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Abstract—Past work on automatic analysis of facial expressions
has focused mostly on detecting prototypic expressions of basic
emotions like happiness and anger. The method proposed here
enables detection of a much larger range of facial behaviour
by recognising facial muscle actions (action units, AUs) that
compound expressions. AUs are agnostic, leaving the inference
about conveyed intent to higher order decision making (e.g.,
emotion recognition). The proposed fully automatic methodnot
only allows recognition of 22 AUs, but also explicitly models their
temporal characteristics (i.e., sequences of temporal segments:
neutral, onset, apex, and offset). To do so it uses a facial
point detector based on Gabor-feature-based boosted classifiers
to automatically localise 20 facial fiducial points. These points
are tracked through a sequence of images using a method
called particle filtering with factorized likelihoods. To encode
AUs and their temporal activation models based on the tracking
data, it applies a combination of GentleBoost, Support Vector
Machines, and Hidden Markov Models. We attain an average
AU recognition rate of 95.3% when tested on a benchmark set
of deliberately displayed facial expressions and 72% when tested
on spontaneous expressions.

Index Terms—Facial expression analysis, spatiotemporal facial
behaviour analysis, particle filtering, GentleBoost, SVM.

I. I NTRODUCTION

FACIAL expressions synchronise the dialogue by means of
brow raising and nodding, clarify the content and intent of

what is said by means of lip reading and emblems like a wink,
signal comprehension or disagreement, and convey messages
about cognitive, psychological, and affective states [28], [68].
Therefore, attaining machine understanding of facial behaviour
would be highly beneficial for fields as diverse as computing
technology, medicine, and security in applications like ambient
interfaces, empathetic tutoring, interactive gaming, research on
pain and depression, health support appliances, monitoring of
stress and fatigue, and deception detection. Because of this
practical importance [32], [54], and the theoretical interest of
cognitive and medical scientists [13], [85], machine analysis
of facial expressions attracted the interest of many researchers
in computer vision and AI.
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Two main streams in the current research on automatic anal-
ysis of facial expressions consider facial affect (emotion) de-
tection and facial muscle action detection [55], [59], [70], [86].
These streams stem directly from the two major approaches
to facial expression measurement in psychological research
[15]: message and sign judgment. The aim of the former is
to infer what underlies a displayed facial expression, suchas
affect or personality, while the aim of the latter is to describe
the surface of the shown behaviour, such as facial movement
or facial component shape. Thus, a frown can be judged
as anger in a message-judgment approach and as a facial
movement that lowers and pulls the eyebrows closer together
in a sign-judgment approach. While message judgment is all
about interpretation, sign judgment is agnostic, independent
from any interpretation attempt, leaving the inference about
the conveyed message to higher order decision making. Most
facial expression analysers developed so far adhere to the
message judgment stream and attempt to recognise a small
set of prototypic emotional facial expressions such as the six
basic emotions proposed by Ekman [24], [59], [70], [86]. Even
though automatic recognition of the six basic emotions from
face images and image sequences is considered largely solved,
reports on novel approaches are published even to date (e.g.,
[2], [44], [50], [62]). Exceptions from this overall state of the
art in machine analysis of human facial affect include few
tentative efforts to detect cognitive and psychological states
like interest [39], pain [4], [49], and fatigue [34].

In sign judgment approaches [14], a widely used method
for manual labelling of facial actions is the Facial Action
Coding System (FACS) [27]. FACS associates facial expres-
sion changes with actions of the muscles that produce them.
It defines 9 different action units (AUs) in the upper face,
18 in the lower face, and 5 AUs that cannot be classified as
belonging to either the upper or the lower face. Additionally, it
defines so-called action descriptors, 11 for head position,9 for
eye position, and 14 additional descriptors for miscellaneous
actions (for examples, see Fig. 1). AUs are considered to be
the smallest visually discernible facial movements. FACS also
provides the rules for recognition of AUs temporal segments
(onset, apex and offset) in a face video. Using FACS, human
coders can manually code nearly any anatomically possible
facial expression, decomposing it into the specific AUs and
their temporal segments that produced the expression. As
AUs are independent of any interpretation, they can be used
as the basis for any higher order decision making process
including recognition of basic emotions [27], cognitive states
like (dis)agreement and puzzlement [21], psychological states
like pain [22], and social signals like emblems (i.e., culture-
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specific interactive signals like wink, coded as left or right
AU46), regulators (i.e., conversational mediators like exchange
of a look, coded by AUs for eye position), and illustrators
(i.e. cues accompanying speech like raised eyebrows, coded
as AU1+AU2) [26]. Hence, AUs are extremely suitable to
be used as mid-level parameters in an automatic facial be-
haviour analysis system as they reduce the dimensionality of
the problem [72] (thousands of anatomically possible facial
expressions [26] can be represented as combinations of 32
AUs).

It is not surprising, therefore, that automatic AU coding
attracted the interest of computer vision researchers. Histor-
ically, the first attempts to encode AUs in images of faces
in an automatic way were reported by Bartlett et al. [9],
Lien et al. [47], and Pantic et al. [60]. The focus of the
research efforts in the field was first on automatic recognition
of AUs in either static face images or face image sequences
picturing facial expressions produced on command. Several
promising prototype systems were reported that can recognize
deliberately produced AUs in either (near) frontal view [7],
[58], [69] or profile view face images [57], [58] (for a survey
of the past work on the topic see [55], [70]).

One of the main criticisms that these works received from
both cognitive and computer scientists, is that the methodsare
not applicable in real-life situations, where subtle changes in
facial expression typify the displayed facial behaviour rather
than the exaggerated AU activations typical of deliberately
displayed facial expressions. Hence, the focus of the research
in the field started to shift towards automatic AU recognition
in spontaneous facial expressions (produced in a reflex-like
manner). Just recently, few works have been reported on
machine analysis of AUs in spontaneous facial expression data
[8], [16], [76], [77] (for a survey, see [86]). These methods
employ probabilistic, statistical, and ensemble learningtech-
niques, which seem to be particularly suitable for automatic
AU recognition from face image sequences [8], [86], and are
either feature- or appearance-based.

Automatic recognition of facial expression configuration (in
terms of AUs constituting the observed expression) has been
the main focus of the research efforts in the field. However,
both the configuration and the dynamics of facial expressions
(i.e., the timing and the duration of various AUs) are important
for interpretation of human facial behaviour. In fact, the
body of research in cognitive sciences, which argues that the
dynamics of facial expressions are crucial for the interpretation
of the observed behaviour, is ever growing [1], [68]. Facial
expression temporal dynamics are essential for categorisation
of complex psychological states like various types of pain and
mood [22]. They are also the key parameter in differentiation
between posed and spontaneous facial expressions [28]. In
spite of these findings, the vast majority of the past work
in the field does not take dynamics of facial expressions
into account when analysing shown facial behaviour. Some
of the past work in the field has used aspects of temporal
dynamics of facial expression such as the speed of a facial
point displacement or the persistence of facial parametersover
time. However, this was mainly done either in order to increase
the performance of facial expression analysers (e.g. [33],[71],

Fig. 2. Outline of the proposed fully automated system for recognition of
AUs and their temporal activation models.

[87]) or in order to report on the intensity of (a component of)
the shown facial expression (e.g. [48], [87]), but not in order
to analyse explicitly the properties of facial actions temporal
dynamics. The only work reported up to date that addresses
the problem of modelling semantic and temporal relationships
between AUs forming a facial expression, is that by Tong et al.
[71]. Note, however, that this work does not report on explicit
analysis of temporal segments of AUs (e.g., the duration and
the speed of onset and offset of the actions).

