JOURNAL OF BTEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002



JOURNAL OF BTEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002
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Abstract—Past work on automatic analysis of facial expressions
has focused mostly on detecting prototypic expressions ofabic
emoations like happiness and anger. The method proposed here
enables detection of a much larger range of facial behaviour

Two main streams in the current research on automatic anal-
ysis of facial expressions consider facial affect (emgtide-
tection and facial muscle action detection [55], [59], [18B].

by recognising facial muscle actions (action units, AUs) it
compound expressions. AUs are agnostic, leaving the infaree
about conveyed intent to higher order decision making (e.g.
emotion recognition). The proposed fully automatic methodnot
only allows recognition of 22 AUs, but also explicitly moded their
temporal characteristics (i.e., sequences of temporal segnts:
neutral, onset, apex, and offset). To do so it uses a facial

These streams stem directly from the two major approaches
to facial expression measurement in psychological rebearc
[15]: message and sign judgment. The aim of the former is
to infer what underlies a displayed facial expression, sagh
affect or personality, while the aim of the latter is to déser

the surface of the shown behaviour, such as facial movement

point detector based on Gabor-feature-based boosted claisrs ©Of facial component shape. Thus, a frown can be judged
to automatically localise 20 facial fiducial points. These pints as anger in a message-judgment approach and as a facial
are tracked through a sequence of images using a method movement that lowers and pulls the eyebrows closer together
called part|c_|e filtering wnh fa}ctonzed likelihoods. To encoqle in a sign-judgment approach. While message judgment is all
AUs and their temporal activation models based on the trackig ; . . : . R
data, it applies a combination of GentleBoost, Support Vear about |nte.rpretat|on,l sign judgment |§ agnos_tlc, independ
Machines, and Hidden Markov Models. We attain an average rom any interpretation attempt, leaving the inferenceuabo
AU recognition rate of 95.3% when tested on a benchmark set the conveyed message to higher order decision making. Most
of deliberately displayed facial expressions and 72% wherested facial expression analysers developed so far adhere to the
on spontaneous expressions. message judgment stream and attempt to recognise a small
Index Terms—Facial expression analysis, spatiotemporal facial set of prototypic emotional facial expressions such as ithe s

behaviour analysis, particle filtering, GentleBoost, SVM.

I. INTRODUCTION

ACIAL expressions synchronise the dialogue by means
brow raising and nodding, clarify the content and intent

what is said by means of lip reading and emblems like a winf

signal comprehension or disagreement, and convey mess
about cognitive, psychological, and affective states ,[F&}].
Therefore, attaining machine understanding of facial bighe
would be highly beneficial for fields as diverse as computi
technology, medicine, and security in applications likebaant
interfaces, empathetic tutoring, interactive gaminggagsh on
pain and depression, health support appliances, morgtofin
stress and fatigue, and deception detection. Because of
practical importance [32], [54], and the theoretical ipttrof
cognitive and medical scientists [13], [85], machine asisly
of facial expressions attracted the interest of many rebeas
in computer vision and Al.
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basic emotions proposed by Ekman [24], [59], [70], [86]. Eve

though automatic recognition of the six basic emotions from

face images and image sequences is considered largelygsolve
ports on novel approaches are published even to date (e.g.

?], [44], [50], [62]). Exceptions from this overall statd the

rt in machine analysis of human facial affect include few

3 gative efforts to detect cognitive and psychologicatest

t
af@(@ i : .
ike interest [39], pain [4], [49], and fatigue [34].

In sign judgment approaches [14], a widely used method
r manual labelling of facial actions is the Facial Action
ding System (FACS) [27]. FACS associates facial expres-
sion changes with actions of the muscles that produce them.
It defines 9 different action units (AUs) in the upper face,
in the lower face, and 5 AUs that cannot be classified as
elonging to either the upper or the lower face. Additiopall
defines so-called action descriptors, 11 for head posiéidar
eye position, and 14 additional descriptors for misceltarse
actions (for examples, see Fig. 1). AUs are considered to be
the smallest visually discernible facial movements. FAGS a
provides the rules for recognition of AUs temporal segments
(onset, apex and offset) in a face video. Using FACS, human
coders can manually code nearly any anatomically possible
facial expression, decomposing it into the specific AUs and
their temporal segments that produced the expression. As
AUs are independent of any interpretation, they can be used
as the basis for any higher order decision making process
including recognition of basic emotions [27], cognitivatsss
like (dis)agreement and puzzlement [21], psychologicatest
like pain [22], and social signals like emblems (i.e., crdtu
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specific interactive signals like wink, coded as left or tigh
AU46), regulators (i.e., conversational mediators likelenge

of a look, coded by AUs for eye position), and illustrators
(i.e. cues accompanying speech like raised eyebrows, codec
as AU1+AU2) [26]. Hence, AUs are extremely suitable to
be used as mid-level parameters in an automatic facial be-
haviour analysis system as they reduce the dimensiondlity o
the problem [72] (thousands of anatomically possible facia
expressions [26] can be represented as combinations of 3z
AUS).

It is not surprising, therefore, that automatic AU coding
attracted the interest of computer vision researcherdoHis
ically, the first attempts to encode AUs in images of faces
in an automatic way were reported by Bartlett et al. [9],
Lien et al. [47], and Pantic et al. [60]. The focus of the
research efforts in the field was first on automatic recogmiti
of AUs in either static face images or face image sequences
picturing facial expressions produced on command. Several
promising prototype systems were reported that can rezegni
deliberately produced AUs in either (near) frontal view,[7]
[58], [69] or profile view face images [57], [58] (for a survey
of the past work on the topic see [55], [70]). Fig. 2. Outline of the proposed fully automated system faogmition of

One of the main criticisms that these works received fromus and their temporal activation models.
both cognitive and computer scientists, is that the metlaoes
not applicable in real-life situations, where subtle chesm
facial expression typify the displayed facial behaviouhea . . .
than the exaggerated AU activations typical of delibeyatel87]) O in order to report on the intensity of (a component of

displayed facial expressions. Hence, the focus of the reiseal® Shown facial expression (e.g. [48], [87]), but not inerd
in the field started to shift towards automatic AU recogmitiot© @nalyse explicitly the properties of facial actions teme

in spontaneous facial expressions (produced in a reflex-lfynamics. The only work reported up to date that addresses
manner). Just recently, few works have been reported problem of modelling semantic and temporal relatiqueshi
machine analysis of AUs in spontaneous facial expressitm d3€tWween AUs forming a facial expression, is that by Tong et al
8], [16], [76], [77] (for a survey, see [86]). These methodk/1]- N_ote, however, that this work does not report on gxpllc
employ probabilistic, statistical, and ensemble learrtiech- analysis of temporal segments of AUs (g.g., the duration and
niques, which seem to be particularly suitable for autoafi’® SPeed of onset and offset of the actions).
AU recognition from face image sequences [8], [86], and are Exceptions from this overall state of the art in the field
either feature- or appearance-based. include three studies on automatic segmentation of AU acti-
Automatic recognition of facial expression configuratigm ( vation into temporal segments (neutral, onset, apex, Qffse
terms of AUs constituting the observed expression) has beépntal- [43], [56] and profile-view [57] face videos. The vks
the main focus of the research efforts in the field. Howevdty Pantic and Patras [56], [57] employ rule-based reasoning
both the configuration and the dynamics of facial expressiofnd geometry based features to encode AUs and their temporal
(i.e., the timing and the duration of various AUs) are impatt Segments, while Koelstra and Pantic [43] use appearaneelbas
for interpretation of human facial behaviour. In fact, théeatures and Hidden Markov Models.
body of research in cognitive sciences, which argues theat th Fig. 2 outlines our fully automatic detector of 22 AUs and
dynamics of facial expressions are crucial for the integiren their temporal activation models (from in total 27 upper and
of the observed behaviour, is ever growing [1], [68]. Faciddwer face AUs defined in FACS [27]). This set of 22 AUs
expression temporal dynamics are essential for categiorisa contains all upper and lower face AUs that can be robustly
of complex psychological states like various types of paid a recognized based upon movements of 20 facial characteristi
mood [22]. They are also the key parameter in differentiatigoints shown in Fig. 2. Although this set is incomplete, the
between posed and spontaneous facial expressions [28]system can be used to encode all but three AUs necessary
spite of these findings, the vast majority of the past woffler recognition of basic emotions [27], all AUs necessary fo
in the field does not take dynamics of facial expressiofiecognition of pain [22], all but one AUs necessary to detect
into account when analysing shown facial behaviour. Sorg#tielessness [21], and 2/3 of the AUs involved in speech [27]
of the past work in the field has used aspects of tempof&ee Table 1 for a detailed list).
dynamics of facial expression such as the speed of a faciallhe method operates under the assumption that the first
point displacement or the persistence of facial parametigss frame of an input video sequence shows a non-occluded,
time. However, this was mainly done either in order to inseeaexpressionless face in near-frontal view. While the method
the performance of facial expression analysers (e.g. [33], can handle occlusions like facial hair and glasses in génriera
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Fig. 1. Examples of upper- and lower-face Action Units (Adsfined in the Facial Action Coding System (FACS).

. . TABLE |
cannot handle large amounts of facial hair and/or sungdasse  Aus periNED INFACS [27], THOSE THAT OUR SYSTEM CAN

covering one or more facial components completely. AlSO, AUTOMATICALLY ENCODE, AND LISTS OF AUS INVOLVED IN SOME

while it can handle brief interim occlusions (e.g., by hand) EXPRESSIONS
it cannot handle an occluded face in the first frame. After — AUs T T TS T
the face region is detected in the first frame, we employ a : e o 101115 1315 16. 1718, 20
facial point detector based on Gabor-feature-based baboste 22, 23, 24, 25, 26, 27, 28; other: 9, 21, 31, 37, 38
classifiers to automatically localize 20 facial fiducial pisi our Séfstffm 1,2,4,56 7,9 10, 12, 13, 15, 16, 18, 20, 22, 24,
in the detected face region. To track these points in theofest —rcoces: ‘215'523’ % ﬁ ;52’ ;g ST
the sequence, we exploit a tracking scheme based on particlejisgust: 9 10, 16, 17, 25, 26
filtering with factorized likelihoods. Using the trackingtd, Lear:' flj, %24,22, 20, 25, 26, 27
. . N appiness: , 12,

we first d_etect the presence (i.e. activation) of 22 AUs. We _do adness: 14 6 11, 15, 17
so0 by using a combination of GentleBoost ensemble learning syrprise: 1,2, 5, 26, 27
and Support Vector Machines. For each activated AU, we pain: 4,6,7,9, 10, 12, 20, 25, 26, 27, 43

; At luelessness] 1, 2, 5, 15, 17, 22
determine the temporal activation model as a sequence ofgpeech: 10. 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28

temporal segments (neutral, onset, apex, offset). Tonattai
this, we combine GentleBoost, Support Vector Machines, and
Hidden Markov Models.

