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Abstract—Visual tracking frameworks have traditionally relied
upon a single motion model such as Random Walk, and a fixed,
embedded search method like Particle Filter. As a single motion
model can’t reliably handle various target motion types, the
interest toward multiple motion models has grown over the years.
The existence of multiple competing hypotheses or predictions by
the multiple motion models opens up the possibility of a wider
range of search methods. To search for the target in a fixed grid of
equal sized cells, an integration of the Wang-Landau method and
the Markov Chain Monte Carlo (MCMC) method has recently
been introduced. In this paper, we generalize this search method
to cells of variable size and location, where the cells are formed
around the predictions generated by multiple motion models.
The effectiveness of the proposed method is tested by adopting
a multiple motion model tracker. Experiments show that the
modified tracker has improved accuracy and better consistency
over different runs compared to its original, and superior
performance over state-of-the-art trackers in challenging video
sequences.

I. INTRODUCTION

Visual tracking in image sequences is an important task
in computer vision. It has many practical applications such as
human computer interaction, automatic traffic control, security
and surveillance, and medical imaging. Usually, a target to be
tracked is initialized with a bounding box in the first frame,
and it is required to estimate the trajectory of the target through
subsequent frames. While easy to imagine, it is not so easy
to accurately maintain track of the target in unconstrained
environments due to challenges such as occlusions, rapid
motion variations, illumination changes, and pose variations.

To address these challenges, many successful tracking al-
gorithms have been proposed in the recent past. Generally
speaking, a tracking algorithm builds on a combination of
a matching function and a search strategy. The matching
function weighs how well a certain hypothesis matches the
target model, while the search strategy finds the optimal hy-
pothesis through maximising or minimising a certain objective
function, which itself is a function of the matching function.
In this paper, we generalize a search method to obtain the best
hypothesis from multiple competing hypotheses arbitrarily
positioned in our search space.

Two different search strategies are commonly used by visual
trackers: gradient descent and stochastic methods. Gradient
descent methods [1],[2] remain popular due to their fast
convergence rate and low computational cost, but can become
trapped in local modes of the filtering distribution due to

e.g. background clutter or rapid motion of a target. Stochastic
methods such as particle filters (PF) [3],[4],[5] have enjoyed
much success in tracking, as they can handle non-Gaussianity
and multi-modality of a target distribution. PF is computation-
ally impractical for high dimensional spaces, typically found
in multi-object tracking. In the recent past, many methods [6]
have been proposed to reduce the computational expense and
improve the efficiency of PF. Among them, Markov Chain
Monte Carlo (MCMC) methods gained popularity as efficient
search methods [7],[8]. While simulating a target distribution
with deep local maxima, these methods can, however, become
stuck at a local maximum, leading to an inaccurate Bayesian
inference. This is also known as the local trap problem.

Adaptive MCMC algorithms [9] provide an automatic way
of tuning the proposal variance to maintain a certain accep-
tance rate of the sampler, and thus can better mix between
different modes of a target distribution. However, it doesn’t
provide a systematic way of escaping local maxima. Kwon and
Lee [10], combined the Wang-Landau Monte Carlo method
with the MCMC method to escape local maxima in a complex
target distribution, while searching in a regular grid that
divides the image space in a number of equally sized cells.
Towards a similar goal, a Stochastic approximation Monte
Carlo (SAMC) based tracking algorithm was proposed by [11]
to search for the optimal target state in a regular grid.

An important ingredient of visual tracking is the motion
model. In stochastic methods, its purpose is to guide the search
method towards the correct modes of the target distribution
while avoiding search in areas with local traps. Since it is
difficult to produce an accurate motion model for a large
variety of tracking environments, visual tracking frameworks
have conventionally depended on a single general purpose
motion model like Random Walk (RW) or Nearly Constant
Velocity (NCV). Their generality, resulting in an inability to
model complex motion, becomes a drawback and results in
poor tracking accuracy in situations where a target can display
complex motion variations.