Exceptions from this overall state of the art in the field
include three studies on automatic segmentation of AU acti-
vation into temporal segments (neutral, onset, apex, offset) in
frontal- [43], [56] and profile-view [57] face videos. The works
by Pantic and Patras [56], [57] employ rule-based reasoning
and geometry based features to encode AUs and their temporal
segments, while Koelstra and Pantic [43] use appearance based
features and Hidden Markov Models.

Fig. 2 outlines our fully automatic detector of 22 AUs and
their temporal activation models (from in total 27 upper and
lower face AUs defined in FACS [27]). This set of 22 AUs
contains all upper and lower face AUs that can be robustly
recognized based upon movements of 20 facial characteristic
points shown in Fig. 2. Although this set is incomplete, the
system can be used to encode all but three AUs necessary
for recognition of basic emotions [27], all AUs necessary for
recognition of pain [22], all but one AUs necessary to detect
cluelessness [21], and 2/3 of the AUs involved in speech [27]
(see Table 1 for a detailed list).

The method operates under the assumption that the first
frame of an input video sequence shows a non-occluded,
expressionless face in near-frontal view. While the method
can handle occlusions like facial hair and glasses in general, it
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Fig. 1. Examples of upper- and lower-face Action Units (AUs)defined in the Facial Action Coding System (FACS).

cannot handle large amounts of facial hair and/or sunglasses
covering one or more facial components completely. Also,
while it can handle brief interim occlusions (e.g., by hand),
it cannot handle an occluded face in the first frame. After
the face region is detected in the first frame, we employ a
facial point detector based on Gabor-feature-based boosted
classifiers to automatically localize 20 facial fiducial points
in the detected face region. To track these points in the restof
the sequence, we exploit a tracking scheme based on particle
filtering with factorized likelihoods. Using the tracking data,
we first detect the presence (i.e. activation) of 22 AUs. We do
so by using a combination of GentleBoost ensemble learning
and Support Vector Machines. For each activated AU, we
determine the temporal activation model as a sequence of
temporal segments (neutral, onset, apex, offset). To attain
this, we combine GentleBoost, Support Vector Machines, and
Hidden Markov Models.

The authors have developed three earlier versions of the
AU detector presented in this paper, a 2005 version [78],
a 2006 version [73], and a 2007 version [74]. The 2005
version was aimed at automatic recognition of 15 AUs, it was
not fully automated, and it did not deal with any temporal
information. The 2006 version of the system was aimed at
automatic recognition of 15 AUs and their temporal segments
(rather than their temporal activation models). Differently from
previous versions, the current version is fully automated and
aimed at recognition of 22 AUs and their temporal activation
models. The system described in this work is the first able to
explicitly model the temporal dynamics of AUs in terms of
its temporal phases. Also, this work describes extensive tests
on databases of posed facial expression data as well as on
spontaneous facial expression data. To allow future work to
evaluate their methods against the one proposed here, we will
make frame-by-frame labelling of the temporal AU segments
publicly available (see section V).

The outline of the paper is as follows. Section II provides
an explanation of the employed facial point detector. Section
III presents the utilised facial point tracking scheme. Section
IV explains the methodology used to detect AUs and their
temporal activation models. Section V describes the datasets
we used in our validation studies, which are discussed in
section VI. Section VII concludes the paper.

TABLE I
AUS DEFINED IN FACS [27],THOSE THAT OUR SYSTEM CAN

AUTOMATICALLY ENCODE , AND LISTS OF AUS INVOLVED IN SOME

EXPRESSIONS.

AUs
FACS: upper face: 1, 2, 3, 4, 5, 6, 7, 43 , 45, 46;

lower face: 10, 11, 12, 13, 15, 16, 17, 18, 20,
22, 23, 24, 25, 26, 27, 28; other: 9, 21, 31, 37, 38

our system 1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20, 22, 24,
encodes: 25, 26, 27, 43, 45, 46
anger: 4, 5, 7, 10, 17, 22, 23, 24, 25, 26
disgust: 9, 10, 16, 17, 25, 26
fear: 1, 2, 4, 5, 20, 25, 26, 27
happiness: 6, 12, 25
sadness: 1, 4, 6, 11, 15, 17
surprise: 1, 2, 5, 26, 27
pain: 4, 6, 7, 9, 10, 12, 20, 25, 26, 27, 43
cluelessness: 1, 2, 5, 15, 17, 22
speech: 10, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28

II. FACIAL POINT DETECTION

The first step in any facial information extraction process is
face detection, i.e., identification of all regions in the scene
that contain a human face. The second step in facial expression
analysis is to extractgeometric features(facial points, shapes
of facial components) and/orappearance features(descrip-
tions of the texture of the face such as wrinkles and furrows).
The work presented here is a typical example of a geometric-
feature-based method. Typical examples of appearance-based
methods are those of Bartlett et al. [8], [23], [48], who used
Gabor filters, or of Anderson & McOwan [2], who used a
holistic, monochrome, spatial-ratio face template, and Jiang
et al. who used Local Binary Patterns, Local Phase Quantisa-
tion, and their temporal extensions [38]. Typical examplesof
hybrid, geometric- and appearance-feature-based methodsare
those of Tian et al. [69], who used shapes of facial components
and transient features like crow-feet wrinkles, or of Zhang& Ji
[87], who used 26 facial points and the same transient features
as used in Tian et al. [69].

A. Face Detection

Because of its practical importance and relevance to face
recognition and, in turn, for security, face detection received a
lot of attention. Numerous techniques have been developed
[36], [46], [83]. However, virtually all of them can detect
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only (near-) upright faces in (near-) frontal view. Most of
these methods emphasise statistical learning techniques and
use appearance features, including the real-time Viola-Jones
face detector [79], which is arguably the most commonly
employed face detector in automatic facial expression analysis.

The Viola-Jones face detector consists of a cascade of clas-
sifiers trained by AdaBoost. Each classifier employs integral
image filters, which remind of Haar Basis functions and can
be computed very fast at any location and scale. This is
essential to the speed of the detector. For each stage in the
cascade, a subset of features is chosen using a feature selection
procedure based on AdaBoost. We employed a version of this
face detector [29], which was trained on 5000 faces and 8000
non-face images. For images of faces in near-frontal view, it
performs very well; for example, when tested on the CK-db
[41], it attained a 100% detection rate [80]. The C++ code of
the face detector runs at about 500Hz on a 3.2-GHz Pentium
4.

B. Characteristic Facial Point Detection

Methods for facial feature point detection can be classifiedas
either texture-based methods(modelling local texture around
a given facial point) orshape-based methods(which regard all
facial points as a shape that is learned from a set of labelled
faces). A typical texture-based methods is that of Holden
& Owens [37], who used log-Gabor filters. Typical texture-
and shape-based methods are those of Chen et al. [11], who
applied AdaBoost to determine facial feature point candidates
for each pixel in an input image and used a shape model
as a filter to select the most likely position of feature points
and of Cristinacce & Cootes [19], [20], who experimented
with various facial point template representations and various
search algorithms for finding the best matching shape.

Although these detectors can be used to localise the 20
facial characteristic points illustrated in Fig. 3, none perform
the detection with high accuracy. They usually regard the
localisation of a point to be successful if the distance between
the automatically labelled point and the manually labelled
point is less than 30% of the true inter-ocular distanceDI

(the distance between the eyes, more specifically between the
inner eye corners). However, this is an unacceptably large error
in the case of facial expression analysis, since subtle changes
in the facial expression will be missed due to the errors in
facial points localisation.