The authors have developed three earlier versions of the
AU detector presented in this paper, a 2005 version [78]he first step in any facial information extraction process i
a 2006 version [73], and a 2007 version [74]. The 200§ce detection, i.e., identification of all regions in theise
version was aimed at automatic recognition of 15 AUs, it wd8at contain a human face. The second step in facial expressi
not fully automated, and it did not deal with any temporgdnalysis is to extraageometric feature¢facial points, shapes
information. The 2006 version of the system was aimed @t facial components) and/cappearance featuregdescrip-
automatic recognition of 15 AUs and their temporal segmerit@ns of the texture of the face such as wrinkles and furrows)
(rather than their temporal activation models). Diffehefiom ~ The work presented here is a typical example of a geometric-
previous versions, the current version is fully automated afeature-based method. Typical examples of appearanegtbas
aimed at recognition of 22 AUs and their temporal activatioffethods are those of Bartlett et al. [8], [23], [48], who used
models. The system described in this work is the first able &aPor filters, or of Anderson & McOwan [2], who used a
explicitly model the temporal dynamics of AUs in terms ofolistic, monochrome, spatial-ratio face template, arahgi
its temporal phases. Also, this work describes extensists te€t al. who used Local Binary Patterns, Local Phase Quantisa-
on databases of posed facial expression data as well astiBR, and their temporal extensions [38]. Typical examies
spontaneous facial expression data. To allow future work fyPrid, geometric- and appearance-feature-based metreds
evaluate their methods against the one proposed here, e #ipse of Tian et al. [69], who used shapes of facial companent

make frame-by-frame labelling of the temporal AU segmen@d transient features like crow-feet wrinkles, or of Zhang
publicly available (see section V). [87], who used 26 facial points and the same transient featur

. . . ., as used in Tian et al. [69].
The outline of the paper is as follows. Section Il provides

an explanation of the employed facial point detector. $ecti .

Il presents the utilised facial point tracking scheme.tdec A- Face Detection

IV explains the methodology used to detect AUs and thdiecause of its practical importance and relevance to face
temporal activation models. Section V describes the detase=cognition and, in turn, for security, face detection rese a

we used in our validation studies, which are discussed lot of attention. Numerous techniques have been developed
section VI. Section VII concludes the paper. [36], [46], [83]. However, virtually all of them can detect

II. FACIAL POINT DETECTION
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Face detection Coarse ROI detection Iris/mouth detection

only (near-) upright faces in (near-) frontal view. Most o
these methods emphasise statistical learning techniquets
use appearance features, including the real-time Viotego
face detector [79], which is arguably the most common
employed face detector in automatic facial expressioryaisl

The Viola-Jones face detector consists of a cascade of cl
sifiers trained by AdaBoost. Each classifier employs infegt
image filters, which remind of Haar Basis functions and ce
be computed very fast at any location and scale. This
essential to the speed of the detector. For each stage in
cascade, a subset of features is chosen using a featuréselel
procedure based on AdaBoost. We employed a version of this , o o _
face detector [29], which was trained on 5000 faces and 8065‘ 3. Outline of the fully automated fiducial facial poirgtdction method
non-face images. For images of faces in near-frontal view, i
performs very well; for example, when tested on the CK-db
[41], it attained a 100% detection rate [80]. The C++ code &karch is performed. At each location of the ROl Gabor-
the face detector runs at about 500Hz on a 3.2-GHz Pentitfiiter responses are calculated and fed into the GentleBoost
4, based point detectors. The location with the highest output
determines the predicted point location.

Typical results of this algorithm are illustrated in Fig.The
point detection algorithm is tolerant to changes in illuation
Methods for facial feature point detection can be classified as |0ng as they remain |Oca||y constant. If illumination is
either texture-based methodsnodelling local texture around yneven in the direct neighbourhood of a facial point the poin
a given facial point) oshape-based metho@shich regard all detector may fail for that point. A compiled version of the
facial points as a shape that is learned from a set of labellggint detector is available from the authors’ webpages. The

faces). A typical texture-based methods is that of Holdgbn-optimised Matlab code of our face point detector runs at
& Owens [37], who used log-Gabor filters. Typical textureg.03Hz on a 3.2-GHz Pentium 4.

and shape-based methods are those of Chen et al. [11], who
applied AdaBoost to determine facial feature point cangisla
for each pixel in an input image and used a shape model
as a filter to select the most likely position of feature pint
and of Cristinacce & Cootes [19], [20], who experimentedfter the fiducial facial points are found in the first frameg w
with various facial point template representations andovar track their positions in the entire image sequence. Stahdar
search algorithms for finding the best matching shape. optical flow techniques [5], [6], [53] are commonly used for
Although these detectors can be used to localise the f@ial point tracking in facial expression analysis (etgnsdlard
facial characteristic points illustrated in Fig. 3, nonefpam Lucas-Kanade optical flow [51] is used in [16], [47], [69] and
the detection with high accuracy. They usually regard tren "inverse compositional” extension to this is used in }82]
localisation of a point to be successful if the distance leetww ~ To omit the limitations inherent in optical flow methods,
the automatically labelled point and the manually labellesich as the accumulation of error and the sensitivity to
point is less than 30% of the true inter-ocular distai¢e noise, occlusion, clutter, and changes in illuminatiormeo
(the distance between the eyes, more specifically between thsearchers used sequential state estimation technimtrask
inner eye corners). However, this is an unacceptably lamge e facial points in image sequences. Both, Zhang and Ji [874], an
in the case of facial expression analysis, since subtleggmnGu and Ji [34] used facial point tracking based on a Kalman
in the facial expression will be missed due to the errors fiitering scheme. The derivation of the Kalman filter is based
facial points localisation. on a state-space model governed by two assumptions [40]:
We therefore adopt the Fiducial Facial Point Detector pr@) linearity of the model and (ii) Gaussianity of both the
posed by Vukadinovic and Pantic [80]. When used to initealisdynamic noise in the process equation and the measurement
a point tracking algorithm, this method is accurate enougioise in the measurement equation. Under these assumptions
to allow geometric-feature based expression recognitsee ( derivation of the Kalman filter leads to an algorithm that
the results seciton VI). The outline of the developed, fullpropagates the mean vector and covariance matrix of the
automated method for detection of the target 20 facial aharatate estimation error in an iterative manner and is optimal
teristic points is illustrated in Fig. 3. The method firstelgs in the Bayesian setting. To deal with the state estimation
the face and divides the face region into 3 areas that containnonlinear dynamical systems, the extended Kalman filter
the left eye, the right eye, and the mouth. The locatios been proposed, which is derived through linearisatfon o
of these facial components are approximated by analysitige state-space model. However, many of the state estimatio
the histograms in the regions. Based on this approximaeblems, including human facial expression analysis, are
location, search regions are defined for every point to deteconlinear and non-Gaussian. To overcome the limitations of
In these regions of interest (ROI) a sliding window approadhe classical Kalman filter and its extended form in general,

GentleBoost Classification

B. Characteristic Facial Point Detection

IIl. PARTICLE FILTERING WITH FACTORIZED
LIKELIHOODS FORFACIAL POINT TRACKING
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particle filters have been proposed. For a detailed overefewpolymorphic aspect is necessary as many areas around facial
the various facets of particle filters, see [3]. points change their appearance when a facial action occurs
The tracking scheme that we adopt is based on parti¢keg. the mouth corner in a smile).
filtering. The main idea behind particle filtering is to maiimt
a set of solutions that are an efficient representation of the
conditional probabilityp(a|Y’) , where « is the state of a
temporal event to be tracked given a set of noisy obsenation ) )
Y = {y1,...,y~,y} upto the current time instant. This mean&ontractions of facial muscles alter the shape and locatfon
that the distributionp(a|Y) is represented by a set of pairghe facial components. Some o_f thesg chang_es are obser\{able
{sk, ™} such that ifs, is chosen with probability equal to from the movements of 20 ff’;\mal points, which we track in
5, then it is as ifs;, was drawn fromp(a|Y’). By maintaining the_ input sequence. To cIaSS|fy_ the movements o_f the tracked
a set of solutions instead of a single estimate (as is done Rints in terms of AUs and their temporal activation models,
Kalman filtering), particle filtering is able to track multadal Cchanges in the position .Of the points over time are first
conditional probabilitiesp(a]Y), and it is therefore robust 'epresented as a set of mid-level parameters.
to missing and inaccurate data and particularly attradtive
estimation_and_pre_diction in nonlinear, non-Gaussiaresgst A Registration and smoothing
In the particle filtering framework, our knowledge about the ) .
posteriori probability p(a|Y) is updated in a recursive way. Before thg m|d—_level pgrameters can be calculated,_ a!d rigi
Several researchers used the condensation algorithmNfd motions in the input sequence must be eliminated.
track facial features in face image sequences (e.g., [3 therwise, we would not be certain whether the value of a
[52]). However, the algorithm has three major drawbackgVen parameter had changed due to facial muscle contractio
The first is that a large amount of particles that result frof due to rigid head movement. We register each frame of
sampling from the proposal densiaga|Y ~) might be wasted the input image sequence with the f_|rst fr_ame using an af_ﬁne
because they are propagated into areas with small |ikdihogapsformatlo@1 based on 3 referential points: th_e nasal spine
Secondly the scheme ignores the fact that while a parti@@int and the inner corners of the eyes (see Fig. 3). We use
Sk =< Sp1, k2, .-, ssn > might have low likelihood, parts these points as the referential points because contractibn
of it might be close to the correct solution. Finally, thdh€ facial muscles do not affect these points. _
estimation of the particle weights does not take into actoun 'Nter-person variations in size and location of the facial
the interdependencies between the different parts. of points are minimised by applying an affine transformatign
The extension to Condensation algorithm that we adopt hdfe€Very tracked facial point in each frani, is obtained by
for facial point tracking is Particle Filtering with Factsed CcOmparing the locations of the referential points of a given
Likelihoods (PFFL) proposed by Patras and Pantic [63]. TRebject in the f|r_st frame with the correspondmg p0|r_1ts ina
PFFL algorithm addresses all of the aforementioned probleff!ected expressionless standard face (the choice of fecsu
inherent in the Condensation algorithm by extending i@ be used as th|s_ standard face does not!nf_luencg the E))ocess
Auxiliary Particle Filtering, which addresses the firstwlbmck 1hUS, after tracking any of 20 characteristic facial points
of the Condensation algorithm [65], to take into account tHfi! input sequence containirig frames, we obtain a set of
interdependencies between the different parts of the state €00rdinates< py, ..., p;. > corresponding to the locations of
The PFFL tracking scheme assumes that the statan be the pertinent poinp in each ofk frames. Then, the registered
partitioned into sub-states; (which, in our case, correspondco0rdinates; are obtained as:
to the different facial points), such that=< a4, ..., a, >.
At each frame of the input image sequence, we obtain a pi(t) = To(Ta(pi(t))) 1)
particle-based representation of«|Y") in two stages. First, . . . . . .
each partitiono; is propagatedp(;n|d zavaluated independentl%b"ézgg] gliézgli?tfnq(:ﬁfshggugéfg;;?uttﬁf Z'r)]( ddtﬁgr?:r;;n-
by applying one complete step of the Auxiliary Particle Fil: v . Wi, al
tering algorithm. This creates a particle-based reprasient ing two can be handled partially. All three head translation
of p(as|Y). In other words, at the first stage of the PI:|:|£Jlegrees of freedom can _be handled completely, as vyell as all
tracking scheme, each facial points tracked for one frame 'n;pligzge?i ;O;t('joﬂzagge':ﬁfiar?]”l))'e%uéa?: v%li?;Zéolﬁ as
independently from the other facial points. At the secor{ﬁ ' apr . Y ) ong
stage, interdependencies between the sub-states areiéien € rotation in these dimensions is smaller than approxiyat
account by means of a scheme that samples complete partigl (:]eg:eesk. d points ret d by the PEEL track tai
from the proposal distributiog(«), which is defined as the € fracked points returned by the racker contain