To capture different ways a target can move, some attention
has been given to the notion of multiple motion models. Isard
and Blake [12] learned a few distinct motion models, and a
fixed finite state machine describing transitions among them
from ground truth data. Later, North et al. [13] extended
the work of [12] by learning more complex dynamics, and
demonstrated the effectiveness of their approach on a juggling
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Fig. 1: Tracking frameworks relying on a single motion model produce a
single state prediction, and use an embedded search strategy for finding the
optimal target state around this state prediction. For instance, a linear motion
model in a particle filter. First row of the figure shows a single state prediction
in 3D state space at time t-1 and time t. In contrast, a multiple motion model
framework generates multiple competing hypotheses or state predictions. The
aim is to find the best target state from these predictions. Second row of the
figure shows multiple state predictions in 3D state space at time t-1 and time
t. We propose to model our search by allocating each state prediction a certain
area, which we call a cell, in state space. The size of this cell is proportional
to the confidence of its corresponding prediction. Last row of the figure shows
cells of variable size in 3D state space at time t-1 and time t, where each cell
is formed around a certain state prediction. The question of how to search for
the optimal target state in these variable sized cells raises the possibility of a
broader range of search strategies that can be introduced.

example. Instead of learning from some offline data, Kwon
and Lee [14] sampled motion models from a pool, generated
by utilizing the recent sampling history. This increased the
accuracy and efficiency of the state sampling process. Kristan
et al. [15] designed a two-stage dynamic model to improve
the accuracy and efficiency of the bootstrap particle filter in
handling various target motions. The method, however, fails
when a target undergoes frequent non-constant motion. To
handle complex target motion and occlusions, Khan et al. [16]
proposed a multiple motion model tracker. It combines motion
models learnt and applied over multiple temporal scales with
an extension of the bootstrap particle filter.

Trackers employing multiple motion models such as [16]
produce multiple competing hypotheses or state predictions
as illustrated in the second row of Fig. 1. The question then
becomes how to search for the optimal target state given these
predictions. We propose to model our search by assigning
each state prediction a certain area in state space, which
we call a cell. The size of this cell is proportional to the
uncertainty attached with its corresponding prediction, and its
position in space depends on an estimator such as a motion
model. The last row of Fig. 1 describes this more general
problem in a 3D state space. We believe that the occurrence
of the aforementioned problem in visual tracking invites the
possibility of a wider range of search strategies for finding the
optimal target state.

In this paper, we generalize a sampling based search method
which integrates the Wang-Landau Monte Carlo method and
MCMC method (WLMCMC sampling) [10]. WLMCMC op-
erates on a regular grid of equal sized cells. We propose to
generalize this to arbitrarily placed cells of variable size. In
[10], the Wang-Landau method estimates the Density of States
(DOS) term, which denotes the extent to which cells have been
explored, and this term is used to generate moves to cells that
have not been explored enough. This allows discovery of local
maxima in specific cells, while jumping between them. The
likelihood term in MCMC causes this method to spend more
time in cells that contain highly probable target states. With
this term, the method expends more samples around the current
local maximum, which has already been well explored.

WLMCMC sampling [10] is a powerful method for approx-
imating a complex filtering distribution, as was demonstrated
by searching for the best target state in a regular grid of
equally sized cells. However, we believe that its full potential
is yet to be exploited. In this regard, we make the following
contributions:

« To search for the best target state in cells having variable
size and arbitrary position in state space, we generalize
WLMCMC sampling [10].

o We apply the proposed solution to the multiple motion
model tracker [16]. The modified tracker shows improved
accuracy and better consistency over multiple runs com-
pared to the original, and outperforms state-of-the-art
trackers in challenging video sequences.

After describing the Bayesian tracking algorithm in Section
II, we outline the multiple motion model framework [16] in
Section III, and then describe the generalization of WLMCMC
sampling with respect to this framework in Section IV.