We therefore adopt the Fiducial Facial Point Detector pro-
posed by Vukadinovic and Pantic [80]. When used to initialise
a point tracking algorithm, this method is accurate enough
to allow geometric-feature based expression recognition (see
the results seciton VI). The outline of the developed, fully
automated method for detection of the target 20 facial charac-
teristic points is illustrated in Fig. 3. The method first detects
the face and divides the face region into 3 areas that contain
the left eye, the right eye, and the mouth. The locations
of these facial components are approximated by analysing
the histograms in the regions. Based on this approximate
location, search regions are defined for every point to detect.
In these regions of interest (ROI) a sliding window approach

Fig. 3. Outline of the fully automated fiducial facial point detection method

search is performed. At each location of the ROI Gabor-
filter responses are calculated and fed into the GentleBoost-
based point detectors. The location with the highest output
determines the predicted point location.

Typical results of this algorithm are illustrated in Fig. 4.The
point detection algorithm is tolerant to changes in illumination
as long as they remain locally constant. If illumination is
uneven in the direct neighbourhood of a facial point the point
detector may fail for that point. A compiled version of the
point detector is available from the authors’ webpages. The
non-optimised Matlab code of our face point detector runs at
0.03Hz on a 3.2-GHz Pentium 4.

III. PARTICLE FILTERING WITH FACTORIZED

L IKELIHOODS FORFACIAL POINT TRACKING

After the fiducial facial points are found in the first frame, we
track their positions in the entire image sequence. Standard
optical flow techniques [5], [6], [53] are commonly used for
facial point tracking in facial expression analysis (e.g. standard
Lucas-Kanade optical flow [51] is used in [16], [47], [69] and
an ”inverse compositional” extension to this is used in [82]).

To omit the limitations inherent in optical flow methods,
such as the accumulation of error and the sensitivity to
noise, occlusion, clutter, and changes in illumination, some
researchers used sequential state estimation techniques to track
facial points in image sequences. Both, Zhang and Ji [87], and
Gu and Ji [34] used facial point tracking based on a Kalman
filtering scheme. The derivation of the Kalman filter is based
on a state-space model governed by two assumptions [40]:
(i) linearity of the model and (ii) Gaussianity of both the
dynamic noise in the process equation and the measurement
noise in the measurement equation. Under these assumptions,
derivation of the Kalman filter leads to an algorithm that
propagates the mean vector and covariance matrix of the
state estimation error in an iterative manner and is optimal
in the Bayesian setting. To deal with the state estimation
in nonlinear dynamical systems, the extended Kalman filter
has been proposed, which is derived through linearisation of
the state-space model. However, many of the state estimation
problems, including human facial expression analysis, are
nonlinear and non-Gaussian. To overcome the limitations of
the classical Kalman filter and its extended form in general,
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particle filters have been proposed. For a detailed overviewof
the various facets of particle filters, see [3].

The tracking scheme that we adopt is based on particle
filtering. The main idea behind particle filtering is to maintain
a set of solutions that are an efficient representation of the
conditional probabilityp(α|Y ) , whereα is the state of a
temporal event to be tracked given a set of noisy observations
Y = {y1, . . . , y

−, y} up to the current time instant. This means
that the distributionp(α|Y ) is represented by a set of pairs
{sk, πk} such that ifsk is chosen with probability equal to
πk, then it is as ifsk was drawn fromp(α|Y ). By maintaining
a set of solutions instead of a single estimate (as is done by
Kalman filtering), particle filtering is able to track multimodal
conditional probabilitiesp(α|Y ), and it is therefore robust
to missing and inaccurate data and particularly attractivefor
estimation and prediction in nonlinear, non-Gaussian systems.
In the particle filtering framework, our knowledge about thea
posteriori probabilityp(α|Y ) is updated in a recursive way.

Several researchers used the condensation algorithm to
track facial features in face image sequences (e.g., [35],
[52]). However, the algorithm has three major drawbacks.
The first is that a large amount of particles that result from
sampling from the proposal densityp(α|Y −) might be wasted
because they are propagated into areas with small likelihood.
Secondly the scheme ignores the fact that while a particle
sk =< sk1, sk2, . . . , skN > might have low likelihood, parts
of it might be close to the correct solution. Finally, the
estimation of the particle weights does not take into account
the interdependencies between the different parts ofα.

The extension to Condensation algorithm that we adopt here
for facial point tracking is Particle Filtering with Factorised
Likelihoods (PFFL) proposed by Patras and Pantic [63]. The
PFFL algorithm addresses all of the aforementioned problems
inherent in the Condensation algorithm by extending the
Auxiliary Particle Filtering, which addresses the first drawback
of the Condensation algorithm [65], to take into account the
interdependencies between the different parts of the stateα.

The PFFL tracking scheme assumes that the stateα can be
partitioned into sub-statesαi (which, in our case, correspond
to the different facial points), such thatα =< α1, . . . , αn >.
At each frame of the input image sequence, we obtain a
particle-based representation ofp(α|Y ) in two stages. First,
each partitionαi is propagated and evaluated independently,
by applying one complete step of the Auxiliary Particle Fil-
tering algorithm. This creates a particle-based representation
of p(αi|Y ). In other words, at the first stage of the PFFL
tracking scheme, each facial pointi is tracked for one frame
independently from the other facial points. At the second
stage, interdependencies between the sub-states are takeninto
account by means of a scheme that samples complete particles
from the proposal distributiong(α), which is defined as the
product of the posteriors of eachαi given the observations, i.e.,
g(α) =

∏

i p(αi|Y ). Finally, each of the particles produced
in this way is re-weighted by evaluating the joint probability
p(α|α−) so that the set of particles with their new weights
represents thea posterioriprobability p(α|Y ).

The adopted observation model [64] is robust to changes
in illumination and it can deal with large occlusions. This

polymorphic aspect is necessary as many areas around facial
points change their appearance when a facial action occurs
(e.g. the mouth corner in a smile).

IV. RECOGNITION OF ACTION UNITS AND THEIR

TEMPORAL ACTIVATION MODELS

Contractions of facial muscles alter the shape and locationof
the facial components. Some of these changes are observable
from the movements of 20 facial points, which we track in
the input sequence. To classify the movements of the tracked
points in terms of AUs and their temporal activation models,
changes in the position of the points over time are first
represented as a set of mid-level parameters.

A. Registration and smoothing

Before the mid-level parameters can be calculated, all rigid
head motions in the input sequence must be eliminated.
Otherwise, we would not be certain whether the value of a
given parameter had changed due to facial muscle contraction
or due to rigid head movement. We register each frame of
the input image sequence with the first frame using an affine
transformationT1 based on 3 referential points: the nasal spine
point and the inner corners of the eyes (see Fig. 3). We use
these points as the referential points because contractions of
the facial muscles do not affect these points.

Inter-person variations in size and location of the facial
points are minimised by applying an affine transformationT2

to every tracked facial point in each frame.T2 is obtained by
comparing the locations of the referential points of a given
subject in the first frame with the corresponding points in a
selected expressionless standard face (the choice of the subject
to be used as this standard face does not influence the process).
Thus, after tracking any of 20 characteristic facial pointsin
an input sequence containingk frames, we obtain a set of
coordinates< p1, . . . , pk > corresponding to the locations of
the pertinent pointp in each ofk frames. Then, the registered
coordinatespri are obtained as:

pri (t) = T2(T1(pi(t))) (1)

Using this registration technique, four out of six degrees of
freedom of head movements can be dealt with, and the remain-
ing two can be handled partially. All three head translation
degrees of freedom can be handled completely, as well as all
in-plane head rotations (i.e. head roll). Out of plane rotations
(i.e. head pitch and head yaw) can be dealt with as long as
the rotation in these dimensions is smaller than approximately
20 degrees.

