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Abstract—The classification of sequences requires the combi-
nation of information from different time points. In this paper
the detection of facial expressions is considered. Experiments
on the detection of certain facial muscle activations in videos
show that it is not always required to model the sequences
fully, but that the presence of specific frames (the concept
frame) can be sufficient for a reliable detection of certain facial
expression classes. For the detection of these concept frames a
standard classifier is often sufficient, although a more advanced
clustering approach performs better in some cases.
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I. INTRODUCTION

For the automatic analysis of human behavior in video,
the detection and classification of emotions are important
elements. One modality that can be used to detect and
classify emotions are the facial expressions. Facial expres-
sions are often described using the Facial Action Coding
System in terms of Action Units (AUs) [1]. AUs encode
the activation or relaxation of all facial muscles involved
in facial expression. This allows the objective encoding
of any facial expression, not just expressions of emotion.
The sequence of activations and relaxations can be used to
classify emotions [2].

In greater detail, an AU activation consists of a number of
temporal phases. Starting from a neutral state, an AU will go
through an onset, an apex (peak) and an offset phase, before
returning to the neutral state again. Although the timing
and the (relative) durations of the AU activations are very
important for the classification of facial expressions, the first
step is the detection of the AU activations themselves in the
video stream. The question is if the detection of the presence
of an AU requires the modeling of the full time series or
if the presence of a single key frame may be sufficient.
A single-frame detector may be faster and more simple
to implement, with the potential drawback that important
temporal information is lost. This paper investigates the two
different approaches to classify sequences of events.

For the detection of AU activations either frame-by-
frame detectors have been proposed, or detectors using pre-
segmented sequences. See [3] for an overview of AU detec-
tion methods. In pattern recognition objects, or events, are
encoded by feature vectors of fixed length, and are assigned

to a single class [4]. In many applications this reduction
to a single feature vector is very difficult, sometimes even
impossible. This happens not only in the classification of
time series of variable length, but also in the description
of images, texts, or complex physical objects. In these
applications Multi-Instance Learning (MIL) can be consid-
ered [5]. MIL represents an object or event, by a bag of
feature vectors. These feature vectors are often assumed to
be independent. Furthermore, the individual feature vectors
are not labeled, but the complete bags are. In the original
formulation a bag is considered positive when at least one
vector is member of a so-called concept, and it is considered
negative when none of the vectors is member of the concept.
In later literature, the constraint of a single positive vector
is often relaxed, and sometimes a combining rule is learned
[6].

A standard way of learning a label sequence from a
time series is by using Conditional Random Fields (CRFs)
[7]. CRFs are graphical models that assume a sequential
structure of the data. The CRF estimates the conditional
probability of the states Y given the observations X ,
P (Y |X), and do not model the full probability density of
the observations and labels P (X,Y ), they tend to be more
flexible and easier to optimize than Hidden Markov Models
[8]. On the other hand, during training they require a fully
labeled training set where for each time point a label is
provided.

In section II, we first discuss the two approaches to clas-
sify sequences, the Multi-Instance approach where concept
frames are learned, and the approach to model sequences
using CRFs. We also introduce a simple Multi-Instance
learner that optimizes a concept frame on the training data.
In section III, experiments on movies containing faces are
presented where both approaches are applied and results
are discussed. Finally, in section IV, we finish with some
conclusions.

II. THEORY

Assume we are given a collection of M labeled sequences
(or bags): {(Xi, yi), i = 1, ...,M} with binary labels
yi ∈ {−1,+1}. Each bag Xi contains a variable number
Ti of instances Xi = {xi1,xi2, ..., xiTi}, where x ∈ Rd are
feature vectors in a d dimensional feature space. Each of the
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instance vectors may also be labeled, although in this paper
it is assumed that these labels are unknown. Furthermore, it
is unclear how the bag label yi is derived from the instance
labels, if they would have been known.

A. Multi-instance learning

A straightforward approach to classify a bag is to train
a standard classifier f on the individual feature vectors xij

using the bag label yi as labels for the instances. Classifier f
is assumed to generate a positive score for each input vector,
i.e. the larger f(x), the more certain classifier f is that object
x belongs to the positive class. Then a combining rule h has
to integrate the individual outcomes to a bag outcome:

ŷ(Xi) = h(f(xi1), ..., f(xiTi)). (1)

This bag outcome ŷ(Xi) is thresholded to decide if the bag
is labeled positive or negative.