product of the posteriors of eaeh given the observations,i.e.,rand_Om _nois_e accurring due to the probabilistic nature_ of
g(a) = [ p(as|Y). Finally, each of the particles produce article filtering. Therefore, we apply a temporal smoaghin

in this way is re-weighted by evaluating the joint probapili ilter to arrive at a registered set of poini% that contains

IV. RECOGNITION OF ACTION UNITS AND THEIR
TEMPORAL ACTIVATION MODELS

p(ala™) so that the set of particles with their new Weightgess noise.
represents tha posteriori probability p(a|Y"). tw,
The adopted observation model [64] is robust to changes pi(t) = ! A 2)

in illumination and it can deal with large occlusions. This 2ws +1 &
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Fig. 4. Typical, first-effort results of the proposed fagimint detector for samples from (left to right): the Cohasiade database, the MMI database
(posed-expressions), two images of the MMI database (apeantis-expressions), the Triad dataset, and two imagesédroell phone camera.

wheret denotes the frame number apidandp™ are elements  First, we compute features that describe how much the
of the collectionsP’ and P,, respectively. The window side- feature values have changed, relative to their value at ithig fi
lobe sizew; to which we apply the temporal smoothing wasieutral frame. We do so using théference functiom:(x(t)):
chosen after visual inspection of the smoothed tracketisudu

For the experiments discussed in this wouk, = 1 has been k(z(t)) = z(t) — z(0) (7)

chosen. . . . . _—
where  is any time sequence. Using this definition we

) ) ) compute the following features:
B. Mid-level Parametric Representation
Our mid-level parametric representation is inspired by our < f5(t) ... fs(t) >=< k(f1(t)) ... (fa(t)) > (8)
earlier work [73], [74]. The most basic features that can be

computed from the tracked point information are the pos#io . C i - .
. . . . ven time instanceé, we compute their first derivative with
of the points and the distances between pairs of points. \e . . . i
. . . respect to time. For discretely sampled data, this becomes:
also compute the angle that the line connecting two points
makes with the liney = 0 (the horizontal axis). d(x(t))
For each poinp), wherei = [1 : 20], the first two features o = v(t) —a(t - 1)) €)
are simply itsx andy position. We compute the featurgs
and f, for every framet:

To determine the rate of change of the feature values at a

whereuv is the sampling rate of the corresponding recording.
We use this definition to compute the features:

F1(pi(8) = P (1) B < fo(t). fralt) S=< (i (0)/dt .. d(fa(1))/dt > (10)

L) =pl (¢ 4
(1)) pl’y() N @ Finally, we calculate three additional temporal features.
where p; . and p; . are the z- and y-positions of a Within a certain periodv, we fit the values of the mid-level
point,respectively. For all pairs of poin{g;, p;}, i # j we features parameterf, j € [1 : 4] to a second-order polyno-

compute in each frame two features: mial: f;(t) = at>+bt-+c. In this functiont is the frame number
at the centre ofy;. In our experiments the temporal windawy
was 7 frames long, which we based on research findings that
Fs (i), 25(8)) = [Ipi() — D (1)l (5) g g

suggest that temporal changes in neuromuscular faciaitgcti
Py, () =, (1) last from 1/4 of a second (a blink) to several minutes (a jaw
/ / _ Y 1Y
fa(pi(®), pj(1)) = arctan <p; L) =1, (1) © clench) [27], and a framerate of 25 Hz of our data. Then, for
eachd, and for eachf;,j = [1 : 4], we define the following

wherearctan is the modified inverse tangent function thafiq.jevel parameters relating to temporal changes in theeva
corrects for the quadrant a point is in (i.e. solves the ageat ¢ ine mid-level parameters f, ... fs >:

problem). Featuref; describes the distances between two

pointsp; andp’, and featuref, describes the angle that the

line connectingy; with p; makes with the horizontal axis. Jro+345(f5) = @, fr14345(fj) = b, fratasi(f5) = ¢ (11)

ab-l(;[f tLeeatuézﬁ) r{;’of thé 4 >_ctonttah|n (cj)_nlty the 'ngotr\z]at'o?hln total this results in a 2520 dimensional feature vectar fo
P pomts, the distances betwedn &, ., frame of our input image sequence.

and the angles they make with the horizontal at the current

instance in time. No information about the relation of these ) ) ] o

measurements to their values in a frame displaying a neutral Facial Action Unit Classification

expression is encoded. Neither do they encode any infoomatOur approach to AU recognition from input image sequences

about the rate of change of the values of these featuresidrbased on Support Vector Machines (SVMs). SVMs are very

consecutive frames (e.g. the velocity of a point). To captuwell suited for this task because the high dimensionalitshef

this temporal information, we create a new set of featurésature space (representation space) does not affectathang

based on the single frame based features described aboveime, which instead depends only on the number of training
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examples. Furthermore, SVMs generalise well even when fewl) Multi-class SVMs :In the first approach we employ
training data are provided. However, note that classificatia one-versus-one strategy to multi-class SVMs (mc-SVMs).
performance decreases when the dimensionality of therieatbor each AU and every pair of temporal segments we
set is far greater than the number of samples available tmin a separate sub-classifier specialised in the discami
the training set [18]. The datasets that we use in this stutgn between the two temporal segments. This results in
consist typically of less than 250 image sequences of whigh|(|C| — 1)/2 sub-classifiers that need to be trained, with
10-20 are positive examples with the remainder being negatC' = {neutral, onset, apex, offgetand | - | the cardinality
examples (see section V). Given that the dimensionalithef tof a set. For each frame of an input sequence, every sub-
utilised feature set is 2520 (see section IV-B), over-fiftio  classifier returns a prediction of the classe C, and a
the training set is rather probable. One way to address thigjority vote is cast to determine the final outpytof the
problem is to reduce the number of features to be usednm-SVM for the current frame. To train the sub-classifiers,
train the SVM. We do so by means of GentleBoost, which ise apply the following procedure using the same set of mid-
employed in this stage of the system’s processing as a &eatlevel parameters that was used for AU detection (see section
selection scheme [31]. IV-B). For each classifier separating classgs:; € C,i # j

An advantage of feature selection by a boosting algorithwe apply GentleBoost, resulting in a set of selected feature
is that it tries to optimise the actual classification prable G, ;. We use@, ; to train the sub-classifier specialised in
instead of reducing the variability in the data overall, @his discriminating between the two temporal segments in qoesti
done by feature reduction techniques such as PCA. As showi2) Hybrid SVM-HMM: In the second approach, we pro-
by Littlewort et al. [48], when an SVM classifier is trainedpose to apply hybrid Support Vector Machine-Hidden Markov
using the features selected by a boosting algorithm (they usModels (SVM-HMMSs) to the problem of AU temporal model
AdaBoost in their study), it outperforms both the SVM and theetection. Traditionally, HMMs have been used very effec-
boosting classifier applied directly to facial expressiatad tively to model time in classification problems. But while

The implementation of the feature selection has been daie sequence of the temporal phases of a facial action over
as follows. As the weak classifier, we use a linear regressitime can be represented very well by HMMs, the HMM
function. For everyd € D, where D is the set of 22 AUs suffers from poor discrimination between temporal phases a
that our system can recognise in an input sequence, we applgingle moment in time. The emission probabilities, which
GentleBoost resulting in a set of selected featutgs To are computed for each frame of an input video for the
detect 22 AUs occurring alone or in combination in the currekiMM hidden states, are normally modelled by fitting Gaussian
frame of the input sequence (i.e., to classify the curraarh® mixtures on the features. These Gaussian mixtures are fitted
into one or more of thel € D), we train a separate SVM to using likelihood maximisation, which assumes correctrogss
detect the activity for every AU. More specifically, we uSg the models (i.e. the feature values should follow a Gaussian
to train and test the SVM classifier for the relevant AU (itee  distribution) and thus suffers from poor discriminatior0]1
relevantd € D). The kernel we have chosen for the SVM waMoreover, it results in mixtures trained to model each class
the radial basis function (RBF) kernel, as this performest beand not to discriminate one class from the other.
in a pilot study comparing the RBF, polynomial, and linear SVMs on the other hand are not suitable for modelling
kernels. For each fold of the validation procedure (secin time, but they discriminate extremely well between classes
the SVM parameters were determined independently of the te)sing them as emission probabilities might very well result

data in separate cross validation loops. in an improved recognition. We therefore again train one-
o _ . . versus-one SVMs to distinguish the temporal phases neutral
D. Temporal Activation Models of Facial Action Units onset, apex, and offset, just as described in section I\WI..