The tracked points returned by the PFFL tracker contain
random noise occurring due to the probabilistic nature of
particle filtering. Therefore, we apply a temporal smoothing
filter to arrive at a registered set of pointsP ′ that contains
less noise:

p′i(t) =
1

2ws + 1

t+ws
∑

t−ws

pri (t) (2)
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Fig. 4. Typical, first-effort results of the proposed facial-point detector for samples from (left to right): the Cohn-Kanade database, the MMI database
(posed-expressions), two images of the MMI database (spontaneous-expressions), the Triad dataset, and two images from a cell phone camera.

wheret denotes the frame number andp′ andpr are elements
of the collectionsP ′ andPr , respectively. The window side-
lobe sizews to which we apply the temporal smoothing was
chosen after visual inspection of the smoothed tracker’s output.
For the experiments discussed in this work,ws = 1 has been
chosen.

B. Mid-level Parametric Representation

Our mid-level parametric representation is inspired by our
earlier work [73], [74]. The most basic features that can be
computed from the tracked point information are the positions
of the points and the distances between pairs of points. We
also compute the angle that the line connecting two points
makes with the liney = 0 (the horizontal axis).

For each pointp′i, wherei = [1 : 20], the first two features
are simply itsx andy position. We compute the featuresf1
andf2 for every framet:

f1(p
′
i(t)) = p′i,x(t) (3)

f2(p
′
i(t)) = p′i,y(t) (4)

where p′i,x and p′i,x are the x- and y-positions of a
point,respectively. For all pairs of points{pi, pj}, i 6= j we
compute in each frame two features:

f3(p
′
i(t), p

′
j(t)) = ‖p′i(t)− p′j(t)‖ (5)

f4(p
′
i(t), p

′
j(t)) = arctan

(

p′i,y(t)− p′j,y(t)

p′i,x(t)− p′j,x(t)

)

(6)

wherearctan is the modified inverse tangent function that
corrects for the quadrant a point is in (i.e. solves the arctangent
problem). Featuref3 describes the distances between two
points p′i and p′j , and featuref4 describes the angle that the
line connectingp′i with p′j makes with the horizontal axis.

The features< f1, . . . , f4 > contain only the information
about the positions of the points, the distances between them
and the angles they make with the horizontal at the current
instance in time. No information about the relation of these
measurements to their values in a frame displaying a neutral
expression is encoded. Neither do they encode any information
about the rate of change of the values of these features in
consecutive frames (e.g. the velocity of a point). To capture
this temporal information, we create a new set of features
based on the single frame based features described above.

First, we compute features that describe how much the
feature values have changed, relative to their value at the first,
neutral frame. We do so using thedifference functionκ(x(t)):

κ(x(t)) = x(t)− x(0) (7)

where x is any time sequence. Using this definition we
compute the following features:

< f5(t) . . . f8(t) >=< κ(f1(t)) . . . κ(f4(t)) > (8)

To determine the rate of change of the feature values at a
given time instancet, we compute their first derivative with
respect to time. For discretely sampled data, this becomes:

d(x(t))

dt
= v(x(t) − x(t− 1)) (9)

wherev is the sampling rate of the corresponding recording.
We use this definition to compute the features:

< f9(t) . . . f12(t) >=< d(f1(t))/dt . . . d(f4(t))/dt > (10)

Finally, we calculate three additional temporal features.
Within a certain periodwt we fit the values of the mid-level
features parametersfj, j ∈ [1 : 4] to a second-order polyno-
mial: fj(t) = at2+bt+c. In this functiont is the frame number
at the centre ofwt. In our experiments the temporal windowwt

was 7 frames long, which we based on research findings that
suggest that temporal changes in neuromuscular facial activity
last from 1/4 of a second (a blink) to several minutes (a jaw
clench) [27], and a framerate of 25 Hz of our data. Then, for
eachd, and for eachfj , j = [1 : 4], we define the following
mid-level parameters relating to temporal changes in the value
of the mid-level parameters< f1 . . . f4 >:

f10+3∗j(fj) = a, f11+3∗j(fj) = b, f12+3∗j(fj) = c (11)

In total this results in a 2520 dimensional feature vector for
each frame of our input image sequence.

C. Facial Action Unit Classification

Our approach to AU recognition from input image sequences
is based on Support Vector Machines (SVMs). SVMs are very
well suited for this task because the high dimensionality ofthe
feature space (representation space) does not affect the training
time, which instead depends only on the number of training
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examples. Furthermore, SVMs generalise well even when few
training data are provided. However, note that classification
performance decreases when the dimensionality of the feature
set is far greater than the number of samples available in
the training set [18]. The datasets that we use in this study
consist typically of less than 250 image sequences of which
10-20 are positive examples with the remainder being negative
examples (see section V). Given that the dimensionality of the
utilised feature set is 2520 (see section IV-B), over-fitting to
the training set is rather probable. One way to address this
problem is to reduce the number of features to be used to
train the SVM. We do so by means of GentleBoost, which is
employed in this stage of the system’s processing as a feature
selection scheme [31].

An advantage of feature selection by a boosting algorithm
is that it tries to optimise the actual classification problem
instead of reducing the variability in the data overall, which is
done by feature reduction techniques such as PCA. As shown
by Littlewort et al. [48], when an SVM classifier is trained
using the features selected by a boosting algorithm (they used
AdaBoost in their study), it outperforms both the SVM and the
boosting classifier applied directly to facial expression data.

The implementation of the feature selection has been done
as follows. As the weak classifier, we use a linear regression
function. For everyd ∈ D, whereD is the set of 22 AUs
that our system can recognise in an input sequence, we apply
GentleBoost resulting in a set of selected featuresGd. To
detect 22 AUs occurring alone or in combination in the current
frame of the input sequence (i.e., to classify the current frame
into one or more of thed ∈ D), we train a separate SVM to
detect the activity for every AU. More specifically, we useGd

to train and test the SVM classifier for the relevant AU (i.e.,the
relevantd ∈ D). The kernel we have chosen for the SVM was
the radial basis function (RBF) kernel, as this performed best
in a pilot study comparing the RBF, polynomial, and linear
kernels. For each fold of the validation procedure (sectionVI),
the SVM parameters were determined independently of the test
data in separate cross validation loops.

D. Temporal Activation Models of Facial Action Units

To encode the temporal segments of the AUs found to be
activated in the input image sequence, we proceed as follows.
An AU can be either in (i) the onset phase, where the muscles
are contracting and the appearance of the face changes as the
facial action grows stronger, or in (ii) the apex phase, where
the facial action is at a peak and there are no more changes in
facial appearance due to this particular facial action, or in (iii)
the offset phase, where the muscles are relaxing and the face
returns to its neutral appearance, or in (iv) the neutral phase,
where there are no signs of activation of this particular facial
action. Often the order of these phases is neutral-onset-apex-
offset-neutral, but other combinations such as multiple-apex
AUs are also possible. Note that AUs having multiple apices
are characteristic for spontaneous facial expressions [17].

As every facial action can be divided into the four temporal
segments, we consider the problem to be a four-valued multi-
class classification problem. In this paper, we compare two
approaches to detect an AU temporal model.

1) Multi-class SVMs : In the first approach we employ
a one-versus-one strategy to multi-class SVMs (mc-SVMs).
For each AU and every pair of temporal segments we
train a separate sub-classifier specialised in the discrimina-
tion between the two temporal segments. This results in
|C|(|C| − 1)/2 sub-classifiers that need to be trained, with
C = {neutral, onset, apex, offset}, and | · | the cardinality
of a set. For each framet of an input sequence, every sub-
classifier returns a prediction of the classc ∈ C, and a
majority vote is cast to determine the final outputct of the
mc-SVM for the current framet. To train the sub-classifiers,
we apply the following procedure using the same set of mid-
level parameters that was used for AU detection (see section
IV-B). For each classifier separating classesci, cj ∈ C, i 6= j
we apply GentleBoost, resulting in a set of selected features
Gi,j . We useGi,j to train the sub-classifier specialised in
discriminating between the two temporal segments in question.