II. BAYESIAN TRACKING FORMULATION

In our visual tracking formulation the aim is to find the best
state of the target at time ¢ given observations up to t. The
state at time ¢ is given by X; = {X7, X7, X}, where X[,
Xty , and X; represent the x,y location and scale of the target,
respectively. The posterior distribution p(X;|Y7.:), given the
state X, at time ¢ and observations Y., up to ¢, is estimated



using the Bayesian formulation
P(Xe| Y1) o< p(Yi|Xy) (1)
[ PO (Y X

where p(Y:X;) denotes the observation model, and
p(X;|X;—1) is a motion model. Now the best state of the
target Xt is obtained using Maximum a Posteriori (MAP) es-
timation over the N particles which approximates the posterior
distribution p(X;|Y1.¢):

X, = argm(afp(XfHYM) fori=1,..,N, (2
e

t

where ng) is the 4, particle. The analytical solution to
Eq.(1) is intractable in practice if the filtering distribution
is non-Gaussian. Conventional tracking frameworks typically
use a single motion model and a fixed sampling based search
strategy to approximate p(X;|Y1.;). Here, we discuss a frame-
work from the class of methods that employ multiple motion
models and generate multiple competing hypotheses or state
predictions. For such cases, PF [3] and Metropolis Hastings
(MH) [17] are infeasible, and a broad range of search strategies
needs to be explored.

III. A MULTIPLE MOTION MODEL FRAMEWORK

The multiple motion model framework (M3F) we apply here
addresses the occlusion and non-constant motion problems
typical of single target tracking. It learns motion models at
different model-scales, and applies those models at multiple
prediction-scales. The model-scale is the duration of a se-
quence of recently estimated target states. The prediction-scale
is the temporal distance, measured in frames of the input image
sequence, over which a prediction is made. The application of
learned models at multiple prediction-scales generates multiple
competing hypotheses or state predictions at each time point.
To search for the best target state, M°F extends PF [18], in
which a fixed particle set with a certain spread is allocated
around each state prediction.

To capture possibly complex motion patterns, M°F learns
simple motion models at different model-scales. A simple
motion model is characterized by a polynomial function of
order d, and represented by M. M is learned at a given model-
scale separately for the z-location, y-location, and scale s of
the target’s state. For instance, an M of order 1, learned at
model-scale m, predicts a target’s x-location at time ¢ as:

Ty = By + B, 3)

where (3; is the slope, and 3, the intercept.

These models are learned at each time ¢, and a set of
these models is represented by Mi:l"”"M“, where |.| is the
cardinality of the set. Each model predicts target state [(Z, g, §)
at T" prediction-scales.

Suppose there are T" sets of motion models available at time
t, one from each of T previous time-steps. Each set of models
at time ¢ is represented by its corresponding set of predictions.

The most suitable motion model from each set is selected as
follows. _

Let us denote G = |[M,|, and let I¥ = {I/*|j = 1,...,G}
represent a set of states predicted by G motion models learnt at
time ¢ —k, where [ % denotes the predicted state by j;;, motion
model learned at kyj, previous time-step. As k = 1, ..., T, there
are 1" sets of predicted states at time ¢. Now the most suitable
motion model R¥ is selected from each set using the following
criterion:

I = argmaxp(Y.[i]") 4)
I
where ff is the most suitable state prediction from the set
17, and p(Y,|lf *) measures the visual likelihood at the pre-
dicted state /7". In other words, ff is the most suitable state
prediction of the most suitable motion model R¥. After this
selection process, the 1" sets of motion models are reduced to
T individual models.

There exist 7' most suitable state predictions at time ft.
We model our search by allocating each state prediction lZ“
a certain area in the state space, which we call a cell. The
size of this cell is equivalent to the uncertainty attached to
its corresponding hypothesis (see the last row of Fig. 1). For
instance, the size of the cell around Zf will be 2 x o, X k pixels,
and 2 x o, x k pixels, respectively. Along the third dimension,
scale, the uncertainty would be o5 x k around the predicted
state lZ“ Here o, oy, and o, are the standard deviations of a
zero-mean Gaussian noise acting on translation x and y, and
scale s between two consecutive time-steps, respectively.