To encode the temporal segments of the AUs found to Heen use the output of the component SVMs to compute the
activated in the input image sequence, we proceed as followsission probabilities. In this way we arrive at a hybrid SVYM
An AU can be either in (i) the onset phase, where the muscld#1M system. This approach has been previously applied with
are contracting and the appearance of the face changes assthieess to speech recognition [45].
facial action grows stronger, or in (ii) the apex phase, wher HMMs work in a probabilistic framework. On the other
the facial action is at a peak and there are no more changedand, the output of an SVM is not a probability measure. The
facial appearance due to this particular facial actionnd(ii)  (unsigned) decision function value outpitz) of an SVM is
the offset phase, where the muscles are relaxing and the facdistance measure between a test pattern and the separating
returns to its neutral appearance, or in (iv) the neutrabphahyper plane defined by the support vectors. There is no clear
where there are no signs of activation of this particulaiafac relationship with the posterior class probabilitfy = +1|x)
action. Often the order of these phases is neutral-onsst-apthat the patterm: belongs to the clasg = +1. However, Platt
offset-neutral, but other combinations such as multiglexa proposed an estimate for this probability by fitting the SVM
AUs are also possible. Note that AUs having multiple apicesitputh(xz) with a sigmoid function [66]:
are characteristic for spontaneous facial expressions [17

As every facial action can be divided into the four temporal 1
segments, we consider the problem to be a four-valued multi-P(¥ = +1|) = g(h(z), 4, B) = 5 T exp(Ah(z) + B)
class classification problem. In this paper, we compare two
approaches to detect an AU temporal model. The parametersl and B of eq.(12) are found using max-
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imum likelihood estimation of the SVM output on the samanalysis. All facial displays were made on command and the
data that is used for training each SVM. recordings were made under constant lighting conditions. T
As explained in section 1V-D1, we use one-versus-one mcertified FACS coders provided AU coding for all videos.
SVMs to distinguish between temporal phases. This approdoker-observer agreement was expressed in terms of Cohens
is to be preferred over the one-versus-all approach as # aikappa coefficient [12], which is the proportion of agreement
to learn the solution to a more specific problem, namelgbove what would be expected to occur by chance. The
distinguishing between two specific classes. This is in limaean kappa for inter-observer reliability was 0.82 for AUs
with our idea of using SVMs for high discriminative powerat apex. In the publicly available version of this databdme t
between classes and HMMs to model time. expressions are shown until the beginning of the apex phase.
Our (fully observed) HMM consists of four states, one for The MMI facial expression database has five parts (see
each temporal phase. From each SVM we get, using Plaf5]). Two FACS experts AU-coded the database. The mean
method, pairwise class probabilitigs; = p(c;|c; or ¢;,x) of kappa for inter-observer reliability was 0.77 for AUs at ape
the class (HMM state}; given the feature vectae, and that The two coders made the final decisions on AU coding by
x belongs to either; or c¢;. These pairwise probabilities areconsensus and these final AU coding was used for the study

transformed into posterior probabilitiegc;|x) by presented in this paper. The mean kappa for inter-observer
reliability on Part | and Il of the database was 0.91 for AUs
° at apex.
pleile) =1/ Z —w - (-2 (13) In our study we use Parts I, Il, and IV. Parts | and Il
J=1j# contain deliberately displayed facial expressions: 23@@as
Finally, the posteriorg(c;|z) have to be transformed intodepicting facial expressions of single AU activation, ripié
emission probabilitieby applying Bayes' rule AU activations, and six basic emotions. Subjects were 52

adults of 19 to 62 years of age; 48% are female, 81% being
Caucasian, 14% Asian and 5% African. All facial displays
were made on command and the recordings were made under

where thea priori probability p(c;) of classe; is estimated by constant lighting conditions from frontal, profile, or duaw

the relative frequency of the class in the training data. orientation. The database contains a large amount of gispla
of single AU and AD activations. In turn, the MMI dataset

enables us to learn to recognise every AU independent of othe
_ ) _ AUs. Part IV of the MMI facial expression database contains
To detect the six basic emotions, we use the same set.Qfrently 65 videos of spontaneous facial displays. Subjec

features, described in section IV-B. We approach the problgyere 18 adults of 21 to 45 years old a; 48% female, 66%
as a dynamic multi-class event detection problem, i.e.Jere being Caucasian, 30% Asian and 4% African.

video we determine to which class it belongs. To do so, we Ty stimulate research into the automatic analysis of AU
train a mc-GentleSVM-HMM, with a similar structure as th‘iemporal dynamics, we have made the manual onset-apex-
AU temporal segment detector. Again, we train one vs. ORset coding of Part | and Il publicly available. They can
GentleSVMs to distinguish between pairs of emotions. Bgx downloaded from the MMI Facial Expression Database

cause the neutral expression is also present in every We0,\yepsite. This will also allow researchers to compare theirkw
also learn classifiers that distinguish between each ematid against the method proposed here.

the neutral expression. We thus learn 21 binary classiWées. The DS118 dataset has been collected to study facial

again use eq. 13 and 14 to determine the emission probedilihypression in patients with heart disease [67]. Subjecte we
used by the SVM. In contrast with the AU temporal segmeRE men and women with a history of transient myocardial

detector, we do not use the emotions as the state variablgghemia who were interviewed on two occasions at a 4-month

p(a]es) o p]gc(;'f) (14)

E. Emotion detection

instead we learn the optimal number of states. interval. They averaged 59 years of age (std = 8.24) and were
predominantly Caucasian. Spontaneous facial display® wer
V. UTILISED FACIAL EXPRESSION DATASETS video-recorded during a clinical interview that elicitedJ#

In our study, we used four different datasets: the Cohn-Kanarelated to disgust, contempt, and other negative emotiens a
database (CK-db) of volitional facial displays [41], the MMwell as smiles. The facial actions displayed in the data are
Facial Expression Database (MMI-db) [61], [75], the DS118ften very subtle. Due to confidentiality issues, this FACS-
dataset of spontaneous facial displays [67], and the Triadded dataset is not publicly available. Only the AU-coding
dataset of spontaneous human behaviour [42]. made by human observers and the tracking data were made
The CK-db was developed for research in recognition afvailable to us.
the six basic emotions and their corresponding AUs. TheThe Triad dataset was collected to study effects of alcohol
database contains over 2000 near frontal-view videos d@dlfacon behaviour of so-called social drinkers [42]. Subjectsene
displays produced by 210 adults being 18 to 50 years of8l,young Caucasian men, who were recorded simultaneously
69% female, 81% Caucasian, 13% African and 6% from othby three different cameras while drinking and interactifige
ethnic groups. From this database, 480 grayscale videas hescordings are long (over 15 minutes) and contain displéys o
been made publicly available. It is currently the most conaiverse facial and bodily gesturing. No AU coding of the data
monly used database for studies on automatic facial expressvas made publicly available.
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TABLE ||
VI. VALIDATION STUDIES AVERAGE CLASSIFICATION RATE OF POINT DETECTION ONMMI-FACIAL
We conducted five sets of experiments to evaluate the perfor- EXPRESSIONDATABASE COHN-KANADE DATABASE.

mance of different parts of the system: the facial point cteig | [ MMI | CK ]| [ MMI | CK |
the facial point tracker, the AU detector, the AU temporal A [ 0784 0920 G | 0.982] 0.950
activation model detector, and the six basic emotion detect Al ] 0.976 | 0.960 | G1 | 0.982 | 0.990
B | 0.976] 0.960 || H | 0.976 | 0.980
B1 | 0.952| 0.990 || HL | 0.976 | 0.970
A. Evaluations of Facial Point Detector D | 0569 | 0960 1 | 0.904 ) 0.970
_ DI | 0.802 | 0.950 || J | 0.928 | 0.910
We conducted two experiments to evaluate the performance E | 0928 | 0.960 || K | 0.964 | 0.930
of our facial point detector: one using the first frames of 300 '?:1 g-ggg 8-828 |\|7| g-ggi 8-838
randomly p|cked_ image sequences frqm the CK-db and the FT T 0982 T 0830 T N T 0.952 1 0.980
other using the first frames of the 244 image sequences from [Average for all points: [0.922] 0030

the MMI-db Part | that will later be used in AU detection. In
the experiment with the CK-db images, the proposed facial
point detector was evaluated by three-fold cross validatio _ Mean error for selected points
the experiment with the MMI-db images the point detector
was trained using all images from the CK-db and tested on
the MM-db images. This way we were able to test how well
the point detector generalises to entirely different data.