2) Hybrid SVM-HMM: In the second approach, we pro-
pose to apply hybrid Support Vector Machine-Hidden Markov
Models (SVM-HMMs) to the problem of AU temporal model
detection. Traditionally, HMMs have been used very effec-
tively to model time in classification problems. But while
the sequence of the temporal phases of a facial action over
time can be represented very well by HMMs, the HMM
suffers from poor discrimination between temporal phases at
a single moment in time. The emission probabilities, which
are computed for each frame of an input video for the
HMM hidden states, are normally modelled by fitting Gaussian
mixtures on the features. These Gaussian mixtures are fitted
using likelihood maximisation, which assumes correctnessof
the models (i.e. the feature values should follow a Gaussian
distribution) and thus suffers from poor discrimination [10].
Moreover, it results in mixtures trained to model each class
and not to discriminate one class from the other.

SVMs on the other hand are not suitable for modelling
time, but they discriminate extremely well between classes.
Using them as emission probabilities might very well result
in an improved recognition. We therefore again train one-
versus-one SVMs to distinguish the temporal phases neutral,
onset, apex, and offset, just as described in section IV-D1.We
then use the output of the component SVMs to compute the
emission probabilities. In this way we arrive at a hybrid SVM-
HMM system. This approach has been previously applied with
success to speech recognition [45].

HMMs work in a probabilistic framework. On the other
hand, the output of an SVM is not a probability measure. The
(unsigned) decision function value outputh(x) of an SVM is
a distance measure between a test pattern and the separating
hyper plane defined by the support vectors. There is no clear
relationship with the posterior class probabilityp(y = +1|x)
that the patternx belongs to the classy = +1. However, Platt
proposed an estimate for this probability by fitting the SVM
outputh(x) with a sigmoid function [66]:

p(y = +1|x) = g(h(x), A,B) ≡
1

1 + exp(Ah(x) +B)
(12)

The parametersA andB of eq.(12) are found using max-
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imum likelihood estimation of the SVM output on the same
data that is used for training each SVM.

As explained in section IV-D1, we use one-versus-one mc-
SVMs to distinguish between temporal phases. This approach
is to be preferred over the one-versus-all approach as it aims
to learn the solution to a more specific problem, namely,
distinguishing between two specific classes. This is in line
with our idea of using SVMs for high discriminative power
between classes and HMMs to model time.

Our (fully observed) HMM consists of four states, one for
each temporal phase. From each SVM we get, using Platt’s
method, pairwise class probabilitiesµij ≡ p(ci|ci or cj ,x) of
the class (HMM state)ci given the feature vectorx, and that
x belongs to eitherci or cj . These pairwise probabilities are
transformed into posterior probabilitiesp(ci|x) by

p(ci|x) = 1/





|C|
∑

j=1,j 6=i

1

µij

− (|C| − 2)



 (13)

Finally, the posteriorsp(ci|x) have to be transformed into
emission probabilitiesby applying Bayes’ rule

p(x|ci) ∝
p(ci|x)

p(ci)
(14)

where thea priori probabilityp(ci) of classci is estimated by
the relative frequency of the class in the training data.

E. Emotion detection

To detect the six basic emotions, we use the same set of
features, described in section IV-B. We approach the problem
as a dynamic multi-class event detection problem, i.e. for every
video we determine to which class it belongs. To do so, we
train a mc-GentleSVM-HMM, with a similar structure as the
AU temporal segment detector. Again, we train one vs. one
GentleSVMs to distinguish between pairs of emotions. Be-
cause the neutral expression is also present in every video,we
also learn classifiers that distinguish between each emotion and
the neutral expression. We thus learn 21 binary classifiers.We
again use eq. 13 and 14 to determine the emission probabilities
used by the SVM. In contrast with the AU temporal segment
detector, we do not use the emotions as the state variables,
instead we learn the optimal number of states.

V. UTILISED FACIAL EXPRESSION DATASETS

In our study, we used four different datasets: the Cohn-Kanade
database (CK-db) of volitional facial displays [41], the MMI
Facial Expression Database (MMI-db) [61], [75], the DS118
dataset of spontaneous facial displays [67], and the Triad
dataset of spontaneous human behaviour [42].

The CK-db was developed for research in recognition of
the six basic emotions and their corresponding AUs. The
database contains over 2000 near frontal-view videos of facial
displays produced by 210 adults being 18 to 50 years old,
69% female, 81% Caucasian, 13% African and 6% from other
ethnic groups. From this database, 480 grayscale videos have
been made publicly available. It is currently the most com-
monly used database for studies on automatic facial expression

analysis. All facial displays were made on command and the
recordings were made under constant lighting conditions. Two
certified FACS coders provided AU coding for all videos.
Inter-observer agreement was expressed in terms of Cohens
kappa coefficient [12], which is the proportion of agreement
above what would be expected to occur by chance. The
mean kappa for inter-observer reliability was 0.82 for AUs
at apex. In the publicly available version of this database the
expressions are shown until the beginning of the apex phase.

The MMI facial expression database has five parts (see
[75]). Two FACS experts AU-coded the database. The mean
kappa for inter-observer reliability was 0.77 for AUs at apex.
The two coders made the final decisions on AU coding by
consensus and these final AU coding was used for the study
presented in this paper. The mean kappa for inter-observer
reliability on Part I and II of the database was 0.91 for AUs
at apex.

In our study we use Parts I, II, and IV. Parts I and II
contain deliberately displayed facial expressions: 2397 videos
depicting facial expressions of single AU activation, multiple
AU activations, and six basic emotions. Subjects were 52
adults of 19 to 62 years of age; 48% are female, 81% being
Caucasian, 14% Asian and 5% African. All facial displays
were made on command and the recordings were made under
constant lighting conditions from frontal, profile, or dualview
orientation. The database contains a large amount of displays
of single AU and AD activations. In turn, the MMI dataset
enables us to learn to recognise every AU independent of other
AUs. Part IV of the MMI facial expression database contains
currently 65 videos of spontaneous facial displays. Subjects
were 18 adults of 21 to 45 years old a; 48% female, 66%
being Caucasian, 30% Asian and 4% African.

To stimulate research into the automatic analysis of AU
temporal dynamics, we have made the manual onset-apex-
offset coding of Part I and II publicly available. They can
be downloaded from the MMI Facial Expression Database
website. This will also allow researchers to compare their work
against the method proposed here.

The DS118 dataset has been collected to study facial
expression in patients with heart disease [67]. Subjects were
85 men and women with a history of transient myocardial
ischemia who were interviewed on two occasions at a 4-month
interval. They averaged 59 years of age (std = 8.24) and were
predominantly Caucasian. Spontaneous facial displays were
video-recorded during a clinical interview that elicited AUs
related to disgust, contempt, and other negative emotions as
well as smiles. The facial actions displayed in the data are
often very subtle. Due to confidentiality issues, this FACS-
coded dataset is not publicly available. Only the AU-coding
made by human observers and the tracking data were made
available to us.

The Triad dataset was collected to study effects of alcohol
on behaviour of so-called social drinkers [42]. Subjects were
3 young Caucasian men, who were recorded simultaneously
by three different cameras while drinking and interacting.The
recordings are long (over 15 minutes) and contain displays of
diverse facial and bodily gesturing. No AU coding of the data
was made publicly available.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 10

VI. VALIDATION STUDIES

We conducted five sets of experiments to evaluate the perfor-
mance of different parts of the system: the facial point detector,
the facial point tracker, the AU detector, the AU temporal
activation model detector, and the six basic emotion detector.