Given T cells of variable size, which might overlap, the
aim is to search for the best target state X, in these cells.
An intuitive, and pragmatic approach would be to visit all the
cells to some extent, and spend more time in those where there
are highly probable target states. Moreover, these cells can
be far apart in space. Sampling based search methods such
as the MH algorithm [17], used conventionally in tracking
frameworks, cannot be used here. While searching a large
area with large proposal variance, the MH algorithm has the
tendency to become stuck in local maxima. With a smaller
variance, it would require many samples to search a large area,
and again get trapped in a local maximum if there are deep
valleys between the different modes of the target distribution.
We generalize WLMCMC sampling to solve these problems
in the next section.

The original instantiation of M3F extends PF to allocate a
fixed number of particles with a certain spread around each
state prediction to obtain X,. This spread is equal to the
uncertainty associated with the corresponding state prediction
computed as described above. We hypothesize that compared
to the search based on extended PF, the proposed generaliza-
tion of WLMCMC will not only improve the accuracy of the
M?3F, but will result in more consistent tracking across different
runs.

IV. A GENERALIZED WLMCMC SAMPLING

WLMCMC sampling was introduced by [10] to search for
the target in a whole image after dividing it into a fixed grid of



equal sized cells (see the third row of Fig. 1). It is composed
of the Wang-Landau estimation and Markov Chain Monte
Carlo (MCMC) method. Wang-Landau estimation is a Monte
Carlo algorithm that was introduced in physics literature for
calculating the density of states (DOS) by performing a set of
random-walks in different energy cells [19].

A. Wang Landau Monte Carlo (WLMC) method

The aim is to estimate the DOS score for every cell, where
the DOS score is high for a cell if it contains highly probable
target states. As it is intractable to accurately calculate the
DOS score for every cell, the WLMC method is used to
estimate it. This method maintains a histogram h, and each
bin of this histogram corresponds to a specific cell C. When
C} is visited, its bin count h(C}) is increased by 1, and its
DOS score g(Cj) is modified by multiplying a modification
factor f > 1.

9(Cr) < g(Cy) * f, &)

where ¢g(C}) is initially set to 1 for all k. As the simulation
progresses, the random-walk generates a semi-flat histogram.
A histogram is considered semi-flat if the value of the lowest
bin is larger than 80% of the average value of all bins in A [19].
The semi-flat histogram denotes that the method has explored
all the cells to at least some degree. Now the method performs
the next random-walk in a coarse-to-fine manner to obtain
more accurate DOS estimates. For this, the f factor is reduced
to f < +/f and the histogram is reset to 0. The method
continues until the histogram becomes semi-flat again; then
restarts the random-walk with a finer modification factor. The
algorithm terminates when the modification factor becomes
close to 1 or the number of iterations reaches a pre-defined
value.

B. Proposal Step

The proposal step defines how the transition from the
current state to a new state will occur based on some previous
knowledge of the target motion. In this case, the previous
knowledge of the target motion is that it can move from the
current cell to any of the cells within one proposal step. The
proposal density is defined as

QX Xy) = Qu(X,) 6)

Q. proposes a new state X; in two stages. In the first
stage, a cell C}; is chosen randomly from the 7" available cells.
In the second stage, the x-location and y-location of X; are
uniformly drawn from the chosen cell Cy, and the scale part
of X; is proposed by adding zero-mean Gaussian noise with
standard deviation o5 X k to the scale part of Zf

C. Acceptance Step

The acceptance ratio decides whether the proposed state is
accepted or not using the likelihood ratio between the proposed
state X, and the current state X,

P(Y4[X) QX X))
"p(Y | X)Q(Xy; Xy)

a=min |1

(7

The WLMCMC algorithm integrates the density of states
term with the acceptance ratio in Eq.(7). Let D be a mapping
function from the state X; to the cell C},, which contains the
state X;.