To evaluate the performance of the method, each of the
automatically located facial points was compared with the
manually annotated point. The error margin was defined in
terms of the inter-ocular distande; measured in a test image.
An automatically detected point displaceg pixels from the
true facial point is regarded as SUCCESSjf < 0.05Dj.
This means that, e.g., fab; = 100 pixels (a typical value
for the CK-db), a bias of up to 5 pixels for an eye corner is
regarded as SUCCESS. _ o _ )

Overall, we achieved an average recognition rate of 93% ﬂ[g 5. Mean and standard deviation of the tracking error niitsuof the

nter-ocular distanceD; of selected points. The error is computed over 100

the samples from the CK-db and 96% for the samples from th@eos taken from the MMI Facial Expression Database.
MMI-db for 20 facial feature points using the above desdatibe
evaluation scheme. The detection rates for each point aea gi
in Table Il. The low scores for points, D, and D1 (the innedetermined based on its location in the last frame in which
eyebrow points) are caused by a slight difference in defimiti the relevant point was visible. The distance metric for a&giv
used during manual annotation of the two databases: they wpoint p; is defined per frame as follows:
labelled slightly beneath the eyebrows for the CK-db, and on R
slightly above the eyebrows for the MMI-db. e(pi,j) = lpij — Pi»j”? (15)

Facial point detectors developed elsewhere attain 93% to Di(3)

96% average recognition rate for subsets of the 20 facialtpoiwhere D, (;) is the inter-ocular distance, measured at frame
illustrated in Flg 3 when Consideringi < 0.3D; as the rule of the test sequencs;, ; is the location of poinpi72' c [1 . 20]
for successful point detection (e.g., [11], [19], [30]). i€, in frame j determined by the tracking algorithm, agpe ; is
the method presented in this work is approximately six timege manually labelled ground truth for the same point at that
more accurate than the previously reported methods. Typig@ame. Figure 5 shows the mean tracking error for a number
results of our facial pOint detector are illustrated in F4-g of facial points’ Computed by eva|uating the tracking ressaf

100 videos from the MMI-db. We compute the average error

B. Evaluations of Facial Point Tracker E over all points per framg as follows:

We tested the tracking accuracy of the proposed PFFL point . 1™ ,

tracking algorithm by applying it to several different sdegp E(G) =~ > e(pinj) (16)
from four different datasets: the CK-db, the MMI Part | and =1

Part Il datasets, and the Triad dataset. We randomly sdleci¢here n = 20 is the number of points that we track. To
5% of samples from each dataset, in such a way that these digtermine a classification rate for our tracking result, we
are completely independent of the data that we used to modsé the same measure of success as we applied to the point
the transition probability models of the tracking algonitiisee detection results, i.e. a point is tracked successfuly iramé
section 1I-C).To provide ground truth for our experimentsf E(j) <= 0.05D;. Given that the tracking algorithm was
each frame of each test sequence was labelled by a hurtramed on samples from the MMI Part | dataset (near frontal
observer, provided that all 20 facial points are visible. Imiews of deliberately displayed facial expressions), inat

case of an occlusion, the location of an occluded point waarprising that the best results were attained for simiktad
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. TABLE Il
that is, for samples from the CK-db and the MMI Part | SUBJECT INDEPENDENT CROSS VALIDATION RESULTS FORU

datasets, where all points were tracked successfuly in 93%AcTIVATION DETECTION PER FRAME ON244 EXAMPLES FROM THE
and respectively 91% of frames. On the spontaneous facial MMI-FACIAL EXPRESSIONDATABASE
data, the tracking algorithm performed less accuratelytf® AlU s T e e e b Tae 51703
MMI Part Il dataset aqd the Triad dataset_, the tracking of all| 5 o5 1002 | 0961 | 0628 | 0620 | 0628
points was successful in 77% and, respectively, 52% of fame | 4 38 1839 | 0942 | 0.582| 0.707 | 0.639

5

6

7

9

Videos | Frames | Cl. Rate | Recall | Precision F1

Note, however, that samples from both of these datasets of 19 874 | 0949 | 0317 | 0.375 | 0.344

spontaneous facial data contain instances of occludedlfaci % 1727421 8:325 8:2?3 8:2?8 8:233

points, which had a large influence on the average distance 15 636 0.968 | 0.503 | 0.477 | 0.490
metric E(5). 10 17 719 0.955 | 0.266 | 0.321 | 0.291

12 17 1004 | 0.950 | 0.548 | 0.482 | 0.513
13 14 782 0.974 | 0.668 | 0.650 | 0.659
15 15 854 0.944 | 0.412| 0.344 | 0.375

C. Frame-based AU Detection Evaluation 16 18 717 | 0947 | 0230| 0229 | 0229
18 16 568 0.974 | 0593 | 0.523 | 0.556
We tested our AU detector system on both the MMI-db and| 5, 15 871 0964 | 0696 | 0554 | 0617

the CK-db, measuring for each frame of a video whether it| 22 15 696 0.964 | 0.536| 0.467 | 0.499
was correctly classified as containing an active AU or not gg 11655 555061 g-ggg 8-3519(7) g-ggi g-ggg
(regardless of temporal phase). On tr_le MMI-db we tested it| ¢ 32 1597 | 0875 | 0198 | 0179 | 0.188
for all 22 AUs that can be detected using a geometric-feature| 27 15 800 0.983 | 0.720 | 0.819 | 0.766

based approach. The set was created so that it includes fqr 30 15 736 0972 | 0438 | 0.5838 | 0.502
every AU at least 15 examples. For AU13 (a smile with the jg 115’7 1725:)3 g'ggg 8'228 g'ggg 8'222
mouth corners sharply pulled upwards) we could find only| 46 6 130 | 0913 | 0.723| 0.667 | 0694
14 examples and for AU46 (wink) only 6. Some AUs always [ Avg: | [ [ 0953 [ 0532 0.541 | 0.533]
occur in combination with others. For instance, AU22 which

puffs the lips as in pronouncing the word ‘flirt’, will always TABLE IV

cause the lips to part and thus to display AU25. Thus, for some SUBJECT INDEPENDENT CROSS VALIDATION RESULTS FORU
AUs we have more occurrences than fOf others In the CK_db ACTIVATION DETECTION PER FRAME ON153EXAMPLES FROM THE
. . ) ! COHN-KANADE DATABASE
not all 22 target AUs are present in sufficient numbers. Hence .
we have tested our AU d_etector on the CK-db only for those — 8 383 0918 T 0808 0844 1 0876
AUs that were present with at least 15 examples. 2 50 657 0.939 | 0.791| 0.879 | 0.833
All studies were performed by leave-one-subject out cross ‘5‘ o4 857 | 0870 | 0.604 | 0.658 | 0.630
6
7
9

Videos | Frames | Cl. Rate | Recall | Precision F1

e : . , 37 421 | 0.904 | 0.566 | 0.629 | 0.596
validation, which ensures that we train and evaluate a stibje 39 535 | 0930 | 0.789 | 0811 | 0.800
independent system. Results for the MMI-db are shown in

31 415 | 0870 | 0.268| 0.315 | 0.290
table Il and for the CK-db in table IV. The number of videos 30 357 0.928 | 0.676 | 0.497 | 0.573

10 26 302 0.914 | 0.403 0.401 | 0.402

in which each AU occurs is listed in the second column of the| 1, 42 727 | 0930 | 0827| 0844 | 0836
tables, and the total number of frames in which an AU is active| 15 19 264 0.969 | 0.500 | 0.283 | 0.361
is given in the third column. For comparison with older wqrks | 20 | 34 381l | 0.908 | 0.466 0.582 | 0.517

how the classificati i the fourth col B 24 | 17 297 | 0935 | 0.395| 0.497 | 0.440
we show the classification rate in the fourth column. Because 55 | 19 | 1572 | o851 | 0.717| 0782 | 0748

of the highly-unbalanced nature of our data, this perforrean 26 27 344 0.902 | 0.336 | 0.380 | 0.357
measure is overly optimistic. More detailed frame-based AU| 27 | 30 800 | 0964 | 0836 )| 0.873 | 0.854
detection performance results are provided in terms of ROC 25 28 1243 | 0943 | 0584 | 0408 | 0.480
T [Avg: ] [ [ 0.9I7 | 0598 0.605 | 0.596

curves in Fig. 6.

Although precision and recall are better measures of perfor
mance when dealing with unbalanced data sets, it is diffioult o .
compare performances using two measures. Therefore we hi§/B0int displacements caused by other AUs that also raese th
also included the F1-measure, which favours precisipmgd UPPer lip (AU10) or lower the lower lip (AU16).
recall (") equally. The F1 measure is defined2as/(p + r). ) )
The results show that the AUs 1, 2, 4, 6, 12, 13, 18, 2B. AU Temporal Model Detection Evaluation
25, 27, 30, 43, 45 and 46 are detected well. AU5 and AURe evaluated the performance of our temporal model detector
both involve only the movements of the upper and lowem examples from the MMI-db only. This is because the CK-db
eyelid. The eyelids move up or down only very little wherwvideos were cut after the expressions reached the apex.phase
these AUs are activated, and we believe that our trackerTikerefore they do not display the full temporal model of #ci
not sensitive enough to attain highly accurate resultsifes¢ expressions. Fig. 7 compares the F1-measures attainedby th
AUs. AU26 (jaw dropped) is very similar to AU27 (mouthtwo tested approaches (see section IV-D): mc-GentleSVMs
stretched open). In fact, in an activation of AU27 the facialnly, and the hybrid GentleSVM-HMM approach. The accu-
points around the mouth will go through all the positionst thaacy was measured per frame (i.e. for each frame we checked
they would go through in case of AU26 activation. Thereforehether it was assigned the correct phase label).
the two AUs are hard to separate. Similarly, AU10 and AU16 We see that compared with the multiclass gentleSvm
are characterised by point displacements that are veryasimimethod, the detection of the apex phase has benefited most
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Fig. 6. ROC curves of AU activation detection per frame on kil and the Cohn-Kanade (CK) datasets. For AU13, AU16, AUAB22, AU30, and
AU43 the Cohn-Kanade dataset did not contain enough exantplperform AU detection.
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Oar 1 Fig. 8. Temporal segment (onset, apex, offset) duratioor emnd the entire
facial action duration error. Results are averaged per Ald, measured in
frames.