A. Evaluations of Facial Point Detector

We conducted two experiments to evaluate the performance
of our facial point detector: one using the first frames of 300
randomly picked image sequences from the CK-db and the
other using the first frames of the 244 image sequences from
the MMI-db Part I that will later be used in AU detection. In
the experiment with the CK-db images, the proposed facial
point detector was evaluated by three-fold cross validation. In
the experiment with the MMI-db images the point detector
was trained using all images from the CK-db and tested on
the MM-db images. This way we were able to test how well
the point detector generalises to entirely different data.

To evaluate the performance of the method, each of the
automatically located facial points was compared with the
manually annotated point. The error margin was defined in
terms of the inter-ocular distanceDI measured in a test image.
An automatically detected point displaceded pixels from the
true facial point is regarded as SUCCESS ifed < 0.05DI.
This means that, e.g., forDI = 100 pixels (a typical value
for the CK-db), a bias of up to 5 pixels for an eye corner is
regarded as SUCCESS.

Overall, we achieved an average recognition rate of 93% for
the samples from the CK-db and 96% for the samples from the
MMI-db for 20 facial feature points using the above described
evaluation scheme. The detection rates for each point are given
in Table II. The low scores for points, D, and D1 (the inner
eyebrow points) are caused by a slight difference in definition
used during manual annotation of the two databases: they were
labelled slightly beneath the eyebrows for the CK-db, and on
slightly above the eyebrows for the MMI-db.

Facial point detectors developed elsewhere attain 93% to
96% average recognition rate for subsets of the 20 facial points
illustrated in Fig. 3 when consideringed < 0.3DI as the rule
for successful point detection (e.g., [11], [19], [30]). Hence,
the method presented in this work is approximately six times
more accurate than the previously reported methods. Typical
results of our facial point detector are illustrated in Fig.4.

B. Evaluations of Facial Point Tracker

We tested the tracking accuracy of the proposed PFFL point
tracking algorithm by applying it to several different samples
from four different datasets: the CK-db, the MMI Part I and
Part II datasets, and the Triad dataset. We randomly selected
5% of samples from each dataset, in such a way that these data
are completely independent of the data that we used to model
the transition probability models of the tracking algorithm (see
section III-C).To provide ground truth for our experiments,
each frame of each test sequence was labelled by a human
observer, provided that all 20 facial points are visible. In
case of an occlusion, the location of an occluded point was

TABLE II
AVERAGE CLASSIFICATION RATE OF POINT DETECTION ONMMI-FACIAL

EXPRESSIONDATABASE COHN-KANADE DATABASE .

MMI CK MMI CK

A 0.784 0.920 G 0.982 0.950
A1 0.976 0.960 G1 0.982 0.990
B 0.976 0.960 H 0.976 0.980
B1 0.952 0.990 H1 0.976 0.970
D 0.569 0.960 I 0.904 0.970
D1 0.802 0.950 J 0.928 0.910
E 0.928 0.960 K 0.964 0.930
E1 0.958 0.900 L 0.952 0.800
F 0.982 0.910 M 0.904 0.900
F1 0.982 0.830 N 0.952 0.980

Average for all points: 0.922 0.930
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Fig. 5. Mean and standard deviation of the tracking error in units of the
inter-ocular distanceDI of selected points. The error is computed over 100
videos taken from the MMI Facial Expression Database.

determined based on its location in the last frame in which
the relevant point was visible. The distance metric for a given
point pi is defined per frame as follows:

e(pi, j) =
||pi,j − p̂i,j ||2

DI(j)
(15)

whereDI(j) is the inter-ocular distance, measured at framej
of the test sequence,pi,j is the location of pointpi, i ∈ [1 : 20]
in frame j determined by the tracking algorithm, andp̂i,j is
the manually labelled ground truth for the same point at that
frame. Figure 5 shows the mean tracking error for a number
of facial points, computed by evaluating the tracking results of
100 videos from the MMI-db. We compute the average error
E over all points per framej as follows:

E(j) =
1

n

n
∑

i=1

e(pi, j) (16)

where n = 20 is the number of points that we track. To
determine a classification rate for our tracking result, we
use the same measure of success as we applied to the point
detection results, i.e. a point is tracked successfuly in a frame
if E(j) <= 0.05DI. Given that the tracking algorithm was
trained on samples from the MMI Part I dataset (near frontal
views of deliberately displayed facial expressions), it isnot
surprising that the best results were attained for similar data,
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that is, for samples from the CK-db and the MMI Part I
datasets, where all points were tracked successfuly in 93%
and respectively 91% of frames. On the spontaneous facial
data, the tracking algorithm performed less accurately. For the
MMI Part II dataset and the Triad dataset, the tracking of all
points was successful in 77% and, respectively, 52% of frames.
Note, however, that samples from both of these datasets of
spontaneous facial data contain instances of occluded facial
points, which had a large influence on the average distance
metricE(j).

C. Frame-based AU Detection Evaluation

We tested our AU detector system on both the MMI-db and
the CK-db, measuring for each frame of a video whether it
was correctly classified as containing an active AU or not
(regardless of temporal phase). On the MMI-db we tested it
for all 22 AUs that can be detected using a geometric-feature-
based approach. The set was created so that it includes for
every AU at least 15 examples. For AU13 (a smile with the
mouth corners sharply pulled upwards) we could find only
14 examples and for AU46 (wink) only 6. Some AUs always
occur in combination with others. For instance, AU22 which
puffs the lips as in pronouncing the word ’flirt’, will always
cause the lips to part and thus to display AU25. Thus, for some
AUs we have more occurrences than for others. In the CK-db,
not all 22 target AUs are present in sufficient numbers. Hence,
we have tested our AU detector on the CK-db only for those
AUs that were present with at least 15 examples.

All studies were performed by leave-one-subject out cross
validation, which ensures that we train and evaluate a subject-
independent system. Results for the MMI-db are shown in
table III and for the CK-db in table IV. The number of videos
in which each AU occurs is listed in the second column of the
tables, and the total number of frames in which an AU is active
is given in the third column. For comparison with older works,
we show the classification rate in the fourth column. Because
of the highly-unbalanced nature of our data, this performance
measure is overly optimistic. More detailed frame-based AU
detection performance results are provided in terms of ROC-
curves in Fig. 6.

Although precision and recall are better measures of perfor-
mance when dealing with unbalanced data sets, it is difficultto
compare performances using two measures. Therefore we have
also included the F1-measure, which favours precision (p) and
recall (r) equally. The F1 measure is defined as2pr/(p+ r).
The results show that the AUs 1, 2, 4, 6, 12, 13, 18, 20,
25, 27, 30, 43, 45 and 46 are detected well. AU5 and AU7
both involve only the movements of the upper and lower
eyelid. The eyelids move up or down only very little when
these AUs are activated, and we believe that our tracker is
not sensitive enough to attain highly accurate results for these
AUs. AU26 (jaw dropped) is very similar to AU27 (mouth
stretched open). In fact, in an activation of AU27 the facial
points around the mouth will go through all the positions that
they would go through in case of AU26 activation. Therefore
the two AUs are hard to separate. Similarly, AU10 and AU16
are characterised by point displacements that are very similar

TABLE III
SUBJECT INDEPENDENT CROSS VALIDATION RESULTS FORAU

ACTIVATION DETECTION PER FRAME ON244 EXAMPLES FROM THE
MMI-FACIAL EXPRESSIONDATABASE

AU Videos Frames Cl. Rate Recall Precision F1
1 22 1006 0.972 0.679 0.728 0.703
2 25 1092 0.961 0.628 0.629 0.628
4 38 1839 0.942 0.582 0.707 0.639
5 19 874 0.949 0.317 0.375 0.344
6 27 1241 0.952 0.695 0.583 0.634
7 15 772 0.963 0.319 0.510 0.392
9 15 636 0.968 0.503 0.477 0.490
10 17 719 0.955 0.266 0.321 0.291
12 17 1004 0.950 0.548 0.482 0.513
13 14 782 0.974 0.668 0.650 0.659
15 15 854 0.944 0.412 0.344 0.375
16 18 717 0.947 0.230 0.229 0.229
18 16 568 0.974 0.593 0.523 0.556
20 15 871 0.964 0.696 0.554 0.617
22 15 696 0.964 0.536 0.467 0.499
24 15 536 0.955 0.497 0.503 0.500
25 105 5401 0.909 0.810 0.831 0.821
26 32 1597 0.875 0.198 0.179 0.188
27 15 800 0.983 0.720 0.819 0.766
30 15 736 0.972 0.438 0.588 0.502
43 15 750 0.973 0.520 0.657 0.580
45 107 1243 0.956 0.668 0.625 0.645
46 6 130 0.913 0.723 0.667 0.694