One possibility for this combining rule h is a maximum-
rule that selects the most positive output over all feature
vectors in the bag. This is consistent with the original idea
of Multi-Instance learning: a bag is labeled positive, when at
least one instance is labeled positive. This approach is outlier
sensitive though, and a more robust alternative for h is the
‘quantile rule’. Instead of selecting the absolute maximum
positive output, all outputs are ordered f(xi1) > f(xi2) >
... > f(xiTi), and the q-th quantile value is returned:

hq(f(xi1), ..., f(xiTi)) = f(xi!qTi+0.5"), (2)

where #qT +0.5$ rounds the value qT to the nearest integer
value. For instance, q = 0.5 returns the median output
value, while for q = 1/Ti the maximum value is obtained.
Depending on the value of q, the quantile rule can be made
insensitive to outlier outputs of some classifiers. Note that
in this approach where individual classifier outputs fi are
combined, the classifier f has to be trained on labeled
instances. Because the instance labels are copied from the
bag labels, and some of the instances in a bag actually
originate from the negative (background) class, it may be
expected that the final classifier is not optimal.

In this paper the clustering Multi-instance learner is con-
structed to exploit the original MIL assumption that a bag is
labeled positive when at least one instance vector is member
of a so-called concept. The concept is modeled by a spherical
area in feature space, parametrized by a center and a radius.
The center location of this area is selected from a collection
of locations that is obtained by some clustering procedure on
all instances of the positive bags (in this paper we used the
standard k-means clustering). The distance to the concept
center is used as the instance classifier f , and the quantile
rule is then applied. Each cluster is tested subsequently, and
the cluster with the best performance on the training set (in
this paper, in terms of the Area under the Receiver Operating
Characteristic curve, AUC [9]) is selected. The full training
procedure therefore looks like:

1) Assume the number K of potential concept centers,
and a quantile level 0 < q < 1.

2) Cluster the instance vectors from all positive bags
{Xi : yi = +1} into K clusters, and obtain cluster
centers ck, k = 1, ..,K.

3) Compute for all clusters and all instances in all bags
the classifier output:

fk(xij) = exp(−‖xij − ck‖2) (3)

4) Compute for all clusters k and all bags i the bag output
ŷ(Xi), using equation (1) and equation (2).

5) Compute for all training clusters the AUC using the
bag output, and select the cluster center c∗ with the
highest AUC.

6) If needed, the decision threshold on the bag output
ŷ(Xi) is found by minimizing the total classification
error.

For the evaluation of a new bag X , the classifier output (3)
for each instance vector in the bag has to be computed, and
these outputs have to be combined using (1).

Similar approaches have been proposed in literature. Often
they are inspired by the idea of modeling the ‘positive con-
cept’. One approach is the Maximum Diverse Density [10].
It optimizes the target concept position c by maximizing the
so-called diverse density:

arg max
c

∏

i:yi=+1

Pr+(c|Xi)
∏

i:yi=−1

Pr−(c|Xi), (4)

where Pr+(c|Xi) is the probability that at least one vector
from a positive bag did not miss the target concept. This
can be computed like Pr+(c|Xi) = 1−

∏
j(1−P (c|xij)).

Furthermore, the probability that a vector matches the con-
cept is modeled by a circular Gaussian-shaped distribution
P (c|xij) = exp(−‖xij − c‖2) analogous to (3). Similarly,
all vectors in the negative bags should miss the concept,
which can be computed with: Pr−(c|Xi) =

∏
j(1 −

P (c|xij)). Unfortunately, the optimization of (4) is very
complicated. It requires a careful gradient ascent optimiza-
tion, with high risks of obtaining a poor local optimum. The
clustering Multi-Instance learning formulation is actually an
approximation to the maximum diverse density formulation,
except that the concept position c∗ is constrained to be on
the cluster centers, fitted on the positive training samples.
When a simple clustering method like k-means clustering is
used, the clustering MIL becomes several orders faster than
the Diverse Density approach.

B. Modeling the time series

For the situation in which the instance vectors in bag Xi

constitute a (time) sequence, explicit sequence models can
be used. A model that uses the label information during
training, is the Conditional Random Field, CRF [7]. It is
a chain-shaped graphical model, that predicts a full label
sequence over all time points. The posterior probability
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of each of the possible label sequences is conditioned on
(in principle) the complete sequence of feature vectors. To
simplify the model, we assume that the posterior probability
of a label yt at time t is only conditionally dependent on the
feature vector xt for that time point, and the prediction of
the previous time point label. The conditional dependence
of the label on the observations xt is modeled by:

p(yt|xt) =
1
Z

exp(−wT xt), (5)

where w is a weight vector that is optimized in training
and Z(w) is a normalization constant such that p(yt|xt)
integrates to 1 (which means a summation over all label
sequences). The conditional probability of a label yt at
time point t given a label yt−1 at time t − 1 is directly
estimated from the training set and stored in a transi-
tion probability matrix P̂ (yt−1, yt). To optimize the free
parameters w on a set of training bags, the conditional
log-likelihood

∑M
m=1 log p(ym|Xm) is optimized, where

p(y|X) =
∏T

t=1 P̂ (yt−1, yt)p(yt|xt)/Z, For more informa-
tion, see [7].