Meutral Onset Apex Cifset

Fig. 7. Comparison of the F1 measures attained by the two dexhmodel
Detector approaches, measured per frame.

from introducing the HMM. The apex phase had an increase
in F1 of 8%, the offset 6.8%, the onset phase 3.6% and the
neutral phase 3.4% (relative to mc-SVM). The fact that the

neutral phase benefits least from the addition of the HMM . -
Fig. 9. An example of temporal phase recognition for AU25e Bolid line

is e_xpected, because this i.S not a dynamic_part of th_e fa%ﬁﬂ)ws the ground truth labelling per frame and the dotteel e prediction
action. The effect of applying the grammatical rules is less the SYM-HMM. Horizontal lines depict either a neutral or apex phase,

successful. While it attains good results for the offsetgghauPward slopes an onset phase and downward slopes an oftss. ph
and in a limited way for the neutral phase, it actually desesa

the accuracy of the onset and apex phase recognition. h lassifier add iori unk f noi
Detailed results per AU are shown for the SvM-HMMNe SVM classifier adds aa priori unknown amount of noise

approach in table V. Figure 9 shows one example of t 8_its output in the form of false positives and fgl_se ne@jy

recognition of the temporal phases of a video containingldn ixing a threshold based on for example the_ minimal dura‘upn
25 activation. The figure shows that the prediction (redentbttOf r?n AU as otIJserveld b}lf psychologlstﬁ_ will nkﬁt necesszrc;ly
line) is one frame late at predicting the first and second ap ghieve optimal results. To overcome this problem we add a

phases. It also predicts the last offset phase to stop 6 &ra gcision layer that will empirically learn a threshdldbased

too early. The SVM-HMM system did recognise correctly thdt" the AUs automatically _detected per frame. _
there are two apex phases. Another way to determine whether an AU was present in

We also looked into the durations of the facial actions, both video is to analyse the output of the AU Temporal Model

the total duration of an AU (i.e. the number of consecutive
frames that were predicted to be non-neutral) as well as the TABLE V

durations of the temporal phases separately. Fig. 8 shosvs tﬁl'MEASURDElscTLI’:ISGSU'lFS":l\;'GOTNHAECFCgS;\CTES;;gfﬂzi\ég"s‘“’V”V' FOR
statistics for this analysis. The duration error is meastne

frames. The figure shows the average number of frames that a
temporal phase duration or the entire AU activation duratio

is off, averaged per AU. We can see that for most AUs, the
average error per temporal phase is less than 4 frames. The
apex temporal phase has the largest error. We can also see
from Fig. 8 that the error of the total AU activation duration

AU Neutral Onset | Apex Offset
1 0.790 | 0.669 | 0.585| 0.536
2 0.848 | 0.544 | 0.730 | 0.642
4 0.690 | 0.521 | 0.615| 0.334
5 0.610 | 0.352 | 0.561 | 0.292
6
7
9

0.807 | 0.469 | 0.693 | 0.374
0.784 | 0.100 | 0.390 | 0.108
0.895 | 0.756 | 0.887 | 0.462
10 0.855 | 0.587 | 0.790 | 0.323

is f_ar_less than the sum qf the temporal phase duration errors 12 | 0931 | 0693 | 0773 0.679
This is because usually, if the apex phase has been predicted 13 | 0.926 | 0.847 | 0.750 | 0.642
to last too long, consequently the offset phase will stae la ig 8-;?; 8-‘312? 8-6733(2) 8-321
and results in an error in the offset phase duration, thus the 18 | 0914 | 0569 | 0740 | 0592
error is effectively double counted. 20 | 0.883 | 0.734 | 0.860 | 0.583

22 0.864 | 0.701 | 0.469 | 0.373
24 0.507 | 0.257 | 0.547 | 0.037

E. Event-based Action Unit Detector Evaluation 25 | 0865 | 0.634| 0776 | 0.631
Besides AU detection per frame, we also want to be able 26 | 0.751 | 0.490 | 0.583 | 0.417
o : 27 | 0.720 | 0.747 | 0.858 | 0.708

to perform so—called_ event codm.g i.e., we want to determine 30 | 0787 | 0461 | 0541 | 0415
which AUs were active in an entire image sequence. 43 | 0937 | 0.476| 0.758 | 0.728
1) Within-database evaluationThe simplest way to per- 45 | 0971 | 0.780| 0.653 | 0.710

o 46 | 0.618 | 0.146 | 0.182 | 0.239
form event detection is to use a threshold on the number of Avg. | 0.807 | 0.537 | 0.656 | 0.459

frames predicted active by the frame based AU detector. As
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TABLE VI TABLE VII
COMPARISON OFAU EVENT DETECTION METHODS ON THEMMI-FACIAL F1-MEASURE FOR CROSSDATABASE AU DETECTION PER VIDEQ THE
EXPRESSIONDATABASE. SYSTEM WAS EITHER TRAINED ON244 EXAMPLES FROM THE

MMI-FACIAL EXPRESSIONDATABASE AND TESTED ON153EXAMPLES
FROM THE COHN-KANADE DATABASE VICE-VERSA.

System Cl. Rate Recall Precision F1
Threshold approachf 0.876 0.772 0.402 0.521

Hybrid SVM-HMM 0.943 0.756 0.653 0.692 AU | Train MMI Train CK AU | Train MMI Train CK

1 0.661 0.255 12 0.635 0.400

2 0.762 0.467 15 0.372 0.229

4 0.541 0.414 || 20 0.277 0.341

: . 5 0.447 0.149 24 0.333 0.292

Detector. When doing this, we rega_rd an AU to be present | ¢ 0.429 0571 o5 0.799 0746
if the Temporal Model Detector predicted a correct sequence| 7 0.129 0.211 26 0.293 0.203
of phases (e.g. neutral onset— apex— offset). Table VI 190 8-‘2122 8-%38 % 8-222 8-292’%
compares the AU event detection results of the simple thresh Average resuls 0465 0368

old based method with the Temporal Model Detector method,
where we have used the SVM-HMM approach to detect the

temporal phases of each AU. As the table shows, using the
hybrid SVM-HMM method for AU event detection results@vailable posed data from the MMI-db part I. On spontaneous

in a 17.1% improvement in F1-measure, clearly showing t&t@ of smiles, taken from the Triad databasoe and the MMI-
benefit of this approach. db part Il, AU6 was recognised correctly 77% of the times,

2) Cross-database evaluatior cross-validation study on AY12 in 54% and AU13 in 85% of the videos. The reason

data from a single database might attain very good results, Why AU12 has a.ra.ther low c_IaSS|cat|on rate is that AU12 and
it does not guarantee that the evaluated system perfornis il 13 are very similar. Both involve movement of the mouth
on novel data. To test the generalisability of the resultsrai@  CO'Ners. The difference lies in the horizontal movementhwi
the system on data from one database and test it on data froft 42 the mouth corners move further out while with AU13

second database. Both databases must be recorded cognpl&i§ mouth comers are pulled up sharply.
independently of each other. That exactly is the case for theOn the DS118 database we tested for brow-related AUs only

MMI-db and the CK-db. (l.e. AU1, AU2, and AU4). We achieved a 50.4% classification

We performed two tests. In the first experiment, we traiffte for AU event detection (i.e. detecting the presencenof a

the AU detector on all data from the MMI-db and test it oA*Y Within a video). Although this is not a very high result,

data from the CK-db. Vice versa, in the second experimehS Promising considering that we were not able to use any

we train on the CK-db and test on the MMI-db. The resultSPontaneous training data. Other researchers reportegdet

measured per image sequence (event-detection) in termsz_@?/" [8] an_d 76% [16]classification rate for brow actions in
the F1l-measure, are shown in table VII. The performan®édely varying datasets.
of the MMI-trained system is almost 10% higher than that ) ) )
of the Cohn-Kanade trained system. We believe that this is Emotion detection evaluation
due to the low variability of facial expressions in the latteDetection of six basic emotions in posed facial expression
database. As AUs in the CK-db occur frequently in vergatabases is considered to be largely solved, especiakbywh
similar configurations (e.g. AU1 + AU2 + AU5 + AU25 + the subject being tested is known and was part of the training
AU27 for the expression of surprise), an AU detection systedata. Yet for optimal comparibility with existing autonmati
trained on this data will expect AUs to be produced in facial expression recognition works, we evaluate our ssida
similar fashion in the test examples. However, this is net themotion detection system on 171 videos taken from the Cohn-
case for the MMI-db data, where individual AU activation&anade database. The videos were selected with the cnteriu
often occur. On the other hand, we see that the MMI-traindldat two coders were able to attain a consensus on what
system generalises reasonably well on data from a completeiotion was shown in that video. This is a stricter ground
different database, although the F1 measure is still a g@&6l 2truth criterium than using the ground truth provided witle th
lower than attained when performing event detection withi@ohn-Kanade database. This strategy was used to reduce the
the MMI-db (see table VI) and thus high generalisation hdabel error in the dataset.
not yet been achieved. Table VIII shows the confusion matrix and classification
3) Spontaneous data evaluatiomhe AU detection evalu- rates of all emotions. Emotions are detected per video, i.e.
ations presented so far were performed on acted data. Thathe table shows event detection results. From the resudts, w
the expressions shown in the data were produced on commarale to conclude that it is very hard to distinguish between
Spontaneous expressions however, are different both in ththe emotions angry and sadness. The reason for this is that
composition of AUs as well as in their temporal dynamickoth expressions often incur similar brow movements. From a
[25]. Ultimately, we would like to deploy our facial expréms geometric point point of view, the difference is in the down-
analysis system in such real-world situations. As mentidne ward motion of the lip corners, and unfortunately that motio
the introduction, very few works have focused on the probleoan be very subtle. It also shows that fear is often confused
of spontaneous facial expression recognition so far, asultee with either disgust or happiness. While the confusion with
have been quite limited (see [86] for an overview). fear is common, the confusion with happiness is somewhat
We tested our system on the DS118, Triad, and MMI-déurprising. Again, the explanation lies in the displacetradn
part Il databases (see section V). We trained the systeml ontlg lip corners. The motion of the lip corners caused by AU20
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TABLE VIl
CONFUSION MATRIX OF EMOTION DETECTION ON THECOHN-KANADE
DATABASE. ROWS INDICATE GROUND TRUTH COLUMNS DETECTED

well when trained on data from one database and tested on data
from another. This being said, generalisation to compjetel

EMOTIONS. novel data is not possible yet without some loss of accuracy.