Avg: 0.953 0.532 0.541 0.533

TABLE IV
SUBJECT INDEPENDENT CROSS VALIDATION RESULTS FORAU

ACTIVATION DETECTION PER FRAME ON153 EXAMPLES FROM THE

COHN-KANADE DATABASE

AU Videos Frames Cl. Rate Recall Precision F1
1 68 883 0.918 0.808 0.844 0.826
2 50 657 0.939 0.791 0.879 0.833
4 54 857 0.870 0.604 0.658 0.630
5 37 421 0.904 0.566 0.629 0.596
6 39 535 0.930 0.789 0.811 0.800
7 31 415 0.870 0.268 0.315 0.290
9 30 357 0.928 0.676 0.497 0.573
10 26 302 0.914 0.403 0.401 0.402
12 42 727 0.930 0.827 0.844 0.836
15 19 264 0.969 0.500 0.283 0.361
20 34 381 0.908 0.466 0.582 0.517
24 17 297 0.935 0.395 0.497 0.440
25 19 1572 0.851 0.717 0.782 0.748
26 27 344 0.902 0.336 0.380 0.357
27 30 800 0.964 0.836 0.873 0.854
45 23 1243 0.943 0.584 0.408 0.480

Avg: 0.917 0.598 0.605 0.596

to point displacements caused by other AUs that also raise the
upper lip (AU10) or lower the lower lip (AU16).

D. AU Temporal Model Detection Evaluation

We evaluated the performance of our temporal model detector
on examples from the MMI-db only. This is because the CK-db
videos were cut after the expressions reached the apex phase.
Therefore they do not display the full temporal model of facial
expressions. Fig. 7 compares the F1-measures attained by the
two tested approaches (see section IV-D): mc-GentleSVMs
only, and the hybrid GentleSVM-HMM approach. The accu-
racy was measured per frame (i.e. for each frame we checked
whether it was assigned the correct phase label).

We see that compared with the multiclass gentleSvm
method, the detection of the apex phase has benefited most
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Fig. 6. ROC curves of AU activation detection per frame on theMMI and the Cohn-Kanade (CK) datasets. For AU13, AU16, AU18,AU22, AU30, and
AU43 the Cohn-Kanade dataset did not contain enough examples to perform AU detection.
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Fig. 7. Comparison of the F1 measures attained by the two Temporal Model
Detector approaches, measured per frame.

from introducing the HMM. The apex phase had an increase
in F1 of 8%, the offset 6.8%, the onset phase 3.6% and the
neutral phase 3.4% (relative to mc-SVM). The fact that the
neutral phase benefits least from the addition of the HMM
is expected, because this is not a dynamic part of the facial
action. The effect of applying the grammatical rules is less
successful. While it attains good results for the offset phase
and in a limited way for the neutral phase, it actually decreases
the accuracy of the onset and apex phase recognition.

Detailed results per AU are shown for the SVM-HMM
approach in table V. Figure 9 shows one example of the
recognition of the temporal phases of a video containing an AU
25 activation. The figure shows that the prediction (red dotted
line) is one frame late at predicting the first and second apex
phases. It also predicts the last offset phase to stop 6 frames
too early. The SVM-HMM system did recognise correctly that
there are two apex phases.

We also looked into the durations of the facial actions, both
the total duration of an AU (i.e. the number of consecutive
frames that were predicted to be non-neutral) as well as the
durations of the temporal phases separately. Fig. 8 shows the
statistics for this analysis. The duration error is measured in
frames. The figure shows the average number of frames that a
temporal phase duration or the entire AU activation duration
is off, averaged per AU. We can see that for most AUs, the
average error per temporal phase is less than 4 frames. The
apex temporal phase has the largest error. We can also see
from Fig. 8 that the error of the total AU activation duration
is far less than the sum of the temporal phase duration errors.
This is because usually, if the apex phase has been predicted
to last too long, consequently the offset phase will start late
and results in an error in the offset phase duration, thus the
error is effectively double counted.

E. Event-based Action Unit Detector Evaluation

Besides AU detection per frame, we also want to be able
to perform so-called event coding i.e., we want to determine
which AUs were active in an entire image sequence.

1) Within-database evaluation:The simplest way to per-
form event detection is to use a threshold on the number of
frames predicted active by the frame based AU detector. As

Fig. 8. Temporal segment (onset, apex, offset) duration error and the entire
facial action duration error. Results are averaged per AU, and measured in
frames.

Fig. 9. An example of temporal phase recognition for AU25. The solid line
shows the ground truth labelling per frame and the dotted line the prediction
by the SVM-HMM. Horizontal lines depict either a neutral or an apex phase,
upward slopes an onset phase and downward slopes an offset phase.

the SVM classifier adds ana priori unknown amount of noise
to its output in the form of false positives and false negatives,
fixing a threshold based on for example the minimal duration
of an AU as observed by psychologists will not necessarily
achieve optimal results. To overcome this problem we add a
decision layer that will empirically learn a thresholdθ based
on the AUs automatically detected per frame.

Another way to determine whether an AU was present in
a video is to analyse the output of the AU Temporal Model

TABLE V
F1-MEASURE CLASSIFICATION ACCURACY OF HYBRIDSVM-HMM FOR

DISTINGUISHING THE FOUR TEMPORAL PHASES.

AU Neutral Onset Apex Offset
1 0.790 0.669 0.585 0.536
2 0.848 0.544 0.730 0.642
4 0.690 0.521 0.615 0.334
5 0.610 0.352 0.561 0.292
6 0.807 0.469 0.693 0.374
7 0.784 0.100 0.390 0.108
9 0.895 0.756 0.887 0.462
10 0.855 0.587 0.790 0.323
12 0.931 0.693 0.773 0.679
13 0.926 0.847 0.750 0.642
15 0.791 0.339 0.742 0.357
16 0.815 0.481 0.600 0.384
18 0.914 0.569 0.740 0.592
20 0.883 0.734 0.860 0.583
22 0.864 0.701 0.469 0.373
24 0.507 0.257 0.547 0.037
25 0.865 0.634 0.776 0.631
26 0.751 0.490 0.583 0.417
27 0.720 0.747 0.858 0.708
30 0.787 0.461 0.541 0.415
43 0.937 0.476 0.758 0.728
45 0.971 0.780 0.653 0.710
46 0.618 0.146 0.182 0.239

Avg: 0.807 0.537 0.656 0.459
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TABLE VI
COMPARISON OFAU EVENT DETECTION METHODS ON THEMMI-FACIAL

EXPRESSIONDATABASE.

System Cl. Rate Recall Precision F1
Threshold approach 0.876 0.772 0.402 0.521
Hybrid SVM-HMM 0.943 0.756 0.653 0.692

Detector. When doing this, we regard an AU to be present
if the Temporal Model Detector predicted a correct sequence
of phases (e.g. neutral→ onset→ apex→ offset). Table VI
compares the AU event detection results of the simple thresh-
old based method with the Temporal Model Detector method,
where we have used the SVM-HMM approach to detect the
temporal phases of each AU. As the table shows, using the
hybrid SVM-HMM method for AU event detection results
in a 17.1% improvement in F1-measure, clearly showing the
benefit of this approach.