D: Xy — Cy (®)

Then the acceptance ratio becomes

’ 1 . ’
P(Yt|Xt)mQ(Xm Xy)
p(Yt|Xt>mQ(X;§ X |’

a=min |1,

€))

where g(D(X})) denotes the density of states in the cell
which contains X;. Eq.(9) has two important advantages over
Eq.(7). The first advantage is that it provides a systematic
way for a Markov Chain to escape local maxima and capture
the global maximum. This is required because the cells could
be positioned far apart from each other in the space. And in
these situations, the Markov Chain has a higher probability
of meeting local maxima. The second advantage of Eq.(9)
is that it enables Markov Chain to spend more time around
local maxima, while guaranteeing to visit all the cells to some
extent. Again, this is desirable in this scenario because there
could be any number of cells containing highly probable target
states, and this should be discovered by visiting each of them
to some degree.

The DOS score g(D(X)) in Eq.(9) is calculated exactly in
the same way as described in subsection A. For instance, if a
state proposed by Eq.(6) is accepted by the acceptance ratio in
Eq.(9), and the state belongs to cell C}, then the DOS score of
the cell g(Cy) is modified by the factor f, and its bin count
h(Cy) is increased by 1. Otherwise, the same procedure is
applied to the cell which contains the current state. Algorithm
1 details relevant steps of the generalized WLMCMC method
given variable sized cells, where each cell is formed around a
certain state prediction.

Algorithm 1 Generalized WLMCMC method for variable
sized cells.

Input: A set of variable
Ci={Cklk=1,..T}
Output: Best state of the target at time t: X,

sized cells at time t:

Initialize the DOS score for each cell g(C)) = 1, and the bin
count for each cell h(Cy) = 0, where k =1,...,T.
Set f =2.7
for g=11to N, where N is the total number of particles
- Given the current state X], propose a new state X;
using the Eq.(6).
- Use Eq.(9) to compute the acceptance ratio.
- if the proposed state is accepted then set XZH to X;,
else set X/ to X,.
- g(D(XEM))  g(DXE)) + f
- R(D(XIH)) e h(D(XI)) +1
- If h is semi-flat then reset h(Cy) = 0,Vk and f + /.
end
Compute the best state X, using Eq.(2).




V. EXPERIMENTAL DETAILS AND RESULTS

We used ten video sequences for experiments. The se-
quences are TUD-Campus[20], TUD-Crossing[20],ball2 [16],
PETS 2001 Dataset Il,toyl 2. Person[21], balll [16], car[22],
Person2 3, and squash [16].

We denote the multiple motion model framework (M3F)
based on generalized WLMCMC by M?*F-GWL. M?*F-GWL
was compared to the original instantiation of M>F denoted by
M?3F-PF [16], and six state-of-the-art trackers. The state-of-
the-art trackers are WLMCMC [10], Visual Tracking Decom-
position (VTD) [23], Fragment-based Tracker (FragT) [24],
Incremental Subspace Visual Tracker (IVT) [25], Real-Time
Robust L1-Tracker using Accelerated Proximal Gradient (L1-
APG) [26], and Semisupervised Boosting Tracker (Semi) [27].

In terms of search methods, M?F-PE, IVT, and L1-APG
are based on particle filters, FragT and Semi utilize dense
sampling methods, WLMCMC and VTD use MCMC. The
minimum and maximum number of samples used for WLM-
CMC, VTD, IVT, and L1-APG was 600 and 640, respectively.
The minimum and the maximum size of the cell in terms of
half width and half height in image space were 1 pixel and 30
pixels, respectively. For M3F-PF and M3F-GWL, model-scales
of 2,3,4, and 5 frames were used, and at each model-scale
a linear motion model was learned. M*F-PF and M3F-GWL
utilized the HSV colour histogram as the observation model
and Bhattacharyya coefficient as the distance measure [3].