An alternative sequence model is the Hidden Markov
Model (HMM) [8]. This is a chain-shaped graphical model
like the CRF, but it is a generative model instead of a dis-
criminative model. Instead of estimating the posterior class
probabilities p(yt|xt), it estimates the full probability density
of the observed feature vectors p(X) = p({x1, ...xT }),
conditioned on the (hidden) state labels. In the HMM the
(hidden) label sequence is not constrained, but it can have
any value in order to describe the observed data as well
as possible. For real-valued observations the conditional
probability of an observation xt given the state label yt is
often modeled by a normal distribution.

III. EXPERIMENTS

We consider the detection of activation of face muscles.
For this, 211 movie sequences taken from the MMI Facial
Expression Database [11] have been AU-annotated, contain-
ing in total 19004 video frames. Each sequence shows a
certain (posed) facial expression. Originally, for each frame
in each movie the activations (‘neutral’, ‘onset’, ‘apex’,
‘offset’) of 28 Action Units are labeled, but in this paper only
the presence of an active AU is of interest. Sequences that
have some time points labeled ‘onset’, ‘apex’ or ‘offset’ will
be called ‘positive’, and all other sequences are ‘negative’.
In the human face the positions of 20 key points are tracked,
resulting in a 40 dimensional feature vector xit ∈ R40

for each sequence Xi at each time point t. In order to
obtain features that are invariant to rigid head motions within
one image sequence we intra-register all frames within one
sequence by subtracting from xit the mean value of so-called
stable points (i.e. points that by definition only move due to
rigid head motion, such as the tip of the nose and the inner
eye corners). Variations in size and shape of the face between

subjects are minimised by applying a scaling transformation
to xit which again is based on all stable facial points.

Due to space constraints the results for only a few AUs
are shown in Table I. Only AUs are used for which the
number of positive sequences was around 20 or more and
for which different characteristics of the classifiers can be
observed. On these datasets 17 classifiers are trained. The
first 12 classifiers optimize a concept frame, the second five
model the full time sequence. First a simple Fisher classifier
[4] is trained on all instance vectors (using the bag labels
as instance labels), and combined using the quantile rule
hQ using q = 0.1, q = 0.5 and q = 0.9 or the maximum
rule. The results are shown in the first four lines of Table
I. The results obtained by this simple classifier reveal very
different characteristics for different Action Units. For AU01
and AU06 the maximum rule performs best, but for the other
AUs this rule is too noise sensitive. For AU04 or AU12 it
is to be preferred to use a 0.1-quantile combination rule. In
some situations it also depends on the base classifier f , and
better performance can be obtained when the Fisher classifier
is replaced by the logistic classifier [12] (like in AU05 or
AU09).

In the next six lines of Table I the results for some
Multi-Instance learners are shown. The Diverse Density
(with a varying number of random initializations k), and the
clustering MIL (also with a varying number of clusters, and
varying quantile levels q). In some situations they perform
very poorly, but the clustering MIL shows competitive
performance for the AU05 and AU07.

In the last four lines of Table I the performance of the
methods that model the time sequence explicitly are shown.
First Hidden Markov Models with a varying number of states
N are given (where each state models the emission proba-
bilities using a Gaussian distribution with a full covariance
matrix). A random initialization of the HMM parameters
is used. Second a CRF with a random initialization or an
initialization where w is initialized with a logistic classifier.
It appeared that the random initialization is very unstable,
and often a local optimum was found in the optimization.
For some detection problems, such as for AU09 and AU11,
the time sequence information appears to be very important,
and the CRF often outperforms the methods that use only
single timepoints.

IV. CONCLUSIONS

This paper shows that for the classification of AU se-
quence data it is not always required to model the full
sequence, but that the presence of a concept frame may
be sufficient for good classification. The modeling of the
sequence requires a suitable model, and sufficient training
data to fit the model. But for relatively complex and noisy
real world data these two requirements may be too strong.
It appears that the detection of a single concept frame
can often be done more reliably. The concept frame can
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Table I
AREA UNDER THE ROC CURVE PERFORMANCE OF THE CLASSIFIERS (×100), USING THREE TIMES FIVE-FOLD CROSSVALIDATION. THE BEST

