to respond to high-level information such as the emo-
tion being expressed by a person being painted. This response is
in terms of an appropriate choice of artistic style which comprises
segmentation, shape transformation, colour mapping and rendering
styles. We have further described a machine vision system which
analyses video clips and detects faces, tracks facial point and uses
temporal information about their movement in order to determine
to a fairly high accuracy the emotion being expressed. We have
integrated these systems into a whole which is more than the sum
of parts: the combined system takes live video of a person, detects
the emotion, chooses an appropriate artistic style and then renders
a portrait of that person in real-time – all with full automation.

There is still much room for improvement in this process. In partic-
ular, the images produced from the integrated system are of lower
quality (aesthetically) than those in the Amelie’s Progress gallery
(see www.thepaintingfool.com). This is mostly because
the manual annotation of the digital photographs used to create
the gallery enabled more accurate rendering of the facial features.
Hence, in future work, we hope to improve the accuracy of the
feature detection as well as include detecting the outlines of facial
features. We also hope to work with artists, in order to build a larger
expert system of artistic styles. We do not claim that The Painting
Fool’s behaviour should be described as creative (yet). However,
we do believe that a necessary condition [5] for creativity in a pro-
gram is for it to have an internal appreciation of what it is doing.
As it appreciates the emotion a sitter is expressing, and appreci-
ates how its artistic styles may heighten emotion in portraits via
the expert system, we can claim that the combined system exhibits
some level of appreciation. Full appreciation of the artistic pro-
cess would, naturally, include an appraisal of its paintings, which
the system clearly does not do. Hence, it is a longer-term goal to
enable The Painting Fool to analyse its own artworks.
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