A. Performance Evaluation

Table 1 reports tracking accuracy of 8 trackers on 10 video
sequences in terms of centre location error in pixels, averaged
over 5 runs of each tracker. The first eight videos involve
occlusions of varying lengths, and the last two contain both
occlusions and rapid motion variations. IVT and SemiBoost
did not perform well in any of the sequences as the former
updates its holistic appearance model in a blind manner, and
the latter relies on a naive detection strategy after the target
is occluded. An efficient sampling scheme combined with an
annealing procedure allows WLMCMC to perform best in
the TUD-Campus sequence. FragT achieved top and second
best performance in car and TUD-Crossing sequences, respec-
tively, which involved partial occlusions. Likewise, L1-APG
produced the lowest center location error in the TUD-Crossing
sequence. FragT uses a part-based appearance model, while
L1-APG relies on an explicit occlusion detection mechanism
whose output is linked to a robust minimization model.

M3F-PF showed better accuracy than the state-of-the-art
trackers in 6 out of 10 sequences in handling occlusions
and motion variations. The last column shows that M3F-
GWL improved the accuracy of MPF-PF in almost every
sequence using the same number of particles, although the
only difference between M?F-PF and M?*F-GWL is the search
method. Given multiple cells of variable size formed around

VPETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
2toyl is made by us.
3 Person2 is available from http://www.iai.uni-bonn.de/ kleind/tracking/

state predictions, MF-GWL produces more samples from
the cells containing higher probability of local maxima that
increases chances of reaching to the global maximum. On the
other hand, MF-PF just allocates a fixed number of particles
with a certain spread around each state prediction, and thus
it can miss the global maximum more often. For instance in
Fig. 2, when the target re-appears after occlusion in person2
sequence, M*F-GWL displays more accurate tracking than
M?3F-PF by capturing the global maximum more often than
M3F-PF.
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Fig. 2: A comparison of tracking accuracy between M3F-GWL(white) and
M?F-PF(blue). M3F-GWL shows more accuracy in tracking a person when it
becomes visible after occlusion in comparison to M3F-PF.

Fig.3 shows a comparison between M3F-PF and M?’F-
GWL in terms of tracking consistency over 5 runs with and
without occlusions on five different sequences. The improved
consistency of M*F-GWL over M?F-PF under both situations
suggests that while the multiple motion model framework [16]
has the potential to handle occlusions, its tracking consistency
can be improved further with a sophisticated search method
such as generalized WLMCMC.

Fig.4(a) shows tracking results in the person sequence,
which is captured with a moving camera in an outdoor
environment. VID, FragT, L1-APG, and IVT failed to re-
capture the target after the first occlusion, while Semi re-
acquired the target a few frames after occlusion. In contrast,
M3F-PF, M*F-GWL, and WLMCMC successfully tracked the
target throughout this video sequence.

In the ball2 sequence, the target undergoes occlusions of
different lengths. Fig. 4(b) shows that M3F-GWL recovers
the target more quickly than M3F-PF after occlusion (frame #

Comparison between M3F-PF and M*F-GWL in terms of consistency
over 5 runs with and without Occlusions

[CIMPF-PF(With Occlusions)
-MBF—GWL(Wilh Occlusions)
2.5\ ElMCF-PF(Without Occlusions)

Standard deviation (in pixels)

toy1 person2 TUD-Cross ball2
Video Sequence

TUD-Campus

Fig. 3: Comparison of tracking consistency over 5 runs between M>F-GWL
and M3F-PF with and without occlusions. Each bar in this figure is a standard
deviation (in pixels) calculated over a set of five mean center location errors
(in pixels). Each mean value in this set is computed by averaging the centre
location error over all frames (with or without occlusion) for a video sequence.



TABLE I: Tracking accuracy of 8 trackers on 10 video sequences. Mean centre location error in pixels is given, averaged over all frames for a video sequence. Each tracker
was run five times and the results were averaged. The best results are marked in bold. IV is the number of particles used in M3E-PF and M*F-GWL.