PERFORMANCE IS INDICATED IN BOLD, TOGETHER WITH THE PERFORMANCES THAT ARE NOT SIGNIFICANTLY WORSE (USING A ONE-SIDED T-TEST
WITH A CONFIDENCE LEVEL OF 5%). BETWEEN BRACKETS THE STANDARD DEVIATION OVER THE THREE RUNS IS SHOWN.

classifier AU01 AU04 AU05 AU06 AU07 AU09 AU11 AU12
Fisher max 84.0 (0.0) 80.2 (0.0) 79.6 (0.0) 83.7 (0.0) 73.1 (0.0) 70.0 (0.0) 66.0 (0.0) 81.9 (0.0)
Fisher q = 0.1 83.0 (0.0) 82.4 (0.0) 80.3 (0.0) 80.2 (0.0) 76.2 (0.0) 73.2 (0.0) 66.7 (0.0) 85.0 (0.0)
Fisher q = 0.5 79.7 (0.0) 76.8 (0.0) 76.8 (0.0) 69.2 (0.0) 75.0 (0.0) 69.1 (0.0) 62.4 (0.0) 77.2 (0.0)
Fisher q = 0.9 74.3 (0.0) 70.3 (0.0) 69.9 (0.0) 56.5 (0.0) 74.2 (0.0) 63.1 (0.0) 59.8 (0.0) 62.1 (0.0)
Logistic max 77.1 (0.0) 67.5 (0.0) 83.7 (0.0) 73.3 (0.0) 71.8 (0.0) 75.8 (0.0) 82.1 (0.0) 77.5 (0.0)
Logistic q = 0.1 75.5 (0.0) 68.2 (0.0) 82.6 (0.0) 72.5 (0.0) 73.4 (0.0) 78.3 (0.0) 82.1 (0.0) 80.9 (0.0)
Diverse Dens. k = 20 73.9 (3.7) 68.4 (1.7) 82.1 (0.0) 74.6 (1.7) 67.1 (0.1) 75.9 (1.3) 72.3 (0.0) 79.7 (0.3)
Diverse Dens. k = 50 74.3 (1.4) 69.5 (1.1) 82.1 (0.0) 74.6 (0.6) 67.1 (0.5) 74.3 (0.0) 72.8 (0.0) 80.2 (1.2)
Clust K = 20 max 71.8 (3.3) 68.0 (0.6) 80.8 (3.2) 64.7 (1.3) 74.1 (1.5) 27.7 (3.0) 71.7 (0.7) 50.7 (2.3)
Clust K = 20q = 0.1 68.4 (0.7) 67.0 (1.5) 76.5 (1.6) 63.0 (5.6) 75.0 (3.2) 29.3 (2.2) 68.9 (1.5) 43.5 (1.8)
Clust K = 50 max 74.3 (1.5) 68.0 (0.3) 83.2 (0.9) 61.5 (4.0) 74.6 (1.2) 28.9 (3.2) 73.3 (1.7) 49.2 (2.7)
Clust K = 50q = 0.1 72.9 (1.7) 67.0 (1.0) 77.1 (0.3) 68.7 (1.0) 77.7 (1.2) 30.5 (0.8) 71.3 (1.3) 45.8 (3.7)
HMM N = 2 54.3 (0.5) 57.4 (0.8) 77.1 (0.5) 47.7 (0.5) 66.6 (0.5) 58.1 (0.6) 79.5 (0.7) 38.7 (0.2)
HMM N = 3 54.4 (0.6) 56.8 (0.8) 77.8 (0.8) 48.3 (0.9) 66.2 (1.4) 56.0 (1.9) 79.5 (1.4) 38.9 (0.7)
HMM N = 4 53.1 (1.6) 56.4 (0.7) 77.0 (0.1) 48.1 (0.4) 67.8 (1.4) 56.5 (1.7) 80.0 (0.1) 39.1 (0.5)
CRF random init. 69.5 (2.4) 65.8 (0.2) 77.2 (0.0) 67.1 (0.8) 73.7 (0.9) 76.8 (0.9) 81.2 (0.0) 80.7 (0.5)
CRF logistic init. 71.3 (2.0) 65.6 (0.6) 76.8 (0.0) 66.7 (0.3) 74.8 (2.2) 78.3 (2.3) 88.1 (0.0) 77.8 (0.4)

be found by training standard classifiers on the individual
time frames, and combining the results of the frames in a
robust manner. Depending on the classification problem, the
robustness or sensitiveness to outliers has to be adjusted. In
classification problems that are considered in this paper, this
naive approach performed very well. An alternative approach
is to use Multi-Instance learning. This approach exploits the
fact that the frames are part of a collection (called a ‘bag’),
but it assumes that the frames are independent and therefore
it ignores the sequential nature of the data. Still, for some
sequence classification problems it shows very promising
performance.
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