ANGR DISG FEAR HAPP SADN _SURP At this point, a major limitations of the system is that it can
ANGR 2 3 2 0 9 T | 6 facial , | he face ised
DISG 1 19 1 1 4 1 only recognise facial expressions as long as the face isedew
FEAR 1 4 15 5 2 1 from a pseudo-frontal view. If the head has an out-of-plane
HAPP 1 0 3 33 0 1 rotation greater than 20 degrees, the system will fail. Téis
SADN 4 2 1 0 16 1 hi ish d4d . ¢ h
SURP 0 1 1 1 0 34 something we wish to address in our future research.
Clrate | 0.118 0704 0536 0868 0667 0.919
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G. Performance comparison with previous works

have used the Cohn-Kanade database [41], the MMI-Facial
Expression Database [61] or both. Therefore a comparison [If]
possible to a certain extend, although using the same daaba
does not guarantee that the systems were trained and tes
with the same number of videos from each database, nor doe
it guarantee that the same rules for e.g. the optimisation of
parameters were adhered to. 3]
Table IX gives an overview of the existing systems that
report their performance in terms of AU event detection o]
either the Cohn-Kanade database, the MMI-Facial Expres-
sion Database or both. For [84] we are unable to repois]
a classification rate on either database, as the authors only
mention the achieved area under the ROC curve in thejg
paper. As we can see our proposed approach outperformsﬂl
other methods on the MMI-Facial Expression Database, al
of the methods capable of detecting temporal segmentsoit als
scores the highest on the Cohn-Kanade database. AIthouElH
this is not a comparison in a controlled experiment, it still
shows that the proposed system performs well compared
to existing approaches. It also shows that appearance ba
approaches do not necessarily outperform geometric featur
based approaches. (10]

VII. CONCLUSIONS [11]

Accurate, fully automatic facial expression analysis wdoul
have many real-world applications. In this work we havgy
shown that not only fully automatic highly accurate AU
activation detection based on geometric features is plessikglg’]
but also that it is possible to detect the four temporal phage4]
of an AU with high accuracy and that geometric features are
very well suited for this task. The proposed system wasdeste
extensively on multiple databases, and was shown to gésesral

REFERENCES

Z. Ambadar, J. Schooler, and J. F. Cohn. Deciphering thigneatic
face: The importance of facial dynamics in interpreting tiulfacial

dexpessionsPsychological Sciencel6(5):403—-410, 2005.

K. Anderson and P. McOwan. A real-time automated system f
recognition of human facial expressionsEEE Trans. Systems, Man
and Cybernetics, Part B36(1):96-105, 2006.

C. Andrieu, A. Doucet, S. Singh, and V. Tadic. Particlethoels for
change detection, system identification, and confPebceedings of the
IEEE, 92(3):423-438, 2004.

A. Ashraf, S. Lucey, T. Chen, J. Cohn, and K. Prkachin. Taénful
face - pain expression recognition using active appearamudels. In
Int'l conf. multimedia and interfacepages 9-14, 2007.

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Blacld Bn Szeliski.

A database and evaluation methodology for optical fléméernational
Journal of Computer Visign92:1-31, 2011.

J. Barron, D. Fleet, and S. Beauchemin. Performance ttapflow
techniques.J. of Computer Vision12(1):43-78, 1994.

M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowskgasuring
facial expressions by computer image analysi®sychophysiology
36(2):253-263, 1999.

M. S. Bartlett, G. Littlewort, M. G. Frank, C. Lainscsek, Fasel, and
J. Movellan. Fully automatic facial action recognition ipositaneous
behavior. InIEEE Int'l Conf. on Automatic Face and Gesture Recogni-
tion, pages 223-230, 2006.

M. S. Bartlett, P. Viola, T. Sejnowski, B. Golomb, J. Lars J. Hager,
and P. Ekman. Classifying facial actionadvances in Neural Informa-
tion Processing System8:823-829, 1996.

H. Bourlard and N. Morgan. Hybrid hmm/ann systems foeexh
recognition: Overview and new research directionsecture Notes in
Artificial Intelligence pages 389-417, 1998.

L. Chen, L. Zhang, H. Zhang, and M. Abdel-Mottaleb. 3dagé
constraint for facial feature localization using probitit-like output.

In Proc. IEEE Int'l Workshop Analysis and Modeling of Faces and
Gestures pages 302-307, 2004.

J. Cohen. A coefficient of agreement for nominal scalEducational
and Psychological Measuremer®0:37-46, 1960.

M. Cohen. Perspectives on the faceOxford University press, 2006.
Oxford, UK.

J. Cohn and P. Ekman. Measuring facial action by manoding, facial
emg, and automatic facial image analysis. In R. R. . K. S. JH&-
rigan, editor,Handbook of nonverbal behavior research methods in the
affective sciencespages 9-64. Oxford University Press, 2005. New
York.



JOURNAL OF BTeX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 16
TABLE IX
COMPARISON OF CLASSIFICATION RATE OF EXISTING WORKS THAT REBPRT AU DETECTION ON EITHER THEMMI-FACIAL EXPRESSION OR
COHN-KANADE DATABASE. THE FOURTH COLUMN INDICATES IF THE SYSTEM IS CAPABLE OF DETEONG THE TEMPORAL PHASES OF ANAU.
System feature type Classification method | temporal | AUs | videos MMI Cl. Rate MMI videos CK | Cl. Rate CK
This work Geometric | GentleSvm & HMM 1 22 244 0.953 153 0.917
Bartlett et al. 2006 [8] Appearance GentleSvm 0 19 - - Unknown 0.909
Koelstra and Pantic 2008 [43] Appearance| GentleBoost HMM 1 27 264 0.943 143 0.891
Littlewort et al. 2006 [48] Appearance GentleSvm 0 7 Unknown 0.927 - -
Pantic and Patras 2005 [56] Geometric Rule-based 1 27 299 0.936 - -
Tian et al. 2001 [69] Hybrid ANN 0 18 - - 465 0.950
Tong et al. 2007 [71] Appearance| AdaBoost & DBN 0 14 - - Unknown 0.933
Whitehill and Omlin [81] Appearance AdaBoost 0 11 - - Unknown 0.925
Yang et al. 2009 [84] Appearance AdaBoost 0 8 - - Unknown Unknown

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]
[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]
[37]

J. F. Cohn. Foundations of human computing: Facial @sgion and

emotion. Proc. ACM Int'l Conf. Multimodal Interfaces1:610-616, [38]
2006.

J. F. Cohn, J. F. Reed, Z. Ambadar, J. Xiao, and T. MorgaAutomatic
analysis and recognition of brow actions in spontaneousifaehavior. [39]

Proc. IEEE Int'l Conf. Systems, Man & Cybernetids610-616, 2004.
J. F. Cohn and K. L. Schmidt. The timing of facial motiom posed
and spontaneous smiled. Wavelets, Multi-resolution and Information
Processing 2(2):121-132, 2004.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector
Machines and Other Kernel-based LearningCambridge University
Press, 2000.

D. Cristinacce and T. Cootes. A comparison of shapetcaingd facial
feature detectors. IRoc. IEEE Int'l Conf. Automatic Face and Gesture[42]
recognition pages 375-380, 2004.

D. Cristinacce and T. Cootes. Facial feature detectiod tracking with
automatic template selectionlEEE Intl Conf. Automatic Face and [43]
Gesture Recognitigrpages 429-434, 2006.

D. Cunningham, M. Kleiner, C. Wallraven, and H. Biitho The

[41]

components of conversational facial expressionBroc. ACM Int'l [44]
Symposium on Applied Perception in Graphics and Visuatinapages
143-149, 2004.

A. C. de C. Williams. Facial expression of pain: An ewwnary [45]

account.Behavioral and Brain Science25(4):439-488, 2002.

G. Donato, M. Bartlett, J. Hager, P. Ekman, and T. Sepiow Clas-
sifying facial actions. IEEE Trans. Pattern Analysis and Machine [46]
Intelligence 21(10):974-989, 1999.

P. Ekman.Face of man: Universal expression in a new guinea village[47]
Garland, 1982. New York.

P. Ekman. Darwin, deception, and facial expressidmnals of New

York Ac. of sciencesl000:105-221, 2003.

P. Ekman and W. Friesen. The repertoire of nonverbalatienal [48]
categories — origins, usage and codii®gmiotica 1:49-98, 1969.

P. Ekman, W. V. Friesen, and J. C. Hageéacial Action Coding System

A Human Face, 2002. Salt Lake City. [49]

P. Ekman and E. L. RosenbergWhat the face reveals: Basic and
applied studies of spontaneous expression using the Faiiion
Coding SystemOxford University Press, 2005. Oxford, UK.

I. Fasel, B. Fortenberry, and J. Movellan. A generafra@mework for
real time object detection and classificatiocBomp. Vision, and Image
Understanding 98(1):181-210, 2005.

R. Feris, J. Gemmell, K. Toyama, and V. Krger. Hieracahiwavelet
networks for facial feature localization. IREE Int'| Conf. on Automatic
Face and Gesture Recognitiopages 118-123, 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive ikiig regression:
A statistical view of boostingThe Annals of Statistic®28(2):337-374,
2000. [53]
B. Golomb and T. Sejnowski. Benefits of machine undexitay of
facial expressions. In P. Ekman, T. Huang, T. Sejnowski, aridager,
editors, NSF Report - Facial Expression Understandimpges 55—71.
1997. Salt Lake City, UT.

L. Gralewski, N. Campbell, and I. Voak. Using a tensanfirework for
the analyisis of facial dynamics. MEEE Int’| Conf. on Automatic Face
and Gesture Recognitiprpages 217-222, 2006.

H. Gu and Q. Ji. Information extraction from image sewes of real-
world facial expressionsMachine Vision and Applicationsl6(2):105—
115, 2005.

S. Hamlaoui and F. Davoine. Facial action tracking ggarticle filters
and active appearance models. Rnoc. IEEE Intl Conf. Face and
Gesture Recognitigrpages 165-169, 2005.

E. Hjelmas and B. Low. Face detection: A surv&@pmputer Vision and
Image Understanding83(3):236-274, 2001.

E. Holden and R. Owens. Automatic facial point detettidn Proc.

[50]

[51]

[52]

[54]
[55]

[56]

[57]

(58]

Asian Conf. Computer Visigipages 731-736, 2002.

B. Jiang, M. Valstar, and M. Pantic. Action unit detectiusing sparse
appearance descriptors in space-time video volumeBrda. IEEE Int'l
Conf. Automatic Face and Gesture Recognitigd11. In print.

R. E. Kaliouby and P. Robinson. Real-time inference ofnplex
mental states from facial expressions and head gesturd2rotn IEEE
Conference on Computer Vision and Pattern Recogniticsiume 3,
page 154, 2004.

40] R. Kalman. A new approach to linear filtering and predictproblems.

Trans. ASME J. Basic Engineering2:35-45, 1960.

T. Kanade, J. Cohn, and Y. Tian. Comprehensive databaséacial
expression analysis. iEEE Int'l Conf. on Automatic Face and Gesture
Recognition pages 46-53, 2000.

T. Kirchner, M. Sayette, J. Cohn, R. Moreland, and J.ibhev Effects
of alcohol on group formation among male social drinkelsurnal of
Studies on Alcohel67(5):785-794, 2006.