Sequence IVT L1-APG VTD Semi FragT | WLMCMC | M°F-PF | M'F-GWL | N |
toyl 111.396 110.773 98.265 99.085 107.894 23911 23.762 21.388 600
ball2 104.229 71.851 66.729 78.359 106.905 29.928 19.491 18.708 640
TUD-Ca 186.647 100.126 187.023 61.282 112.127 22.034 23.604 22.772 160
TUD-Cr | 41859 | 2351 | 63495 | 62039 | 4912 37.856 30.671 27.999 | 500
PETS’01 76472 | 60.676 83.207 | 114551 | 67.446 55.334 26.755 25.440 640
Person 83.579 115.822 85.080 177.683 83.956 19.141 10.218 9.442 400
car 81342 | 31280 | 47.504 | 38533 | 15769 27915 27.842 27.033 | 400
Person2 12236 | 26.231 18.861 | 49.854 9.213 12.042 11.732 10.460 400
squash 122.205 60918 20.036 68.629 35.677 19.864 11.245 10.322 100
balll 144.537 124.676 69.184 66.734 210.258 20.711 16.827 15.470 280
[6] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing
methods and recent advances in sequential monte carlo,” Proceedings
of the IEEE, vol. 95, no. 5, pp. 899-924, 2007.
[71 Z. Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering for
tracking a variable number of interacting targets,” PAMI, vol. 27, no. 11,
pp. 1805-1819, 2005.
[8] K. Smith, D. Gatica-Perez, and J.-M. Odobez, “Using particles to track
varying numbers of interacting people,” in CVPR, 2005.
[91 G. O. Roberts and J. S. Rosenthal, “Examples of adaptive mcmc,”
Journal of Computational and Graphical Statistics, vol. 18, no. 2, pp.
349-367, 2009.
[10] J. Kwon and K. M. Lee, “Tracking of abrupt motion using wang-landau
monte carlo estimation,” in ECCV, 2008.
[11] X. Zhou, Y. Lu, J. Lu, and J. Zhou, “Abrupt motion tracking via
intensively adaptive markov-chain monte carlo sampling,” CVPR, 2010.
[12] M. Isard and A. Blake, “A mixed-state condensation tracker with
(b) Frame # 123, 126, and 188 of ball2 sequence. automatic model-switching,” in ICCV, 1998.

) ) ) [13] B. North, A. Blake, M. Isard, and J. Rittscher, “Learning and classi-
Fig. 4: Tracking results in person and ball2 sequences. M3F—GWL(magenta), fication of complex dynamics,” PAMI, vol. 22, no. 9, pp. 1016-1034,
M3F—PF(cyan), WLMCMC(black), FragT(yellow), Semi(white), LI1- 2000.

APG(red), VTD(blue) and TVT(green). [14] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in ICCV,
2011.

[15] M. Kristan, S. Kovacic, A. Leonardis, and J. Pers, “A two-stage dynamic

model for visual tracking,” Systems, Man, and Cybernetics, Part B:

123)’ and tracks more accurately (frame # 126) afterwards. Cybernetics, IEEE Transactions on, vol. 40, no. 6, pp. 1505-1520, 2010.

[16] M. H. Khan, M. Valstar, and T. Pridmore, “A multiple motion model

VI. CONCLUSION

In this paper, we generalize a search method for multiple
competing hypotheses in visual tracking. Such hypotheses
are usually state predictions generated in a multiple motion
model framework. The search is modelled by assigning a
certain area in state space, which we call a cell, to each
state prediction. To search for the best target state in these
cells, we generalize WLMCMC sampling to cells of variable
size and location. To show the effectiveness of the proposed
solution, we adapt the multiple motion model tracker of [16].
The modified tracker demonstrates improved accuracy and
better consistency over different runs than the original, and
shows superior performance over other trackers in challenging
tracking environments.
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