2) Cross-database evaluation:A cross-validation study on
data from a single database might attain very good results, but
it does not guarantee that the evaluated system performs well
on novel data. To test the generalisability of the results wetrain
the system on data from one database and test it on data from a
second database. Both databases must be recorded completely
independently of each other. That exactly is the case for the
MMI-db and the CK-db.

We performed two tests. In the first experiment, we train
the AU detector on all data from the MMI-db and test it on
data from the CK-db. Vice versa, in the second experiment
we train on the CK-db and test on the MMI-db. The results,
measured per image sequence (event-detection) in terms of
the F1-measure, are shown in table VII. The performance
of the MMI-trained system is almost 10% higher than that
of the Cohn-Kanade trained system. We believe that this is
due to the low variability of facial expressions in the latter
database. As AUs in the CK-db occur frequently in very
similar configurations (e.g. AU1 + AU2 + AU5 + AU25 +
AU27 for the expression of surprise), an AU detection system
trained on this data will expect AUs to be produced in a
similar fashion in the test examples. However, this is not the
case for the MMI-db data, where individual AU activations
often occur. On the other hand, we see that the MMI-trained
system generalises reasonably well on data from a completely
different database, although the F1 measure is still a good 22%
lower than attained when performing event detection within
the MMI-db (see table VI) and thus high generalisation has
not yet been achieved.

3) Spontaneous data evaluation:The AU detection evalu-
ations presented so far were performed on acted data. That is,
the expressions shown in the data were produced on command.
Spontaneous expressions however, are different both in their
composition of AUs as well as in their temporal dynamics
[25]. Ultimately, we would like to deploy our facial expression
analysis system in such real-world situations. As mentioned in
the introduction, very few works have focused on the problem
of spontaneous facial expression recognition so far, and results
have been quite limited (see [86] for an overview).

We tested our system on the DS118, Triad, and MMI-db
part II databases (see section V). We trained the system on all

TABLE VII
F1-MEASURE FOR CROSS-DATABASE AU DETECTION PER VIDEO. THE

SYSTEM WAS EITHER TRAINED ON244 EXAMPLES FROM THE
MMI-FACIAL EXPRESSIONDATABASE AND TESTED ON153EXAMPLES

FROM THE COHN-KANADE DATABASE VICE-VERSA.

AU Train MMI Train CK AU Train MMI Train CK
1 0.661 0.255 12 0.635 0.400
2 0.762 0.467 15 0.372 0.229
4 0.541 0.414 20 0.277 0.341
5 0.447 0.149 24 0.333 0.292
6 0.429 0.571 25 0.799 0.746
7 0.129 0.211 26 0.293 0.203
9 0.495 0.286 27 0.589 0.591
10 0.232 0.109 45 0.442 0.622
Average results: 0.465 0.368

available posed data from the MMI-db part I. On spontaneous
data of smiles, taken from the Triad database and the MMI-
db part II, AU6 was recognised correctly 77% of the times,
AU12 in 54% and AU13 in 85% of the videos. The reason
why AU12 has a rather low classication rate is that AU12 and
AU13 are very similar. Both involve movement of the mouth
corners. The difference lies in the horizontal movement: with
AU12 the mouth corners move further out while with AU13
the mouth corners are pulled up sharply.

On the DS118 database we tested for brow-related AUs only
(i.e. AU1, AU2, and AU4). We achieved a 50.4% classification
rate for AU event detection (i.e. detecting the presence of an
AU within a video). Although this is not a very high result,
it is promising considering that we were not able to use any
spontaneous training data. Other researchers reported between
26% [8] and 76% [16]classification rate for brow actions in
widely varying datasets.

F. Emotion detection evaluation

Detection of six basic emotions in posed facial expression
databases is considered to be largely solved, especially when
the subject being tested is known and was part of the training
data. Yet for optimal comparibility with existing automatic
facial expression recognition works, we evaluate our six basic
emotion detection system on 171 videos taken from the Cohn-
Kanade database. The videos were selected with the criterium
that two coders were able to attain a consensus on what
emotion was shown in that video. This is a stricter ground
truth criterium than using the ground truth provided with the
Cohn-Kanade database. This strategy was used to reduce the
label error in the dataset.

Table VIII shows the confusion matrix and classification
rates of all emotions. Emotions are detected per video, i.e.
the table shows event detection results. From the results, we
have to conclude that it is very hard to distinguish between
the emotions angry and sadness. The reason for this is that
both expressions often incur similar brow movements. From a
geometric point point of view, the difference is in the down-
ward motion of the lip corners, and unfortunately that motion
can be very subtle. It also shows that fear is often confused
with either disgust or happiness. While the confusion with
fear is common, the confusion with happiness is somewhat
surprising. Again, the explanation lies in the displacement of
the lip corners. The motion of the lip corners caused by AU20
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TABLE VIII
CONFUSION MATRIX OF EMOTION DETECTION ON THECOHN-KANADE

DATABASE. ROWS INDICATE GROUND TRUTH, COLUMNS DETECTED
EMOTIONS.

ANGR DISG FEAR HAPP SADN SURP
ANGR 2 3 2 0 9 1
DISG 1 19 1 1 4 1
FEAR 1 4 15 5 2 1
HAPP 1 0 3 33 0 1
SADN 4 2 1 0 16 1
SURP 0 1 1 1 0 34
Cl. rate 0.118 0.704 0.536 0.868 0.667 0.919

and AU12 can be quite similar, especially if the tracking is
slightly off. We believe that this is an indication that four
points is insufficient to capture the different shapes of the
mouth. Moving towards 8 or more points would allow a
geometric based approach to better distinguish between AU12,
AU20, and AU15, which we believe are the main culprits in
the confusions made by our emotion detection system.

G. Performance comparison with previous works

Although there is still no standardised method for evaluation of
automatic facial expression recognition systems, many works
have reported the performance of their system on one or more
publicly available databases. More specifically, many works
have used the Cohn-Kanade database [41], the MMI-Facial
Expression Database [61] or both. Therefore a comparison is
possible to a certain extend, although using the same database
does not guarantee that the systems were trained and tested
with the same number of videos from each database, nor does
it guarantee that the same rules for e.g. the optimisation of
parameters were adhered to.

Table IX gives an overview of the existing systems that
report their performance in terms of AU event detection on
either the Cohn-Kanade database, the MMI-Facial Expres-
sion Database or both. For [84] we are unable to report
a classification rate on either database, as the authors only
mention the achieved area under the ROC curve in their
paper. As we can see our proposed approach outperforms all
other methods on the MMI-Facial Expression Database, and
of the methods capable of detecting temporal segments it also
scores the highest on the Cohn-Kanade database. Although
this is not a comparison in a controlled experiment, it still
shows that the proposed system performs well compared
to existing approaches. It also shows that appearance based
approaches do not necessarily outperform geometric feature
based approaches.

VII. C ONCLUSIONS

Accurate, fully automatic facial expression analysis would
have many real-world applications. In this work we have
shown that not only fully automatic highly accurate AU
activation detection based on geometric features is possible,
but also that it is possible to detect the four temporal phases
of an AU with high accuracy and that geometric features are
very well suited for this task. The proposed system was tested
extensively on multiple databases, and was shown to generalise

well when trained on data from one database and tested on data
from another. This being said, generalisation to completely
novel data is not possible yet without some loss of accuracy.
At this point, a major limitations of the system is that it can
only recognise facial expressions as long as the face is viewed
from a pseudo-frontal view. If the head has an out-of-plane
rotation greater than 20 degrees, the system will fail. Thisis
something we wish to address in our future research.
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