S. Koelstra and M. Pantic. Non-rigid registration wsinee-form defor-
mations for recognition of facial actions and their tempahgnamics.
In IEEE Int'l Conf. on Automatic Face and Gesture Recogniti2008.
I. Kotsia and I. Pitas. Facial expression recognitiorimage sequences
using geometric deformation features and support vectochines.
IEEE Transactions on Image Processird(1):172—-187, 2007.

S. Kruger, M. Schaffner, M. Katz, E. Andelic, and A. Wemduth.
Speech recognition with support vector machines in a hybyistem.
In Interspeechpages 993-996, 2005.

S. Li and A. Jain.Handbook of Face Recognitioispringer, 2005. New
York.

J. Lien, T. Kanade, J. Cohn, and C. Li. Subtly differemtcil
expression recognition and expression intensity estimatiln Proc.
IEEE Conference on Computer Vision and Pattern Recognifiages
853-859, 1998.

G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and Nlovellan.
Dynamics of facial expression extracted automaticallynfnadeo. Int'l
J. on Image and Vision Computing4(6):615-625, 2006.

G. Littlewort, M. Bartlett, and K. Lee. Faces of pain: tamnated
measurement of spontaneous facial expressions of gennthgpa@sed
pain. InInt'l conf. on multimodal interfacespages 15-21, 2007.
W.-f. Liu, J.-l. Lu, Z.-f. Wang, and H.-j. Song. An ex@&on space
model for facial expression analysis. Ilmage and Signal Processing,
2008. CISP '08. Congress pmolume 2, pages 680-684, May 2008.
B. Lucas and T. Kanade. An iterative image registratechnique with
an application to stereo vision. Imt'l Joint Conference on Artificial
Intelligence pages 674-679, 1981.

J. McCall and M. Trivedi. Facial action coding using tiple visual
cues and a hierarchy of particle filters. Rroc. Int'l Conf. Computer
Vision and Pattern Recognitipivolume 3, page 150, 2006.

B. McCane, K. Novins, D. Crannitch, and B. Galvin. On blemarking
optical flow. Computer Vision and Image Understandirgy(1):126—
143, 2001.

M. Pantic. Face for ambient interfaceLecture notes on artificial
intelligence 3864:32-66, 2006.

M. Pantic and M. Bartlett. Machine analysis of facialpeassions. In
K. Delac and M. Grgic, editorsiFace Recognitionpages 377-416. |-
Tech Education and Publishing, 2007. Vienna, Austria.

M. Pantic and |. Patras. Detecting facial actions aneirthemporal
segments in nearly frontal-view face image sequenBesc. IEEE Int'l
Conf. on Systems, Man and Cybernetigages 3358-3363, 2005.

M. Pantic and |. Patras. Dynamics of facial expressiemscognition
of facial actions and their temporal segments from face lprafiage
sequences. IEEE Trans. Systems, Man and Cybernetics, Part B
36(2):433-449, 2006.

M. Pantic and L. Rothkrantz. Facial action recognitifor facial



JOURNAL OF BTEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

(83]

(84]

[85]
(86]

expression analysis from static face imaglsEE Trans. Systems, Man
and Cybernetics, Part B34(3):1449-1461, 2004.

M. Pantic and L. J. M. Rothkrantz. Toward an affect-s&éres mul-
timodal human-computer interactionProc. |IEEE 91(9):1370-1390,
2003.

M. Pantic, L. J. M. Rothkrantz, and H. Koppelaar. Autdioa of non-
verbal cummunication of facial expression®roc. Conf. Euromedia
pages 8693, 1998.

M. Pantic, M. F. Valstar, R. Rademaker, and L. Maat. Vidalsed
database for facial expression analysBroc. Int'l Conf. Multimedia
& Expo, pages 317-321, 2005.

S. Park, J. Shin, and D. Kim. Facial expression analysts facial

17

Trans. Pattern Analysis and Machine Intelligen&d:39-58, 2008.

[87] Y. Zhang and Q. Ji. Active and dynamic information fusifor facial
expression understanding from image sequeni&EE Trans. Pattern
Analysis and Machine Intelligenc@7(5):699-714, 2005.

expression deformationPattern Recognition, 2008. ICPR 2008. 19th

International Conference grpages 1-4, Dec. 2008

|. Patras and M. Pantic. Particle fllterlng with factml likelihoods for
tracking facial features.Proc. Int'l Conf. Automatic Face & Gesture
Recognition pages 97-102, 2004.

I. Patras and M. Pantic. Tracking deformable moti&mnoc. Int'| Conf.
Systems, Man and Cybernetiggages 1066—-1071, 2005.

M. K. Pitt and N. Shephard. Filtering via simulation:diary particle
filters. J. Am. Statistical Associatior94(446):590-616, 1999.

J. Platt. Probabilistic outputs for support vector imaes and com-
parison to regularized likelihood methods. In A. Smola, RrtBtt,
B. Schoelkopf, and D. Schuurmans, editokslvances in Large Margin
Classifiers pages 61-74. MIT press, 2000. Cambridge, MA.

E. Rosenberg, P. Ekman, and J. Blumenthal. Facial esfme and the
affective component of cynical hostility in male coronamalt disease
patients.J. on Health Psychologyl7(4):376-380, 1998.

J. Russell and J. Fernandez-DolEhe psychology of facial expression
Cambridge University Press, New York, 1997.

Y. Tian, T. Kanade, and J. Cohn. Recognizing action surfior
facial expression analysidEEE Trans. Pattern Analysis and Machine
Intelligence 23(2):97-115, 2001.

Y. L. Tian, T. Kanade, and J. F. Cohhlandbook of Face Recognition
Springer, 2005. New York.

Y. Tong, W. Liao, and Q. Ji. Facial action unit recogmitiby exploiting
their dynamic and semantic relationshiffattern Analysis and Machine
Intelligence, IEEE Transactions p29(10):1683-1699, 2007.

M. F. Valstar and M. Pantic. Biologically vs. logic insgd encoding of
facial actions and emotions in vide¢EEE Int’l. Conf. on Multimedia
and Expo pages 325-328, 2006.

M. F. Valstar and M. Pantic. Fully automatic facial actiunit detection
and temporal analysis.
and Pattern Recognitigrpage 149, 2006.

M. F. Valstar and M. Pantic. Combined support vector hiaes and
hidden markov models for modeling facial action temporahaiyics.
Lecture Notes on Computer Sciendd96:118-127, 2007.

M. F. Valstar and M. Pantic. Induced disgust, happinasd surprise:
an addition to the mmi facial expression databaderoc. Language
Resources and Evaluation Cgonpages 317-321, 2010.

M. F. Valstar, M. Pantic, Z. Ambadar, and J. F. Cohn. Spoaous vs.
posed facial behavior: automatic analysis of brow actidhc. ACM
Intl. conf. on Multimodal Interfacegpages 162-170, 2006.

M. F. Valstar, M. Pantic, and H. Gunes. A multimodal apgeh to
automatic recognition of posed vs. spontaneous smilefrde. ACM
Intl. conf. on Multimodal Interfacegpages 38-45, 2007.

M. F. Valstar, |. Patras, and M. Pantic. Facial actioiit detection using
probabilistic actively learned support vector machinestraoked facial

point data. InProc. IEEE Conference on Computer Vision and Patterrit

Recognition volume 3, pages 76-84, 2005.

P. Viola and M. Jones. Robust real-time object detecti€omputer
Vision, 57(2):137-154, 2004.

D. Vukdadinovic and M. Pantic. Fully automatic faciaature point
detection using gabor feature based boosted featltex. IEEE Int'l
Conf. on Systems, Man and Cybernetigages 1692-1698, 2005.

J. Whitehill and C. Omlin. Haar features for facs au gution.

In Automatic Face and Gesture Recognition, 2006. FGR 2006. 7

International Conference gqrpages 5 pp.—101, April 2006.

J. Xiao, S. Baker, |. Matthews, and T. Kanade. Real-tiooenbined
2d+3d active appearance models. Rroc. IEEE Int'l Conf. Computer
Vision and Pattern Recognitiprvolume 2, pages 535-542, 2004.

M. Yang, D. Kriegman, and N. Ahuja. Detecting faces inames:
A survey. IEEE Trans. Pattern Analysis and Machine Intelligence
24(1):34-58, 2002.

P. Yang, Q. Liu, and D. N. Metaxas. Boosting encoded dyina
features for facial expression recognitioRattern Recognition Letters
30(2):132-139, 2009.

A. Young. Face and Mind Oxford university press, 1998. Oxford, UK.
Z. Zeng, M. Pantic, G. Roisman, and T. Huang. A survey féch
recognition methods: audio, visual and spontaneous esipres IEEE

IRroc. IEEE Conference on Computer Vision

Michel F. Valstar (M’'09) is a Research Associate
in the intelligent Behaviour Understanding Group
(iBUG) at Imperial College London, Department of
Computing. He received his masters degree in Elec-
trical Engineering at Delft University of Technology
in 2005 and his PhD in computer science at Imperial
College London in 2008. Currently he is working in
the fields of computer vision and pattern recognition,
where his main interest is in automatic recognition
of human behaviour, specialising in the analysis of
facial expressions. In 2011 he was the main orgamser
of the first facial expression recognition challenge, FEREPR, and organiser
of the first audio-visual emotion recognition challenge E&2011. In 2007 he
won the BCS British Machine Intelligence Prize for part o BhD work. He
has published technical papers at authoritative confesencluding CVPR,
ICCV and SMC-B and his work has received popular press cgeeira New
Scientist and on BBC Radio. He is also a reviewer for manynalsr in
the field, including Transactions on Affective Computings&ms, Man and
Cybernetics-B and the Image and Vision Computing journal.

Maja Pantic (M'98SM’'06) is Professor in Affec-
tive and Behavioural Computing at Imperial Col-
lege London, Department of Computing, UK, and
at the University of Twente, Department of Com-
puter Science, the Netherlands. She received various
awards for her work on automatic analysis of human
behaviour including the European Research Coun-
cil Starting Grant Fellowship 2008 and the Roger
Needham Award 2011. She currently serves as the
Editor in Chief of Image and Vision Computing
Journal and as an Associate Editor for both the
IEEE Transactions on Systems, Man, and Cybernetics PartdBthen IEEE
Transactions on Multimedia. She is the Senior Member of EfeH.




